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Result of Littlewood

A classical result of Littlewood (1924) states that, under the
Riemann hypothesis, there is C > 0 such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
C

log t

log log t

)
.

for t sufficiently large.

The order of magnitude has not been
improved over the last ninety years, and the efforts have hence been
concentrated in optimizing the values of the implicit constants.
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Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.

(2) Soundararajan (2009) : C = 0.373.

(3) Chandee and Soundararajan (2011) : C = ln(2)
2 ≈ 0.347.

In this case o(1) = log log log t
log log t .
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log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(4) Carneiro and Chandee (2011) : C = log 2
2 ≈ 0.347.

In this case o(1) = 1
log log t .

(5) Carneiro, Chirre and Milinovich (2017) : Other proof.



Class 19: Advances on zeta and gaps between zeros of zeta

Lemma (Representation lemma)

Assume the Riemann hypothesis. Let f : R→ R ∪ {∞} be the
function

f (x) = log

(
4 + x2

x2

)
.

Then, for t > 0 sufficiently large we have

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1).

The sums run over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).
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Lemma (Guinand-Weil explicit formula)

Let h(s) be analytic in the strip |Im s| ≤ 1
2 + ε for some ε > 0, and

assume that |h(s)| � (1 + |s|)−(1+δ) for some δ > 0 when
|Re s| → ∞. Then

∑
ρ

h

(
ρ− 1

2

i

)
=

1

2π

∫ ∞
−∞

h(u)

{
Re

Γ′

Γ

(
1

4
+

iu

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

(
ĥ

(
log n

2π

)
+ ĥ

(
− log n

2π

))
+ h

(
1

2i

)
+ h

(
− 1

2i

)
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Connection to Fourier analysis

We have written our object in consideration as

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1).

From the explicit formula it would be very nice if we could
find an special function m such that

m ≤ f .

m̂ has compact supports, say [−δ, δ].
We need to minimize∫ ∞

−∞
f (x)−m(x) dx .

This is Beurling-Selberg’s problem!!!
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Theorem (Carneiro and Vaaler (TAMS))

Let ν be a measure defined on the Borel sets of (0,∞) such that

0 <

∫ ∞
0

λ

λ2 + 1
dν(λ) <∞.

Define the function f : R→ R ∪ {∞} given by

f (x) =

∫ ∞
0

{
e−λ|x | − e−λ

}
dν(λ),

where f (0) may take the value ∞.

Then, there exists a unique
extremal minorant G (z) of exponential type 2π for f . The function
G (x) interpolates the values of f (x) at Z + 1

2 .

G (z) =

(
cosπz

π

)2
{∑

n∈Z

f (n − 1
2 )

(z − n + 1
2 )2

+
∑
n∈Z

f ′(n − 1
2 )

(z − n + 1
2 )

}
,
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Proposition (Chandee and Soundararajan)

Let ∆ ≥ 1. Then m∆ : C→ C is an even entire function such that:

(I )
−C

1 + x2
≤ m∆(x) ≤ f (x), for some C > 0 and for all x ∈ R.

(II ) m∆(z)� ∆2

1 + ∆|z |
e2π∆|Im z| for all z ∈ C.

(III ) m∆ ∈ L1(R), m̂∆(ξ) = 0 for |ξ| ≥ ∆, and m̂∆(ξ) = O(1).

(IV )

∫ ∞
−∞

{
f (x)−m∆(x)

}
dx =

1

∆

(
2 log 2− 2 log(1 + e−4π∆)

)
.

(V )
∣∣m∆(z)(1 + |z |)2

∣∣� 1 when |Im z | ≤ 1
2 + ε and |Re z | → ∞.
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Then, for t > 0 sufficiently large

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1)

≤ log t − 1

2

∑
γ

m∆(t − γ) + O(1).

Now, we apply the Guinand-Weil explicit formula for the function:

h(s) = m∆(t − s).
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∑
γ

m∆(t − γ) =
1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
+ m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
.
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1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

= 2 log t − log t

π∆
log

(
2

1 + e−4π∆

)
+ O(1).

m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
= O

(
∆2

1 + ∆t
eπ∆

)
.
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1

2π
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−∞

m∆(u)
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Re

Γ′

Γ
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1

4
+

i(t − u)

2

)
− log π

}
du

= 2 log t − log t

π∆
log

(
2

1 + e−4π∆

)
+ O(1).

m∆
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1

2i
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= O
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We need to bound:

1

2π

∑
n≥2

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
.
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We need to bound:

1

2π

∑
n≤e2π∆

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
.

The prime number theorem gives∑
n≤x

Λ(n) ∼ x .

