Class 19: Advances on zeta and gaps between zeros of zeta

Andrés Chirre
Norwegian University of Science and Technology - NTNU

08-November-2021

Result of Littlewood

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is $C>0$ such that

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll \exp \left(C \frac{\log t}{\log \log t}\right) .
$$

for t sufficiently large.

Result of Littlewood

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is $C>0$ such that

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll \exp \left(C \frac{\log t}{\log \log t}\right) .
$$

for t sufficiently large. The order of magnitude has not been improved over the last ninety years, and the efforts have hence been concentrated in optimizing the values of the implicit constants.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right)
$$

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.
(2) Soundararajan (2009) : $C=0.373$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(1) Ramachandra and Sankaranarayanan (1993) : $C=0.466$.
(2) Soundararajan (2009) : $C=0.373$.
(3) Chandee and Soundararajan (2011) : $C=\frac{\ln (2)}{2} \approx 0.347$. In this case $o(1)=\frac{\log \log \log t}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right)
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$. In this case $o(1)=\frac{1}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right)
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Assuming the Riemann hypothesis, we have

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left((C+o(1)) \frac{\log t}{\log \log t}\right) .
$$

(4) Carneiro and Chandee (2011) : $C=\frac{\log 2}{2} \approx 0.347$.

In this case $o(1)=\frac{1}{\log \log t}$.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof.

Lemma (Representation lemma)

Assume the Riemann hypothesis. Let $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ be the function

$$
f(x)=\log \left(\frac{4+x^{2}}{x^{2}}\right)
$$

Then, for $t>0$ sufficiently large we have

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

The sums run over the non-trivial zeros $\rho=\frac{1}{2}+i \gamma$ of $\zeta(s)$.

Lemma (Guinand-Weil explicit formula)

Let $h(s)$ be analytic in the strip $|\operatorname{Im} s| \leq \frac{1}{2}+\varepsilon$ for some $\varepsilon>0$, and assume that $|h(s)| \ll(1+|s|)^{-(1+\delta)}$ for some $\delta>0$ when $|\operatorname{Re} s| \rightarrow \infty$. Then

$$
\begin{aligned}
\sum_{\rho} h\left(\frac{\rho-\frac{1}{2}}{i}\right)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\hat{h}\left(\frac{-\log n}{2 \pi}\right)\right) \\
& +h\left(\frac{1}{2 i}\right)+h\left(-\frac{1}{2 i}\right)
\end{aligned}
$$

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.
- We need to minimize

$$
\int_{-\infty}^{\infty} f(x)-m(x) d x
$$

Connection to Fourier analysis

- We have written our object in consideration as

$$
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|=\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1)
$$

- From the explicit formula it would be very nice if we could find an special function m such that
- $m \leq f$.
- \widehat{m} has compact supports, say $[-\delta, \delta]$.
- We need to minimize

$$
\int_{-\infty}^{\infty} f(x)-m(x) d x
$$

This is Beurling-Selberg's problem!!!

Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of $(0, \infty)$ such that

$$
0<\int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} d \nu(\lambda)<\infty
$$

Define the function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
f(x)=\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} d \nu(\lambda)
$$

where $f(0)$ may take the value ∞.

Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of $(0, \infty)$ such that

$$
0<\int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} d \nu(\lambda)<\infty
$$

Define the function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
f(x)=\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} d \nu(\lambda)
$$

where $f(0)$ may take the value ∞. Then, there exists a unique extremal minorant $G(z)$ of exponential type 2π for f. The function $G(x)$ interpolates the values of $f(x)$ at $\mathbb{Z}+\frac{1}{2}$.

$$
G(z)=\left(\frac{\cos \pi z}{\pi}\right)^{2}\left\{\sum_{n \in \mathbb{Z}} \frac{f\left(n-\frac{1}{2}\right)}{\left(z-n+\frac{1}{2}\right)^{2}}+\sum_{n \in \mathbb{Z}} \frac{f^{\prime}\left(n-\frac{1}{2}\right)}{\left(z-n+\frac{1}{2}\right)}\right\}
$$

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.
$(I V) \int_{-\infty}^{\infty}\left\{f(x)-m_{\Delta}(x)\right\} \mathrm{d} x=\frac{1}{\Delta}\left(2 \log 2-2 \log \left(1+e^{-4 \pi \Delta}\right)\right)$.

