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Class 20: Unconditional gaps between zeros of zeta

Collection of results

The critical line

1 Mean value: Watt 2010∫ T

1
|ζ(12+it)|2dt = T logT−(1+log 2π−2γ)T+O(T 131/416+ε).

2 Unconditional bounds: Bourgain 2017

|ζ(12 + it)| ≤ |t|13/84+ε.

3 Omega results: R. de la Bretèche and Tenenbaum 2018

máx
t∈[1,T ]

|ζ(12 + it)| ≥ exp
(

(
√

2 + o(1)) (logT )1/2(log log logT )1/2

(log logT )1/2

)
.

4 Conditional bounds: Chandee and Soundararajan 2011

|ζ(12 + it)| ≤ exp
(

( log 22 + o(1)) log t
log log t

)
.

.
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máx
t∈[1,T ]

|ζ(12 + it)| ≥ exp
(

(
√

2 + o(1)) (logT )1/2(log log logT )1/2

(log logT )1/2

)
.

4 Conditional bounds: Chandee and Soundararajan 2011

|ζ(12 + it)| ≤ exp
(

( log 22 + o(1)) log t
log log t

)
.

.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

Conjecture for ζ(12 + it)

Farmer, Gonek, Hughes (2007): As T →∞

máx
t∈[1,T ]

|ζ(12 + it)| = exp

((
1√
2

+ o(1)

)
(logT )1/2(log logT )1/2

)
.
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Collection of results

The argument function S(t)

Mean value:

1 Unconditionally, Selberg 1946:∫ T

1
|S(t)|2dt =

T

2π2
log logT + O

(
T (log logT )1/2

)
.

2 Conditionally, Goldston 1987 (Selberg):∫ T

1
|S(t)|2dt =

T

2π2
log logT + O(T ).
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Collection of results

The argument function S(t)

Unconditional bounds: Trudgian (Backlund) 2002

|S(t)| ≤ (0.112 + o(1)) log t.

Unconditional omega results: Tsang 1986

S(t) = Ω±

(
(log t)1/3

(log log t)1/3

)
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Collection of results

The argument function S(t)

Conditional bounds: A classical result of Littlewood (1924) states
that, under the Riemann hypothesis,

|S(t)| ≤ (C0 + o(1))
log t

log log t
.

1 Ramachandra and Sankaranarayanan (1993) : C0 = 1.119.

2 Fujii (2004) : C0 = 0.67.

3 Goldston and Gonek (2007) : C0 = 0.5.

4 Carneiro, Chandee and Milinovich (2012) : C0 = 0.25.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

The argument function S(t)

Conditional bounds: A classical result of Littlewood (1924) states
that, under the Riemann hypothesis,

|S(t)| ≤ (C0 + o(1))
log t

log log t
.

1 Ramachandra and Sankaranarayanan (1993) : C0 = 1.119.

2 Fujii (2004) : C0 = 0.67.

3 Goldston and Gonek (2007) : C0 = 0.5.

4 Carneiro, Chandee and Milinovich (2012) : C0 = 0.25.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

The argument function S(t)

Conditional bounds: A classical result of Littlewood (1924) states
that, under the Riemann hypothesis,

|S(t)| ≤ (C0 + o(1))
log t

log log t
.

1 Ramachandra and Sankaranarayanan (1993) : C0 = 1.119.

2 Fujii (2004) : C0 = 0.67.

3 Goldston and Gonek (2007) : C0 = 0.5.

4 Carneiro, Chandee and Milinovich (2012) : C0 = 0.25.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

The argument function S(t)

Conditional bounds: A classical result of Littlewood (1924) states
that, under the Riemann hypothesis,

|S(t)| ≤ (C0 + o(1))
log t

log log t
.

1 Ramachandra and Sankaranarayanan (1993) : C0 = 1.119.

2 Fujii (2004) : C0 = 0.67.

3 Goldston and Gonek (2007) : C0 = 0.5.

4 Carneiro, Chandee and Milinovich (2012) : C0 = 0.25.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

The argument function S(t)

Conditional bounds: A classical result of Littlewood (1924) states
that, under the Riemann hypothesis,

|S(t)| ≤ (C0 + o(1))
log t

log log t
.

