Class 21: Unconditional gaps and Zeros on the critical line

Andrés Chirre
Norwegian University of Science and Technology - NTNU

15-November-2021

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).
1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).
1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Unconditional: for some $A>0$ we have

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{A}{\log \log \log \gamma_{n}}
$$

Gaps between zeros of zeta

Let $0<\gamma_{1} \leq \gamma_{2} \leq \ldots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts (counting multiplicity).

1 Unconditional:

$$
\gamma_{n+1}-\gamma_{n}=O(1)
$$

2 Unconditional: for some $A>0$ we have

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{A}{\log \log \log \gamma_{n}}
$$

3 Conditional:

$$
\gamma_{n+1}-\gamma_{n} \leq \frac{\pi+\varepsilon}{\log \log \gamma_{n}}
$$

Theorem (Borel-Carathéodory theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the disc $|z| \leq R$. Then, for $0<r<R$ we have that

$$
\operatorname{máx}_{|z| \leq r}|f(z)| \leq \frac{2 r}{R-r} \operatorname{máx}_{|z|=R}^{\operatorname{Re}} f(z)+\frac{R+r}{R-r}|f(0)| \text {. }
$$

Theorem (Hadamard's three-circles theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the annulus $r_{1} \leq|z| \leq r_{3}$. Let $f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function. Define $M(r)$ the maximum of $|f(z)|$ on the circle $|z|=r$. Then, for $r_{1}<r_{2}<r_{3}$ we have:

$$
\left(M_{2}\right)^{\log \left(r_{3} / r_{1}\right)} \leq\left(M_{1}\right)^{\log \left(r_{3} / r_{2}\right)}\left(M_{3}\right)^{\log \left(r_{2} / r_{1}\right)} .
$$

Theorem

Let T sufficiently large. Then, there is a zero $\rho=\beta+i \gamma$ of $\zeta(s)$ such that

$$
|\gamma-T| \leq \frac{A}{\log \log \log T}
$$

for some universal constant $A>0$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define m_{ν}, M_{ν} and \mathcal{M}_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, \mathcal{C}_{ν}, and \mathcal{C}_{ν} respectively.

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define m_{ν}, M_{ν} and \mathcal{M}_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, \mathcal{C}_{ν}, and \mathcal{C}_{ν} respectively.
We have for all circles that

$$
\operatorname{Re}\{\log \zeta(s)\}=\log |\zeta(\sigma+i t)| \leq A_{1} \log T
$$

Suppose that $\zeta(s)$ has no zeros in $T-\delta \leq \operatorname{Im} s \leq T+\delta$, with $0<\delta<\frac{1}{2}$. Define the function $\log \zeta(s)$, analytic in $-2 \leq \operatorname{Re} s \leq 3$ and $T-\delta \leq \operatorname{Im} s \leq T+\delta$.
Let $c_{\nu}, C_{\nu}, \mathcal{C}_{\nu}$ and Γ_{ν} be four concentric circles, with centre $2-\frac{\nu}{4} \delta+i T$ and radii $\frac{\delta}{4}, \frac{\delta}{2}, \frac{3 \delta}{4}$ and δ respectively. Consider these set of circles such for $\nu=0,1, \ldots, n$ where $n=[12 / \delta]+1$, so that $2-\frac{n}{4} \delta \leq-1$.
Define m_{ν}, M_{ν} and \mathcal{M}_{ν} the maxima of $|\log \zeta(s)|$ on the circles c_{ν}, \mathcal{C}_{ν}, and \mathcal{C}_{ν} respectively.
We have for all circles that

$$
\operatorname{Re}\{\log \zeta(s)\}=\log |\zeta(\sigma+i t)| \leq A_{1} \log T
$$

and

$$
|\log \zeta(2+i T)| \leq A_{2} .
$$

Theorem (Borel-Carathéodory theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the disc $|z| \leq R$. Then, for $0<r<R$ we have that

$$
\operatorname{máx}_{|z| \leq r}|f(z)| \leq \frac{2 r}{R-r} \operatorname{máx}_{|z|=R}^{\operatorname{Re}} f(z)+\frac{R+r}{R-r}|f(0)| \text {. }
$$

Using Borel-Carathéodory theorem for the circles \mathcal{C}_{0} and Γ_{0} we have

$$
\mathcal{M}_{0} \leq 7\left(A_{1} \log T+A_{2}\right)
$$

Using Borel-Carathéodory theorem for the circles \mathcal{C}_{0} and Γ_{0} we have

$$
\mathcal{M}_{0} \leq 7\left(A_{1} \log T+A_{2}\right)
$$

and in particular

$$
\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right| \leq 7\left(A_{1} \log T+A_{2}\right)
$$