Proposition (Chandee and Soundararajan)

Let $\Delta \geq 1$. Then $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ is an even entire function such that:
(I) $\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)$, for some $C>0$ and for all $x \in \mathbb{R}$.
(II) $m_{\Delta}(z) \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad$ for all $z \in \mathbb{C}$.
(III) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.
$(I V) \int_{-\infty}^{\infty}\left\{f(x)-m_{\Delta}(x)\right\} \mathrm{d} x=\frac{1}{\Delta}\left(2 \log 2-2 \log \left(1+e^{-4 \pi \Delta}\right)\right)$.
$(V)\left|m_{\Delta}(z)(1+|z|)^{2}\right| \ll 1$ when $|\operatorname{Im} z| \leq \frac{1}{2}+\varepsilon$ and $|\operatorname{Re} z| \rightarrow \infty$.

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| & =\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1) \\
& \leq \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| & =\log t-\frac{1}{2} \sum_{\gamma} f(t-\gamma)+O(1) \\
& \leq \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1)
\end{aligned}
$$

Now, we apply the Guinand-Weil explicit formula for the function:

$$
h(s)=m_{\Delta}(t-s) .
$$

$$
\begin{aligned}
\sum_{\gamma} m_{\Delta}(t-\gamma)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right) \\
& +m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right) .
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
=2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O(1)
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
=2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O(1) \\
m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right)=O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{gathered}
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

Then $\sum_{n \leq x} \Lambda(n) \ll x$, and this implies:

We need to bound:

$$
\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)
$$

The prime number theorem gives

$$
\sum_{n \leq x} \Lambda(n) \sim x
$$

Then $\sum_{n \leq x} \Lambda(n) \ll x$, and this implies:

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right)\right| & \ll \sum_{n \leq e^{2 \pi \Delta}} \frac{\Lambda(n)}{\sqrt{n}} \\
& \ll e^{\pi \Delta}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\sum_{\gamma} m_{\Delta}(t-\gamma)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} m_{\Delta}(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i(t-u)}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}} \widehat{m_{\Delta}}\left(\frac{\log n}{2 \pi}\right)\left(e^{i t \log n}+e^{-i t \log n}\right) \\
& +m_{\Delta}\left(t-\frac{1}{2 i}\right)+m_{\Delta}\left(t+\frac{1}{2 i}\right) \\
= & 2 \log t-\frac{\log t}{\pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq & \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1) \\
\leq & \frac{\log t}{2 \pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Then, for $t>0$ sufficiently large

$$
\begin{aligned}
\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq & \log t-\frac{1}{2} \sum_{\gamma} m_{\Delta}(t-\gamma)+O(1) \\
\leq & \frac{\log t}{2 \pi \Delta} \log \left(\frac{2}{1+e^{-4 \pi \Delta}}\right)+O(1) \\
& +O\left(e^{\pi \Delta}\right)+O\left(\frac{\Delta^{2}}{1+\Delta t} e^{\pi \Delta}\right)
\end{aligned}
$$

Finally, we choose $\pi \Delta=\log \log t-3 \log \log \log t$, and we obtain the desired result.

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon} .
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon}
$$

3 Omega results: R. de la Bretèche and Tenenbaum 2018

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geq \exp \left((\sqrt{2}+o(1)) \frac{(\log T)^{1 / 2}(\log \log \log T)^{1 / 2}}{(\log \log T)^{1 / 2}}\right)
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon}
$$

3 Omega results: R. de la Bretèche and Tenenbaum 2018

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geq \exp \left((\sqrt{2}+o(1)) \frac{(\log T)^{1 / 2}(\log \log \log T)^{1 / 2}}{(\log \log T)^{1^{/ 2}}}\right) .
$$

4 Conditional bounds: Chandee and Soundararajan 2011

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left(\left(\frac{\log 2}{2}+o(1)\right) \frac{\log t}{\log \log t}\right) .
$$

Conjecture for $\zeta\left(\frac{1}{2}+i t\right)$

Farmer, Gonek, Hughes (2007): As $T \rightarrow \infty$

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right)(\log T)^{1 / 2}(\log \log T)^{1 / 2}\right) .
$$

The edge of the critical strip

1 Mean value: Balasubramanian, K. Ramachandra 1992

$$
\int_{1}^{T}|\zeta(1+i t)|^{2} \mathrm{~d} t=\zeta(2) T-\pi \log T+O\left((\log T)^{2 / 3}(\log \log T)^{1 / 3}\right)
$$