1 Ramachandra and Sankaranarayanan (1993) : C0 = 1.119.

2 Fujii (2004) : C0 = 0.67.

3 Goldston and Gonek (2007) : C0 = 0.5.

4 Carneiro, Chandee and Milinovich (2012) : C0 = 0.25.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

The argument function S(t)

Conditional omega results

1 Montgomery 1977:

S(t) = Ω±

(
(log t)1/2

(log log t)1/2

)
.

2 Bondarenko and Seip 2018:

S(t) = Ω

(
(log t)1/2(log log log t)1/2

(log log t)1/2

)
.

3 Chirre and Mahatab 2020:

S(t) = Ω±

(
(log t)1/2(log log log t)1/2

(log log t)1/2

)
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Collection of results

Conjecture for S(t)

Farmer, Gonek, Hughes (2007): As T →∞

ĺım sup
t→∞

S(t)

(log t)1/2(log log t)1/2
=

1

π
√

2
.
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Collection of results

There are other interesting objects to study:

1 |ζ(σ + it)|, S(σ, t), S1(σ, t)

2 Sn(t)

3 ζ ′(σ + it)

4
1

ζ(1 + it)

5
ζ ′

ζ
(σ + it).
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Collection of results

Gaps between zeros of zeta

Let 0 < γ1 ≤ γ2 ≤ ... be the consecutive ordinates of the
non-trivial zeros of ζ(s) with positive imaginary parts (counting
multiplicity).

From Problem (35) we have unconditionally that,

γn+1 − γn = O(1).
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Collection of results

From the result of Carneiro, Chandee and Milinovich

|S(t)| ≤
(

1

4
+ o(1)

)
log t

log log t
,

we can improve the previous result related to gaps (conditionally).
For any ε > 0, there is n0 such that if n ≥ n0:

γn+1 − γn ≤
π + ε

log log γn
.
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Collection of results

1 Unconditional:
γn+1 − γn = O(1).

2 Conditional:

γn+1 − γn ≤
π + ε

log log γn
.

3 Unconditional: for some A > 0 we have

γn+1 − γn ≤
A

log log log γn
.
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Collection of results

Theorem (Borel-Carathéodory theorem)

Let Ω ⊂ C be an open set such that contains the disc |z | ≤ R.
Then, for 0 < r < R we have that

máx
|z|≤r
|f (z)| ≤ 2r

R − r
máx
|z|=R

Re f (z) +
R + r

R − r
|f (0)|.
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Collection of results

Theorem (Hadamard’s three-circles theorem)

Let Ω ⊂ C be an open set such that contains the annulus
r1 ≤ |z | ≤ r3. Let f : Ω→ C be an holomorphic function. Define
M(r) the maximum of |f (z)| on the circle |z | = r . Then, for
r1 < r2 < r3 we have:

(M2)log(r3/r1) ≤ (M1)log(r3/r2)(M3)log(r2/r1).
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Collection of results

Theorem

Let T sufficiently large. Then, there is a zero ρ = β + iγ of ζ(s)
such that

|γ − T | ≤ A

log log logT
,

for some universal constant A > 0.
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Collection of results

Suppose that ζ(s) has no zeros in T − δ ≤ Im s ≤ T + δ, with
0 < δ < 1

2 . Define the function log ζ(s), analytic in −2 ≤ Re s ≤ 3
and T − δ ≤ Im s ≤ T + δ.

Let cν , Cν , Cν and Γν be four concentric circles, with centre
2− ν

4δ + iT and radii δ4 , δ
2 , 3δ

4 and δ respectively. Consider these
set of circles such for ν = 0, 1, ..., n where n = [12/δ] + 1, so that
2− n

4δ ≤ −1.
Define mν , Mν , Mν and Γν the maxima of | log ζ(s)| on the circles
cν , Cν , and Cν respectively.
We have for all circles that

Re {log ζ(s)} = log |ζ(σ + it)| ≤ A1 logT ,

and
| log ζ(2 + iT )| ≤ A2.
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Theorem (Borel-Carathéodory theorem)
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máx
|z|=R

Re f (z) +
R + r

R − r
|f (0)|.



