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Result of Littlewood

A classical result of Littlewood (1924) states that, under the
Riemann hypothesis, there is C > 0 such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
C

log t

log log t

)
.

for t sufficiently large.

The order of magnitude has not been
improved over the last ninety years, and the efforts have hence been
concentrated in optimizing the values of the implicit constants.
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Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.

(2) Soundararajan (2009) : C = 0.373.

(3) Chandee and Soundararajan (2011) : C = ln(2)
2 ≈ 0.347.

In this case o(1) = log log log t
log log t .
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(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.
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Lemma (Representation lemma)

Assume the Riemann hypothesis. Let f : R→ R ∪ {∞} be the
function

f (x) = log

(
4 + x2

x2

)
.

Then, for t > 0 sufficiently large we have

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1).

The sums run over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).
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Lemma (Guinand-Weil explicit formula)

Let h(s) be analytic in the strip |Im s| ≤ 1
2 + ε for some ε > 0, and

assume that |h(s)| � (1 + |s|)−(1+δ) for some δ > 0 when
|Re s| → ∞. Then

∑
ρ

h

(
ρ− 1

2

i

)
=

1

2π

∫ ∞
−∞

h(u)

{
Re

Γ′

Γ

(
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4
+

iu

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

(
ĥ

(
log n

2π

)
+ ĥ

(
− log n

2π
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+ h

(
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2i
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+ h

(
− 1
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Connection to Fourier analysis

We have written our object in consideration as

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1).

From the explicit formula it would be very nice if we could
find an special function m such that

m ≤ f .

m̂ has compact supports, say [−δ, δ].
We need to minimize∫ ∞

−∞
f (x)−m(x) dx .

This is Beurling-Selberg’s problem!!!
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Developments of Beurling-Selberg’s problem

Function Optimal entire approximations

sgn(x) Beurling 30’s

χ[a,b](x) Selberg 50’s and Logan 80’s

e−λ|x | Graham-Vaaler ’81

Even functions (e.g. log |x |) Carneiro-Vaaler ’09

Even functions (e.g. e−λx
2
) Carneiro-Littmann-Vaaler ’10

(Gaussian subordination)

Odd functions (e.g. sgn(x)e−λx
2
) Carneiro-Vaaler ’11

(odd Gaussian subordination)
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Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of (0,∞) such that

0 <

∫ ∞
0

λ

λ2 + 1
dν(λ) <∞.

Define the function f : R→ R ∪ {∞} given by

f (x) =

∫ ∞
0

{
e−λ|x | − e−λ

}
dν(λ),

where f (0) may take the value ∞.

Then, there exists a unique
extremal minorant G (z) of exponential type 2π for f . The function
G (x) interpolates the values of f (x) at Z + 1

2 .

G (z) =

(
cosπz

π

)2
{∑

n∈Z

f (n − 1
2 )

(z − n + 1
2 )2

+
∑
n∈Z

f ′(n − 1
2 )

(z − n + 1
2 )

}
,
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Let ∆ > 0, and consider the measure

dν∆(λ) :=
2(1− cos(2∆λ))

λ
dλ.

Then∫ ∞
0

{
e−λ|x | − e−λ

} 2(1− cos(2∆λ))

λ
dλ

= log

(
4∆2 + x2

x2

)
− log(4∆2 + 1)

= f∆(x),

where

f∆(x) = f

(
x

∆

)
− f

(
1

∆

)
.
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Let G∆(z) be the minorant of exponential type 2π for f∆.

Then:

G∆(x) ≤ f∆(x) = f

(
x

∆

)
− f

(
1

∆

)
.

Define

H∆(x) := G∆(x) + f

(
1

∆

)
≤ f

(
x

∆

)
.

Finally, we define

m∆(x) = H∆(∆x) ≤ f (x),

where m∆(z) is an entire function of exponential type 2π∆.
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Proposition (Chandee and Soundararajan)

Let ∆ ≥ 1. Then m∆ : C→ C is an even entire function such that:

(I )
−C

1 + x2
≤ m∆(x) ≤ f (x), for some C > 0 and for all x ∈ R.

(II ) m∆(z)� ∆2

1 + ∆|z |
e2π∆|Im z| for all z ∈ C.

(III ) m∆ ∈ L1(R), m̂∆(ξ) = 0 for |ξ| ≥ ∆, and m̂∆(ξ) = O(1).

(IV )

∫ ∞
−∞

{
f (x)−m∆(x)

}
dx =

1

∆

(
2 log 2− 2 log(1 + e−4π∆)

)
.

(V )
∣∣m∆(z)(1 + |z |)2

∣∣� 1 when |Im z | ≤ 1
2 + ε and |Re z | → ∞.
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Then, for t > 0 sufficiently large

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1)

≤ log t − 1

2

∑
γ

m∆(t − γ) + O(1).

Now, we apply the Guinand-Weil explicit formula for the function:

h(s) = m∆(t − s).
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∑
γ

h(γ) =
1

2π

∫ ∞
−∞

h(u)

{
Re

Γ′

Γ

(
1

4
+

iu

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

(
ĥ

(
log n

2π

)
+ ĥ

(
− log n

2π

))
+ h

(
1

2i

)
+ h

(
− 1

2i

)
.
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∑
γ

m∆(t − γ) =
1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
+ m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
.



Class 18: Conditional bounds for ζ(s): part II

1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

= 2 log t − log t

π∆
log

(
2

1 + e−4π∆

)
+ O

(
∆2

√
t

)
+ O(1).

m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
= O

(
∆2

1 + ∆t
eπ∆

)
.
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− log π

}
du
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We need to bound:
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Therefore:∑
γ

m∆(t − γ) =
1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
+ m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
= 2 log t − log t

π∆
log

(
2

1 + e−4π∆

)
+ O

(
∆2

√
t

)
+ O(1)

+ O
(
eπ∆

)
+ O

(
∆2

1 + ∆t
eπ∆

)
.



Class 18: Conditional bounds for ζ(s): part II

Then, for t > 0 sufficiently large
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Finally, we choose π∆ = log log t − 3 log log log t, and we obtain
the desired result.
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