The edge of the critical strip

1 Mean value: Balasubramanian, K. Ramachandra 1992

$$
\int_{1}^{T}|\zeta(1+i t)|^{2} \mathrm{~d} t=\zeta(2) T-\pi \log T+O\left((\log T)^{2 / 3}(\log \log T)^{1 / 3}\right)
$$

2 Unconditional bounds: Ford 2002

$$
|\zeta(1+i t)| \leq 76.2(\log t)^{2 / 3} .
$$

The edge of the critical strip

1 Mean value: Balasubramanian, K. Ramachandra 1992

$$
\int_{1}^{T}|\zeta(1+i t)|^{2} \mathrm{~d} t=\zeta(2) T-\pi \log T+O\left((\log T)^{2 / 3}(\log \log T)^{1 / 3}\right)
$$

2 Unconditional bounds: Ford 2002

$$
|\zeta(1+i t)| \leq 76.2(\log t)^{2 / 3}
$$

3 Omega results: Aistleitner, Mahatab and Munsch 2018

$$
\operatorname{máx}_{t \in[1 . T]}|\zeta(1+i t)| \geq e^{\gamma}(\log \log T+\log \log \log T-C) .
$$

The edge of the critical strip

1 Mean value: Balasubramanian, K. Ramachandra 1992

$$
\int_{1}^{T}|\zeta(1+i t)|^{2} \mathrm{~d} t=\zeta(2) T-\pi \log T+O\left((\log T)^{2 / 3}(\log \log T)^{1 / 3}\right)
$$

2 Unconditional bounds: Ford 2002

$$
|\zeta(1+i t)| \leq 76.2(\log t)^{2 / 3}
$$

3 Omega results: Aistleitner, Mahatab and Munsch 2018

$$
\operatorname{máx}_{t \in[1 . T]}|\zeta(1+i t)| \geq e^{\gamma}(\log \log T+\log \log \log T-C) .
$$

4 Conditional bounds: Lamzouri, Li and Soundararajan 2016

$$
|\zeta(1+i t)| \leq 2 e^{\gamma}\left(\log \log t-\log 2+\frac{1}{2}+\frac{1}{\log \log t}\right) .
$$

Conjecture for $\zeta(1+i t)$

Granville and Soundararajan (2006): As $T \rightarrow \infty$

$$
\operatorname{máx}_{t \in[T, 2 T]}|\zeta(1+i t)|=e^{\gamma}\left(\log \log T+\log \log \log T+C_{1}+o(1)\right) .
$$

The argument function $S(t)$

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O\left(T(\log \log T)^{1 / 2}\right)
$$

The argument function $S(t)$

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O\left(T(\log \log T)^{1 / 2}\right)
$$

2 Conditionally, Goldston 1987 (Selberg):

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O(T)
$$

The argument function $S(t)$

Unconditional bounds: Trudgian (Backlund) 2002

$$
|S(t)| \leq(0.112+o(1)) \log t .
$$

The argument function $S(t)$

Unconditional bounds: Trudgian (Backlund) 2002

$$
|S(t)| \leq(0.112+o(1)) \log t
$$

Unconditional omega results: Tsang 1986

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 3}}{(\log \log t)^{1 / 3}}\right)
$$

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.
3 Goldston and Gonek (2007) : $C_{0}=0.5$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.
3 Goldston and Gonek (2007) : $C_{0}=0.5$.
4 Carneiro, Chandee and Milinovich (2012) : $C_{0}=0.25$.

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S(t)=\Omega\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S(t)=\Omega\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

3 Chirre and Mahatab 2020:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

Conjecture for $S(t)$

Farmer, Gonek, Hughes (2007): As $T \rightarrow \infty$

$$
\operatorname{límsup}_{t \rightarrow \infty} \frac{S(t)}{(\log t)^{1 / 2}(\log \log t)^{1 / 2}}=\frac{1}{\pi \sqrt{2}} .
$$

The function $S_{1}(t)$

For $t>0$ define

$$
S_{1}(t)=\int_{0}^{t} S(\tau) \mathrm{d} \tau+\delta_{1}
$$

where δ_{1} is a fixed constant.

The function $S_{1}(t)$

For $t>0$ define

$$
S_{1}(t)=\int_{0}^{t} S(\tau) \mathrm{d} \tau+\delta_{1}
$$

where δ_{1} is a fixed constant.

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}\left|S_{1}(t)\right|^{2} \mathrm{~d} t=\frac{C_{1}}{2 \pi^{2}} T+O\left(\frac{T}{\log T}\right) .
$$

The function $S_{1}(t)$

For $t>0$ define

$$
S_{1}(t)=\int_{0}^{t} S(\tau) \mathrm{d} \tau+\delta_{1}
$$

where δ_{1} is a fixed constant.

