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Conditional bounds: Chandee and Soundararajan 2011
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Mean value:
Unconditionally, Selberg 1946:

i
/ S(¢)Pdt = 212 loglog T + O(T (loglog T)2).
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Conditionally, Goldston 1987 (Selberg):

T T
/1 S(e)dt = 5 loglog T + O(T).
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that, under the Riemann hypothesis,

15(8)] < (Go + o(1)) 28"

loglogt

Ramachandra and Sankaranarayanan (1993) : Gy = 1.119.
Fujii (2004) : Co = 0.67.

Goldston and Gonek (2007) : Cp = 0.5.

Carneiro, Chandee and Milinovich (2012) : Cp = 0.25.
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The argument function S(t)

Conditional omega results
Montgomery 1977:

(log t)/?
5109 gty )

Bondarenko and Seip 2018:

(log t)'/?(log log log t)1/2>

(log log t)1/2

S(t) = Q(

Chirre and Mahatab 2020:

_ (log t)¥/?(log log log t)*/?
5(t) —Qi< (log log £)1/2 )
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Conjecture for S(t)
Farmer, Gonek, Hughes (2007): As T — oo

[im su 5(t) _ 1
e’ (log £)172(log log )12 7v/2°
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A+

!
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Gaps between zeros of zeta

Let 0 < 1 < < ... be the consecutive ordinates of the
non-trivial zeros of ((s) with positive imaginary parts (counting
multiplicity).

From Problem (35) we have unconditionally that,

Yn+1 — ¥Yn = O(l)-
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From the result of Carneiro, Chandee and Milinovich

501 < (3 +0(0) okl

we can improve the previous result related to gaps (conditionally).
For any € > 0, there is ng such that if n > nq:

T+ €

VR QL
Yn+1 Yn > |Og |Og Y
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Unconditional:
Yn+1 — Yn = 0(1)-

Conditional:
mT+e€

_ < _-T=
Yn+1 — Yn = log 1og 7

Unconditional: for some A > 0 we have

A

VIS G
Yn+1 —Yn = |Og |Og |Og Y
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n <|z| < r. Let f : Q — C be an holomorphic function. Define
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Theorem

Let T sufficiently large. Then, there is a zero p = 3 + iy of ((s)

such that
A

Tl
i = log loglog T’

for some universal constant A > 0.
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Now, we apply Borel-Carathéodory theorem to the circles C; and
"1 we have

My < 7(Arlog T+[log((2— g +iT)|) < (T+7%)Arlog T + 7.
In general

Then
M, <T7’Ailog T.
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Then, using Hadamard's three-circles theorem we have
M, < (m,)*(M,)P,

where a = log(3/2)/log3, b =log2/log3 and a+ b = 1. Since
the circle C,_1 includes the circle ¢, we have m, < M,_;. Hence

M, < (My-1)>(M,)? forv=1,2,...n
Thus
My < (Mo)?(M1)®,

My < (My)2(Ma)P < (Mo)® (M1)?2(M)P.

We continue until

My < (M) (M1)¥ P(M3)?" b (M)
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We have
M, < (Mo)?" 7" (Aslog T)~".

Recall that My is bounded (as T — o0). Then

M, < Ay 7" (log T)1 =",
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L Collection of results

We want a lower bound for M,. Recall that M,, > log|((s)]| at the
circle C,. We need a lower bound for |((s)| on C, (Res < —1).
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Recalling the functional equation:

W—s/zg(s)r@ 92y s)r(l = )

Then, we write

¢(s) = x(s)¢(1 = s),

where e /a 1
r U 22r(ige)

&=

Using Stiriing’s formula we have for a < o < 3, as t — oo:

MBI (T)
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Then, in =2 < o < —1, we have

1
27\ 772
Ix(s)| > K (f) > Kit3/2 > K, T3/2
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Then, in =2 < o < —1, we have
2w\ 77 3/2 3/2
Ix(s)| = K - > Kt e > Ko T

and [{(1 — s)| > K3 (use Mobilis function). Therefore
C(s) = T7%,

in the circle C,. Therefore M, > Aslog T.
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We have prove that

M, < Ay 7" (log T)} =",
and M, > Aslog T. This implies that

As < Ay 7" (log T)™".

Recall that n = [12/0] + 1. We conclude.
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