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.
In general

$$
\mathcal{M}_{\nu} \leq\left(7+7^{2}+\ldots+7^{\nu+1}\right) A_{1} \log T+7^{\nu+1} A_{2}
$$

Now, we apply Borel-Carathéodory theorem to the circles \mathcal{C}_{1} and Γ_{1} we have
$\mathcal{M}_{1} \leq 7\left(A_{1} \log T+\left|\log \zeta\left(2-\frac{\delta}{4}+i T\right)\right|\right) \leq\left(7+7^{2}\right) A_{1} \log T+7^{2} A_{2}$.
In general

$$
\mathcal{M}_{\nu} \leq\left(7+7^{2}+\ldots+7^{\nu+1}\right) A_{1} \log T+7^{\nu+1} A_{2}
$$

Then

$$
\mathcal{M}_{\nu} \leq 7^{\nu} A_{3} \log T
$$

Theorem (Hadamard's three-circles theorem)

Let $\Omega \subset \mathbb{C}$ be an open set such that contains the annulus $r_{1} \leq|z| \leq r_{3}$. Let $f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function. Define $M(r)$ the maximum of $|f(z)|$ on the circle $|z|=r$. Then, for $r_{1}<r_{2}<r_{3}$ we have:

$$
\left(M_{2}\right)^{\log \left(r_{3} / r_{1}\right)} \leq\left(M_{1}\right)^{\log \left(r_{3} / r_{2}\right)}\left(M_{3}\right)^{\log \left(r_{2} / r_{1}\right)} .
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$.

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b}
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
\begin{gathered}
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b} \\
M_{2} \leq\left(M_{1}\right)^{a}\left(\mathcal{M}_{2}\right)^{b} \leq\left(M_{0}\right)^{a^{2}}\left(\mathcal{M}_{1}\right)^{a b}\left(\mathcal{M}_{2}\right)^{b} .
\end{gathered}
$$

Then, using Hadamard's three-circles theorem we have

$$
M_{\nu} \leq\left(m_{\nu}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b}
$$

where $a=\log (3 / 2) / \log 3, b=\log 2 / \log 3$ and $a+b=1$. Since the circle $C_{\nu-1}$ includes the circle c_{ν}, we have $m_{\nu} \leq M_{\nu-1}$. Hence

$$
M_{\nu} \leq\left(M_{\nu-1}\right)^{a}\left(\mathcal{M}_{\nu}\right)^{b} \quad \text { for } \nu=1,2, \ldots, n
$$

Thus

$$
\begin{gathered}
M_{1} \leq\left(M_{0}\right)^{a}\left(\mathcal{M}_{1}\right)^{b} \\
M_{2} \leq\left(M_{1}\right)^{a}\left(\mathcal{M}_{2}\right)^{b} \leq\left(M_{0}\right)^{a^{2}}\left(\mathcal{M}_{1}\right)^{a b}\left(\mathcal{M}_{2}\right)^{b} .
\end{gathered}
$$

We continue until

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{3} \log T$, we arrive at

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{3} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{3} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
a^{n-1} b+2 a^{n-2} b+\ldots+n b<n
$$

and

$$
a^{n-1} b+a^{n-2} b+\ldots+b=1-a^{n}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}}\left(\mathcal{M}_{1}\right)^{a^{n-1} b}\left(\mathcal{M}_{2}\right)^{a^{n-2} b} \ldots\left(\mathcal{M}_{n}\right)^{b}
$$

and using $\mathcal{M}_{\nu} \leq 7^{\nu} A_{3} \log T$, we arrive at

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{a^{n-1} b+2 a^{n-2} b+\ldots+n b}\left(A_{3} \log T\right)^{a^{n-1} b+a^{n-2} b+\ldots+b} .
$$

We have

$$
a^{n-1} b+2 a^{n-2} b+\ldots+n b<n
$$

and

$$
a^{n-1} b+a^{n-2} b+\ldots+b=1-a^{n}
$$

Then

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

We have

$$
M_{n} \leq\left(M_{0}\right)^{a^{n}} 7^{n}\left(A_{3} \log T\right)^{1-a^{n}}
$$

Recall that M_{0} is bounded (as $T \rightarrow \infty$). Then

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

We want a lower bound for M_{n}. Recall that $M_{n} \geq \log |\zeta(s)|$ at the circle C_{n}. We need a lower bound for $|\zeta(s)|$ on $C_{n}(\operatorname{Re} s \leq-1)$.

