Class 20: Unconditional gaps between zeros of zeta

Andrés Chirre
Norwegian University of Science and Technology - NTNU

11-November-2021

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon} .
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon}
$$

3 Omega results: R. de la Bretèche and Tenenbaum 2018

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geq \exp \left((\sqrt{2}+o(1)) \frac{(\log T)^{1 / 2}(\log \log \log T)^{1 / 2}}{(\log \log T)^{1 / 2}}\right)
$$

The critical line

1 Mean value: Watt 2010

$$
\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t=T \log T-(1+\log 2 \pi-2 \gamma) T+O\left(T^{131 / 416+\varepsilon}\right)
$$

2 Unconditional bounds: Bourgain 2017

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq|t|^{13 / 84+\varepsilon}
$$

3 Omega results: R. de la Bretèche and Tenenbaum 2018

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geq \exp \left((\sqrt{2}+o(1)) \frac{(\log T)^{1 / 2}(\log \log \log T)^{1 / 2}}{(\log \log T)^{1^{/ 2}}}\right) .
$$

4 Conditional bounds: Chandee and Soundararajan 2011

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq \exp \left(\left(\frac{\log 2}{2}+o(1)\right) \frac{\log t}{\log \log t}\right) .
$$

Conjecture for $\zeta\left(\frac{1}{2}+i t\right)$

Farmer, Gonek, Hughes (2007): As $T \rightarrow \infty$

$$
\operatorname{máx}_{t \in[1, T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|=\exp \left(\left(\frac{1}{\sqrt{2}}+o(1)\right)(\log T)^{1 / 2}(\log \log T)^{1 / 2}\right)
$$

The argument function $S(t)$

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O\left(T(\log \log T)^{1 / 2}\right)
$$

The argument function $S(t)$

Mean value:

1 Unconditionally, Selberg 1946:

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O\left(T(\log \log T)^{1 / 2}\right)
$$

2 Conditionally, Goldston 1987 (Selberg):

$$
\int_{1}^{T}|S(t)|^{2} \mathrm{~d} t=\frac{T}{2 \pi^{2}} \log \log T+O(T)
$$

The argument function $S(t)$

Unconditional bounds: Trudgian (Backlund) 2002

$$
|S(t)| \leq(0.112+o(1)) \log t .
$$

The argument function $S(t)$

Unconditional bounds: Trudgian (Backlund) 2002

$$
|S(t)| \leq(0.112+o(1)) \log t
$$

Unconditional omega results: Tsang 1986

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 3}}{(\log \log t)^{1 / 3}}\right)
$$

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.
3 Goldston and Gonek (2007) : $C_{0}=0.5$.

The argument function $S(t)$

Conditional bounds: A classical result of Littlewood (1924) states that, under the Riemann hypothesis,

$$
|S(t)| \leq\left(C_{0}+o(1)\right) \frac{\log t}{\log \log t}
$$

1 Ramachandra and Sankaranarayanan (1993) : $C_{0}=1.119$.
2 Fujii (2004) : $C_{0}=0.67$.
3 Goldston and Gonek (2007) : $C_{0}=0.5$.
4 Carneiro, Chandee and Milinovich (2012) : $C_{0}=0.25$.

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S(t)=\Omega\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

The argument function $S(t)$

Conditional omega results

1 Montgomery 1977:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

2 Bondarenko and Seip 2018:

$$
S(t)=\Omega\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

3 Chirre and Mahatab 2020:

$$
S(t)=\Omega_{ \pm}\left(\frac{(\log t)^{1 / 2}(\log \log \log t)^{1 / 2}}{(\log \log t)^{1 / 2}}\right)
$$

Conjecture for $S(t)$

Farmer, Gonek, Hughes (2007): As $T \rightarrow \infty$

$$
\operatorname{límsup}_{t \rightarrow \infty} \frac{S(t)}{(\log t)^{1 / 2}(\log \log t)^{1 / 2}}=\frac{1}{\pi \sqrt{2}} .
$$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$
$4 \frac{1}{\zeta(1+i t)}$

There are other interesting objects to study:
$1|\zeta(\sigma+i t)|, S(\sigma, t), S_{1}(\sigma, t)$
$2 S_{n}(t)$
$3 \zeta^{\prime}(\sigma+i t)$
$4 \frac{1}{\zeta(1+i t)}$
$5 \frac{\zeta^{\prime}}{\zeta}(\sigma+i t)$.