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}\left|S_{1}(t)\right|^{2} \mathrm{~d} t=\frac{C_{1}}{2 \pi^{2}} T+O\left(\frac{T}{\log T}\right) .
$$

2 Conditionally, Chirre and Quesada-Herrera 2021:

$$
\int_{1}^{T}\left|S_{1}(t)\right|^{2} \mathrm{~d} t=\frac{C_{1}}{2 \pi^{2}} T+O\left(\frac{T}{(\log T)^{2}}\right) .
$$

The function $S_{1}(t)$

Unconditional bounds: Littlewood

$$
S_{1}(t)=O(\log t)
$$

The function $S_{1}(t)$

Unconditional bounds: Littlewood

$$
S_{1}(t)=O(\log t)
$$

Unconditional omega results: Tsang 1986, 1993

$$
S_{1}(t)=\Omega_{+}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

and

$$
S_{1}(t)=\Omega_{-}\left(\frac{(\log t)^{1 / 3}}{(\log \log t)^{4 / 3}}\right)
$$

The function $S_{1}(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
\left(C_{1}^{-}+o(1)\right) \frac{\log t}{(\log \log t)^{2}} \leq S_{1}(t) \leq\left(C_{1}^{+}+o(1)\right) \frac{\log t}{(\log \log t)^{2}}
$$

The function $S_{1}(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
\left(C_{1}^{-}+o(1)\right) \frac{\log t}{(\log \log t)^{2}} \leq S_{1}(t) \leq\left(C_{1}^{+}+o(1)\right) \frac{\log t}{(\log \log t)^{2}}
$$

1 Karatsuba and Korolëv (2005) : $\left(C_{1}^{+}, C_{1}^{-}\right)=(40,-40)$.

The function $S_{1}(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
\left(C_{1}^{-}+o(1)\right) \frac{\log t}{(\log \log t)^{2}} \leq S_{1}(t) \leq\left(C_{1}^{+}+o(1)\right) \frac{\log t}{(\log \log t)^{2}}
$$

1 Karatsuba and Korolëv (2005) : $\left(C_{1}^{+}, C_{1}^{-}\right)=(40,-40)$.
2 Fujii (2006) : $\left(C_{1}^{+}, C_{1}^{-}\right)=(0.32,-0.51)$.

The function $S_{1}(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
\left(C_{1}^{-}+o(1)\right) \frac{\log t}{(\log \log t)^{2}} \leq S_{1}(t) \leq\left(C_{1}^{+}+o(1)\right) \frac{\log t}{(\log \log t)^{2}}
$$

1 Karatsuba and Korolëv (2005) : $\left(C_{1}^{+}, C_{1}^{-}\right)=(40,-40)$.
2 Fujii (2006) : $\left(C_{1}^{+}, C_{1}^{-}\right)=(0.32,-0.51)$.
3 Carneiro, Chandee and Milinovich (2012):

$$
\left(C_{1}^{+}, C_{1}^{-}\right)=\left(\frac{\pi}{48},-\frac{\pi}{24}\right)=(0.065 \ldots,-0.130 \ldots)
$$

The function $S_{1}(t)$

Conditional omega results

1 Tsang 1993:

$$
S_{1}(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

The function $S_{1}(t)$

Conditional omega results

1 Tsang 1993:

$$
S_{1}(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S_{1}(t)=\Omega_{+}\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

The function $S_{1}(t)$

Conditional omega results

1 Tsang 1993:

$$
S_{1}(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S_{1}(t)=\Omega_{+}\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{3 / 2}}\right)
$$

Ω_{-}result for $S_{1}(t)$ is an open problem

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$
$4 \frac{1}{\zeta(1+i t)}$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$
$4 \frac{1}{\zeta(1+i t)}$
$5 \frac{\zeta^{\prime}}{\zeta}(\sigma+i t)$.

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).
From Problem (35) we have unconditionally that,

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t}
$$

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t}
$$

we can improve the previous result related to gaps (conditionally).

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t},
$$

we can improve the previous result related to gaps (conditionally).
For any $\varepsilon>0$, there is n_{0} such that if $n \geq n_{0}$:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Conditional:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Conditional:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

3 Unconditional: for some $A>0$ we have

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{A}{\log \log \log \gamma_{n}}
$$