Then
∑

n≤x Λ(n)� x , and this implies:∣∣∣∣∣ 1

2π

∑
n≤e2π∆

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

) ∣∣∣∣∣� ∑
n≤e2π∆

Λ(n)√
n

� eπ∆.
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Therefore:∑
γ

m∆(t − γ) =
1

2π

∫ ∞
−∞

m∆(u)

{
Re

Γ′

Γ

(
1

4
+

i(t − u)

2

)
− log π

}
du

− 1

2π

∑
n≥2

Λ(n)√
n

m̂∆

(
log n

2π

)(
e it log n + e−it log n

)
+ m∆

(
t − 1

2i

)
+ m∆

(
t +

1

2i

)
= 2 log t − log t

π∆
log

(
2

1 + e−4π∆

)
+ O(1)

+ O
(
eπ∆

)
+ O

(
∆2

1 + ∆t
eπ∆

)
.
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Then, for t > 0 sufficiently large

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ log t − 1

2

∑
γ

m∆(t − γ) + O(1)

≤ log t

2π∆
log

(
2

1 + e−4π∆

)
+ O(1)

+ O
(
eπ∆

)
+ O

(
∆2

1 + ∆t
eπ∆

)
.

Finally, we choose π∆ = log log t − 3 log log log t, and we obtain
the desired result.
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1 + ∆t
eπ∆

)
.

Finally, we choose π∆ = log log t − 3 log log log t, and we obtain
the desired result.



Class 19: Advances on zeta and gaps between zeros of zeta

Collection of results

The critical line
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|ζ( 1
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2 Unconditional bounds: Bourgain 2017

|ζ( 1
2 + it)| ≤ |t|13/84+ε.

3 Omega results: R. de la Bretèche and Tenenbaum 2018

máx
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√
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.
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Conjecture for ζ( 1
2 + it)

Farmer, Gonek, Hughes (2007): As T →∞
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1
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(
(logT )2/3(log logT )1/3

)
.

2 Unconditional bounds: Ford 2002

|ζ(1 + it)| ≤ 76.2 (log t)2/3.

3 Omega results: Aistleitner, Mahatab and Munsch 2018

máx
t∈[1.T ]

|ζ(1 + it)| ≥ eγ(log logT + log log logT − C ).

4 Conditional bounds: Lamzouri, Li and Soundararajan 2016

|ζ(1 + it)| ≤ 2eγ
(

log log t − log 2 + 1
2 + 1

log log t

)
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Mean value:
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.

2 Conditionally, Goldston 1987 (Selberg):∫ T
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|S(t)|2dt =

T

2π2
log logT + O(T ).
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The argument function S(t)

Unconditional bounds: Trudgian (Backlund) 2002

|S(t)| ≤ (0.112 + o(1)) log t.

Unconditional omega results: Tsang 1986

S(t) = Ω±

(
(log t)1/3
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)
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Collection of results

Conjecture for S(t)

Farmer, Gonek, Hughes (2007): As T →∞

ĺım sup
t→∞

S(t)

(log t)1/2(log log t)1/2
=

1

π
√

2
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The function S1(t)

For t > 0 define

S1(t) =

∫ t

0
S(τ)dτ + δ1,

where δ1 is a fixed constant.

Mean value:

1 Unconditionally, Selberg 1946:∫ T

1
|S1(t)|2dt =

C1

2π2
T + O

(
T

logT

)
.

2 Conditionally, Chirre and Quesada-Herrera 2021:∫ T

1
|S1(t)|2dt =

C1

2π2
T + O

(
T

(logT )2

)
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(log log t)2
≤ S1(t) ≤
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) log t

(log log t)2
.

1 Karatsuba and Korolëv (2005) : (C+
1 ,C

−
1 ) = (40,−40).

2 Fujii (2006) : (C+
1 ,C

−
1 ) = (0.32,−0.51).

3 Carneiro, Chandee and Milinovich (2012):
(C+

1 ,C
−
1 ) = ( π48 ,−

π
24 ) = (0.065...,−0.130...).
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S1(t) = Ω+

(
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Ω− result for S1(t) is an open problem
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2 Sn(t)

3 ζ ′(σ + it)

4
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ζ(1 + it)

5
ζ ′

ζ
(σ + it).
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Gaps between zeros of zeta

Let 0 < γ1 ≤ γ2 ≤ ... be the consecutive ordinates of the
non-trivial zeros of ζ(s) with positive imaginary parts (counting
multiplicity).

From Problem (35) we have unconditionally that,

γn+1 − γn = O(1).
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Collection of results

From the result of Carneiro, Chandee and Milinovich

|S(t)| ≤
(

1

4
+ o(1)

)
log t

log log t
,

we can improve the previous result related to gaps (conditionally).
For any ε > 0, there is n0 such that if n ≥ n0:

γn+1 − γn ≤
π + ε

log log γn
.
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γn+1 − γn = O(1).

2 Conditional:

γn+1 − γn ≤
π + ε

log log γn
.

3 Unconditional: for some A > 0 we have

γn+1 − γn ≤
A

log log log γn
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