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).
From Problem (35) we have unconditionally that,

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t}
$$

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t},
$$

we can improve the previous result related to gaps (conditionally).

From the result of Carneiro, Chandee and Milinovich

$$
|S(t)| \leq\left(\frac{1}{4}+o(1)\right) \frac{\log t}{\log \log t},
$$

we can improve the previous result related to gaps (conditionally).
For any $\varepsilon>0$, there is n_{0} such that if $n \geq n_{0}$:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Conditional:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Conditional:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

3 Unconditional: for some $A>0$ we have

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{A}{\log \log \log \gamma_{n}}
$$

Theorem (Borel-Carathéodory theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the disc $|z| \leq R$. Then, for $0<r<R$ we have that

$$
\operatorname{máx}_{|z| \leq r}|f(z)| \leq \frac{2 r}{R-r} \operatorname{máx}_{|z|=R}^{\operatorname{Re}} f(z)+\frac{R+r}{R-r}|f(0)| \text {. }
$$

Theorem (Hadamard's three-circles theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the annulus $r_{1} \leq|z| \leq r_{3}$. Let $f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function. Define $M(r)$ the maximum of $|f(z)|$ on the circle $|z|=r$. Then, for $r_{1}<r_{2}<r_{3}$ we have:

$$
\left(M_{2}\right)^{\log \left(r_{3} / r_{1}\right)} \leq\left(M_{1}\right)^{\log \left(r_{3} / r_{2}\right)}\left(M_{3}\right)^{\log \left(r_{2} / r_{1}\right)} .
$$

Theorem

Let T sufficiently large. Then, there is a zero $\rho=\beta+i \gamma$ of $\zeta(s)$ such that

$$
|\gamma-T| \leq \frac{A}{\log \log \log T}
$$

for some universal constant $A>0$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define $m_{\nu}, M_{\nu}, \mathcal{M}_{\nu}$ and Γ_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, C_{ν}, and \mathcal{C}_{ν} respectively.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define $m_{\nu}, M_{\nu}, \mathcal{M}_{\nu}$ and Γ_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, C_{ν}, and \mathcal{C}_{ν} respectively.
We have for all circles that

$$
\operatorname{Re}\{\log \zeta(s)\}=\log |\zeta(\sigma+i t)| \leq A_{1} \log T
$$

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define $m_{\nu}, M_{\nu}, \mathcal{M}_{\nu}$ and Γ_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, C_{ν}, and \mathcal{C}_{ν} respectively.
We have for all circles that

$$
\operatorname{Re}\{\log \zeta(s)\}=\log |\zeta(\sigma+i t)| \leq A_{1} \log T
$$

and

$$
|\log \zeta(2+i T)| \leq A_{2}
$$

Theorem (Borel-Carathéodory theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the disc $|z| \leq R$. Then, for $0<r<R$ we have that

$$
\operatorname{máx}_{|z| \leq r}|f(z)| \leq \frac{2 r}{R-r} \operatorname{máx}_{|z|=R}^{\operatorname{Re}} f(z)+\frac{R+r}{R-r}|f(0)| \text {. }
$$

Using Borel-Carathéodory theorem for the circles \mathcal{C}_{0} and Γ_{0} we have

$$
\mathcal{M}_{0} \leq 7\left(A_{1} \log T+A_{2}\right)
$$

Using Borel-Carathéodory theorem for the circles \mathcal{C}_{0} and Γ_{0} we have

$$
\mathcal{M}_{0} \leq 7\left(A_{1} \log T+A_{2}\right)
$$

and in particular

$$
\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right| \leq 7\left(A_{1} \log T+A_{2}\right)
$$

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.
In general

$$
\mathcal{M}_{\nu} \leq\left(7+7^{2}+\ldots+7^{\nu+1}\right) A_{1} \log T+7^{\nu+1} A_{2}
$$

