Class 18: Conditional bounds for $\zeta(s)$: part II

Andrés Chirre
Norwegian University of Science and Technology - NTNU

04-November-2021

Result of Littlewood

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is $C>0$ such that

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll \exp \left(C \frac{\log t}{\log \log t}\right) .
$$

for t sufficiently large.

Result of Littlewood

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is $C>0$ such that

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll \exp \left(C \frac{\log t}{\log \log t}\right) .
$$

for t sufficiently large. The order of magnitude has not been improved over the last ninety years, and the efforts have hence been concentrated in optimizing the values of the implicit constants.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right)
$$

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.
(2) Soundararajan (2009) : $C=0.373$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.
(2) Soundararajan (2009) : $C=0.373$.
(3) Chandee and Soundararajan (2011) : $C=\frac{\ln (2)}{2} \approx 0.347$. In this case $o(1)=\frac{\log \log \log t}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right)
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$. In this case $o(1)=\frac{1}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Lemma (Representation lemma)

Assume the Riemann hypothesis. Let $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ be the function

$$
f(x)=\log \left(\frac{4+x^{2}}{x^{2}}\right)
$$

Then, for $t>0$ sufficiently large we have

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

The sums run over the non-trivial zeros $\rho=\frac{1}{2}+i \gamma$ of $\zeta(s)$.

Lemma (Guinand-Weil explicit formula)

Let $h(s)$ be analytic in the strip $|\operatorname{Im} s| \leq \frac{1}{2}+\varepsilon$ for some $\varepsilon>0$, and assume that $|h(s)| \ll(1+|s|)^{-(1+\delta)}$ for some $\delta>0$ when $|\operatorname{Re} s| \rightarrow \infty$. Then

$$
\begin{aligned}
\sum_{\rho} h\left(\frac{\rho-\frac{1}{2}}{i}\right)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right) \\
& +h\left(\frac{1}{2 i}\right)+h\left(-\frac{1}{2 i}\right)
\end{aligned}
$$

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.
- We need to minimize

$$
\int_{-\infty}^{\infty} f(x)-m(x) d x
$$

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.
- We need to minimize

$$
\int_{-\infty}^{\infty} f(x)-m(x) d x
$$

This is Beurling-Selberg's problem!!!

Developments of Beurling-Selberg's problem

Function	Optimal entire approximations
$\operatorname{sgn}(\mathrm{x})$	Beurling 30's
$\chi_{[a, b]}(x)$	Selberg 50's and Logan 80's
$e^{-\lambda\|x\|}$	Graham-Vaaler '81
Even functions (e.g. log $\|x\|$)	Carneiro-Vaaler '09
Even functions (e.g. $e^{-\lambda x^{2}}$) (Gaussian subordination)	Carneiro-Littmann-Vaaler '10
Odd functions (e.g. $\left.\operatorname{sgn}(x) e^{-\lambda x^{2}}\right)$ (odd Gaussian subordination)	Carneiro-Vaaler '11

Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of $(0, \infty)$ such that

$$
0<\int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} d \nu(\lambda)<\infty
$$

Define the function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
f(x)=\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} d \nu(\lambda)
$$

where $f(0)$ may take the value ∞.

Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of $(0, \infty)$ such that

$$
0<\int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} d \nu(\lambda)<\infty
$$

Define the function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
f(x)=\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} d \nu(\lambda)
$$

where $f(0)$ may take the value ∞. Then, there exists a unique extremal minorant $G(z)$ of exponential type 2π for f. The function $G(x)$ interpolates the values of $f(x)$ at $\mathbb{Z}+\frac{1}{2}$.

$$
G(z)=\left(\frac{\cos \pi z}{\pi}\right)^{2}\left\{\sum_{n \in \mathbb{Z}} \frac{f\left(n-\frac{1}{2}\right)}{\left(z-n+\frac{1}{2}\right)^{2}}+\sum_{n \in \mathbb{Z}} \frac{f^{\prime}\left(n-\frac{1}{2}\right)}{\left(z-n+\frac{1}{2}\right)}\right\}
$$

Let $\Delta>0$, and consider the measure

$$
d \nu_{\Delta}(\lambda):=\frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda .
$$

Let $\Delta>0$, and consider the measure

$$
d \nu_{\Delta}(\lambda):=\frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda .
$$

Then

$$
\begin{aligned}
\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} & \frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda \\
& =\log \left(\frac{4 \Delta^{2}+x^{2}}{x^{2}}\right)-\log \left(4 \Delta^{2}+1\right) \\
& =f_{\Delta}(x)
\end{aligned}
$$