Class 20: Unconditional gaps between zeros of zeta

Collection of results

Using Borel-Carathéodory theorem for the circles C0 and Γ0 we
have

M0 ≤ 7(A1 logT + A2),

and in particular

| log ζ(2− δ
4 + iT )| ≤ 7(A1 logT + A2).
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Collection of results

Now, we apply Borel-Carathéodory theorem to the circles C1 and
Γ1 we have

M1 ≤ 7(A1 logT + | log ζ(2− δ
4 + iT )|) ≤ (7 + 72)A1 logT + 72A2.

In general

Mν ≤ (7 + 72 + ...+ 7ν+1)A1 logT + 7ν+1A2.

Then
Mν ≤ 7νA1 logT .
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Collection of results

Then, using Hadamard’s three-circles theorem we have

Mν ≤ (mν)a(Mν)b,

where a = log(3/2)/ log 3, b = log 2/ log 3 and a + b = 1.

Since
the circle Cν−1 includes the circle cν , we have mν ≤ Mν−1. Hence

Mν ≤ (Mν−1)a(Mν)b for ν = 1, 2, ..., n.

Thus
M1 ≤ (M0)a(M1)b,

M2 ≤ (M1)a(M2)b ≤ (M0)a
2
(M1)ab(M2)b.

We continue until

Mn ≤ (M0)a
n
(M1)a

n−1b(M2)a
n−2b... (Mn)b.
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Mν ≤ (Mν−1)a(Mν)b for ν = 1, 2, ..., n.

Thus
M1 ≤ (M0)a(M1)b,

M2 ≤ (M1)a(M2)b ≤ (M0)a
2
(M1)ab(M2)b.

We continue until

Mn ≤ (M0)a
n
(M1)a

n−1b(M2)a
n−2b... (Mn)b.
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n
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n−2b... (Mn)b,

and using Mν ≤ 7νA1 logT , we arrive at

Mn ≤ (M0)a
n

7a
n−1b+2an−2b+...+nb (A3 logT )a

n−1b+an−2b+...+b.

We have
an−1b + 2an−2b + ...+ nb < n,

and
an−1b + an−2b + ...+ b = 1− an.

Then
Mn ≤ (M0)a

n
7n (A3 logT )1−a

n
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n
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.

Recall that M0 is bounded (as T →∞). Then

Mn ≤ A4 7n (logT )1−a
n
.
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We want a lower bound for Mn. Recall that Mn ≥ log |ζ(s)| at the
circle Cn. We need a lower bound for |ζ(s)| on Cn (Re s ≤ −1).
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Recalling the functional equation:

π−s/2ζ(s)Γ

(
s

2

)
= π−(1−s)/2ζ(1− s)Γ

(
1− s

2

)
.

Then, we write
ζ(s) = χ(s) ζ(1− s),

where

χ(s) =
π−(1−2s)/2 Γ

(
1−s
2

)
Γ
(
s
2

) .

Using Stiriing’s formula we have for α ≤ σ ≤ β, as t →∞:

|χ(s)| ∼
(

2π

t

)σ− 1
2

.
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Then, in −2 ≤ σ ≤ −1, we have

|χ(s)| ≥ K

(
2π

t

)σ− 1
2

≥ K1t
3/2 ≥ K2T

3/2

and |ζ(1− s)| ≥ K3 (use Mobiüs function). Therefore

|ζ(s)| ≥ TA5 ,

in the circle Cn. Therefore Mn ≥ A5 logT .
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We have prove that

Mn ≤ A4 7n (logT )1−a
n
,

and Mn ≥ A5 logT .

This implies that

A5 ≤ A4 7n (logT )−a
n
.

Recall that n = [12/δ] + 1. We conclude.
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