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.
In general

$$
\mathcal{M}_{\nu} \leq\left(7+7^{2}+\ldots+7^{\nu+1}\right) A_{1} \log T+7^{\nu+1} A_{2}
$$

Then

$$
\mathcal{M}_{\nu} \leq 7^{\nu} A_{1} \log T
$$

Theorem (Hadamard's three-circles theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the annulus $r_{1} \leq|z| \leq r_{3}$. Let $f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function. Define $M(r)$ the maximum of $|f(z)|$ on the circle $|z|=r$. Then, for $r_{1}<r_{2}<r_{3}$ we have:

$$
\left(M_{2}\right)^{\log \left(r_{3} / r_{1}\right)} \leq\left(M_{1}\right)^{\log \left(r_{3} / r_{2}\right)}\left(M_{3}\right)^{\log \left(r_{2} / r_{1}\right)} .
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$.

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b}
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
\begin{gathered}
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b} \\
M_{2} \leq\left(M_{1}\right)^{a}\left(\mathcal{M}_{2}\right)^{b} \leq\left(M_{0}\right)^{a^{2}}\left(\mathcal{M}_{1}\right)^{a b}\left(\mathcal{M}_{2}\right)^{b}
\end{gathered}
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
\begin{gathered}
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b} \\
M_{2} \leq\left(M_{1}\right)^{a}\left(\mathcal{M}_{2}\right)^{b} \leq\left(M_{0}\right)^{a^{2}}\left(\mathcal{M}_{1}\right)^{a b}\left(\mathcal{M}_{2}\right)^{b} .
\end{gathered}
$$

We continue until

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{1} \log T$, we arrive at

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{1} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{1} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
a^{n-1} b+2 a^{n-2} b+\ldots+n b<n
$$

and

$$
a^{n-1} b+a^{n-2} b+\ldots+b=1-a^{n} .
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{1} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
a^{n-1} b+2 a^{n-2} b+\ldots+n b<n
$$

and

$$
a^{n-1} b+a^{n-2} b+\ldots+b=1-a^{n} .
$$

Then

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

Recall that M_{0} is bounded (as $T \rightarrow \infty$). Then

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}} .
$$

We want a lower bound for M_{n}. Recall that $M_{n} \geq \log |\zeta(s)|$ at the circle C_{n}. We need a lower bound for $|\zeta(s)|$ on $C_{n}(\operatorname{Re} s \leq-1)$.

Recalling the functional equation:

$$
\pi^{-s / 2} \zeta(s) \Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s) / 2} \zeta(1-s) \Gamma\left(\frac{1-s}{2}\right)
$$

Recalling the functional equation:

$$
\pi^{-s / 2} \zeta(s) \Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s) / 2} \zeta(1-s) \Gamma\left(\frac{1-s}{2}\right)
$$

Then, we write

$$
\zeta(s)=\chi(s) \zeta(1-s)
$$

where

$$
\chi(s)=\frac{\pi^{-(1-2 s) / 2} \Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} .
$$

Using Stiriing's formula we have for $\alpha \leq \sigma \leq \beta$, as $t \rightarrow \infty$:

$$
|\chi(s)| \sim\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}}
$$

Then, in $-2 \leq \sigma \leq-1$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{3 / 2} \geq K_{2} T^{3 / 2}
$$

Then, in $-2 \leq \sigma \leq-1$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{3 / 2} \geq K_{2} T^{3 / 2}
$$

and $|\zeta(1-s)| \geq K_{3}$ (use Mobiüs function).

Then, in $-2 \leq \sigma \leq-1$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{3 / 2} \geq K_{2} T^{3 / 2}
$$

and $|\zeta(1-s)| \geq K_{3}$ (use Mobiüs function). Therefore

$$
|\zeta(s)| \geq T^{A_{5}},
$$

in the circle C_{n}. Therefore $M_{n} \geq A_{5} \log T$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

Recall that $n=[12 / \delta]+1$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

Recall that $n=[12 / \delta]+1$. We conclude.