Let $\Delta>0$, and consider the measure

$$
d \nu_{\Delta}(\lambda):=\frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda .
$$

Then

$$
\begin{aligned}
\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} & \frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda \\
& =\log \left(\frac{4 \Delta^{2}+x^{2}}{x^{2}}\right)-\log \left(4 \Delta^{2}+1\right) \\
& =f_{\Delta}(x)
\end{aligned}
$$

where

$$
f_{\Delta}(x)=f\left(\frac{x}{\Delta}\right)-f\left(\frac{1}{\Delta}\right)
$$

Let $G_{\Delta}(z)$ be the minorant of exponential type 2π for f_{Δ}.

Let $G_{\Delta}(z)$ be the minorant of exponential type 2π for f_{Δ}. Then:

$$
G_{\Delta}(x) \leq f_{\Delta}(x)=f\left(\frac{x}{\Delta}\right)-f\left(\frac{1}{\Delta}\right) .
$$

Let $G_{\Delta}(z)$ be the minorant of exponential type 2π for f_{Δ}. Then:

$$
G_{\Delta}(x) \leq f_{\Delta}(x)=f\left(\frac{x}{\Delta}\right)-f\left(\frac{1}{\Delta}\right)
$$

Define

$$
H_{\Delta}(x):=G_{\Delta}(x)+f\left(\frac{1}{\Delta}\right) \leq f\left(\frac{x}{\Delta}\right) .
$$

Let $G_{\Delta}(z)$ be the minorant of exponential type 2π for f_{Δ}. Then:

$$
G_{\Delta}(x) \leq f_{\Delta}(x)=f\left(\frac{x}{\Delta}\right)-f\left(\frac{1}{\Delta}\right)
$$

Define

$$
H_{\Delta}(x):=G_{\Delta}(x)+f\left(\frac{1}{\Delta}\right) \leq f\left(\frac{x}{\Delta}\right) .
$$

Finally, we define

$$
m_{\Delta}(x)=H_{\Delta}(\Delta x) \leq f(x)
$$

where $m_{\Delta}(z)$ is an entire function of exponential type $2 \pi \Delta$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.
$(I V) \int_{-\infty}^{\infty}\left\{f(x)-m_{\Delta}(x)\right\} \mathrm{d} x=\frac{1}{\Delta}\left(2 \log 2-2 \log \left(1+e^{-4 \pi \Delta}\right)\right)$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.
$(I V) \int_{-\infty}^{\infty}\left\{f(x)-m_{\Delta}(x)\right\} \mathrm{d} x=\frac{1}{\Delta}\left(2 \log 2-2 \log \left(1+e^{-4 \pi \Delta}\right)\right)$.
$(V)\left|m_{\Delta}(z)(1+|z|)^{2}\right| \ll 1$ when $|\operatorname{Im} z| \leq \frac{1}{2}+\varepsilon$ and $|\operatorname{Re} z| \rightarrow \infty$.

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| & =\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1) \\
& \leq \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| & =\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1) \\
& \leq \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1)
\end{aligned}
$$

Now, we apply the Guinand-Weil explicit formula for the function:

$$
h(s)=m_{\Delta}(t-s) .
$$

$$
\begin{aligned}
\sum_{\gamma} h(\gamma)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right) \\
& +h\left(\frac{1}{2 i}\right)+h\left(-\frac{1}{2 i}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{\gamma} m_{\Delta}(t-\gamma)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right) \\
& +m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& \quad=2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O\left(\frac{\Delta^{2}}{\sqrt{t}}\right)+O(1)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& \quad=2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O\left(\frac{\Delta^{2}}{\sqrt{t}}\right)+O(1) \\
& m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right)=O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

Then $\sum_{n \leq x} \Lambda(n) \ll x$, and this implies:

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

Then $\sum_{n \leq x} \Lambda(n) \ll x$, and this implies:

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i \log n}+e^{-i \log n}\right)\right| & \ll \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \\
& \ll e^{\pi \Delta}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\sum_{\gamma} m_{\Delta}(t-\gamma)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right) \\
& +m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right) \\
= & 2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O\left(\frac{\Delta^{2}}{\sqrt{t}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq & \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1) \\
\leq & \frac{\log t}{2 \pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O\left(\frac{\Delta^{2}}{\sqrt{t}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq & \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1) \\
\leq & \frac{\log t}{2 \pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O\left(\frac{\Delta^{2}}{\sqrt{t}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Finally, we choose $\pi \Delta=\log \log t-3 \log \log \log t$, and we obtain the desired result.