Recalling the functional equation:

$$
\pi^{-s / 2} \zeta(s) \Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s) / 2} \zeta(1-s) \Gamma\left(\frac{1-s}{2}\right)
$$

Recalling the functional equation:

$$
\pi^{-s / 2} \zeta(s) \Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s) / 2} \zeta(1-s) \Gamma\left(\frac{1-s}{2}\right)
$$

Then, we write

$$
\zeta(s)=\chi(s) \zeta(1-s)
$$

where

$$
\chi(s)=\frac{\pi^{-(1-2 s) / 2} \Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} .
$$

Using Stiriing's formula we have for $\alpha \leq \sigma \leq \beta$, as $t \rightarrow \infty$:

$$
|\chi(s)| \sim\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}}
$$

Then, in $-2 \leq \sigma \leq-0.5$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{C} \geq K_{2} T^{C}
$$

Then, in $-2 \leq \sigma \leq-0.5$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{C} \geq K_{2} T^{C}
$$

and $|\zeta(1-s)| \geq K_{3}$ (use Mobiüs function).

Then, in $-2 \leq \sigma \leq-0.5$, we have

$$
|\chi(s)| \geq K\left(\frac{2 \pi}{t}\right)^{\sigma-\frac{1}{2}} \geq K_{1} t^{C} \geq K_{2} T^{C}
$$

and $|\zeta(1-s)| \geq K_{3}$ (use Mobiüs function). Therefore

$$
|\zeta(s)| \geq T^{A_{5}},
$$

in the circle C_{n}. Therefore $M_{n} \geq A_{5} \log T$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

Recall that $n=[12 / \delta]+1$.

We have prove that

$$
M_{n} \leq A_{4} 7^{n}(\log T)^{1-a^{n}}
$$

and $M_{n} \geq A_{5} \log T$. This implies that

$$
A_{5} \leq A_{4} 7^{n}(\log T)^{-a^{n}}
$$

Recall that $n=[12 / \delta]+1$. We conclude.

Let $N(T)=\#\{\rho=\beta+i \gamma: 0<\beta<1, \zeta(\rho)=0,0<\gamma \leq T\}$.

Let $N(T)=\#\{\rho=\beta+i \gamma: 0<\beta<1, \zeta(\rho)=0,0<\gamma \leq T\}$.
For $T \geq 3$ we have the Riemann-von Mangoldt Formula:

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(\frac{1}{T}\right) .
$$

Let $N(T)=\#\{\rho=\beta+i \gamma: 0<\beta<1, \zeta(\rho)=0,0<\gamma \leq T\}$.
For $T \geq 3$ we have the Riemann-von Mangoldt Formula:

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(\frac{1}{T}\right) .
$$

Since $S(T)=O(\log T)$, we get

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}+O(T) .
$$

Define $N(\sigma, T)=\#\{\rho=\beta+i \gamma: \beta \geq \sigma, \zeta(\rho)=0,0<\gamma \leq T\}$.

Define $N(\sigma, T)=\#\{\rho=\beta+i \gamma: \beta \geq \sigma, \zeta(\rho)=0,0<\gamma \leq T\}$.
1 In this notation, Riemann hypothesis is equivalent to $N(\sigma, T)=0$ for any $\sigma>1 / 2$.

Define $N(\sigma, T)=\#\{\rho=\beta+i \gamma: \beta \geq \sigma, \zeta(\rho)=0,0<\gamma \leq T\}$.
1 In this notation, Riemann hypothesis is equivalent to $N(\sigma, T)=0$ for any $\sigma>1 / 2$.
2 Note that $N(\sigma, T)=0$ for $\sigma \geq 1$.

Define $N(\sigma, T)=\#\{\rho=\beta+i \gamma: \beta \geq \sigma, \zeta(\rho)=0,0<\gamma \leq T\}$.
1 In this notation, Riemann hypothesis is equivalent to $N(\sigma, T)=0$ for any $\sigma>1 / 2$.
2 Note that $N(\sigma, T)=0$ for $\sigma \geq 1$.
3 Density conjecture: $N(\sigma, T) \ll T^{2(1-\sigma)} \log T$.

Define $N(\sigma, T)=\#\{\rho=\beta+i \gamma: \beta \geq \sigma, \zeta(\rho)=0,0<\gamma \leq T\}$.
1 In this notation, Riemann hypothesis is equivalent to $N(\sigma, T)=0$ for any $\sigma>1 / 2$.
2 Note that $N(\sigma, T)=0$ for $\sigma \geq 1$.
3 Density conjecture: $N(\sigma, T) \ll T^{2(1-\sigma)} \log T$.
4 Selberg: $N(\sigma, T) \ll T^{1-\frac{1}{4}\left(\sigma-\frac{1}{2}\right)} \log T$.

Define $N_{0}(T)=\#\left\{\rho=\beta+i \gamma: \beta=\frac{1}{2}, \zeta(\rho)=0,0<\gamma \leq T\right\}$.

Define $N_{0}(T)=\#\left\{\rho=\beta+i \gamma: \beta=\frac{1}{2}, \zeta(\rho)=0,0<\gamma \leq T\right\}$.
1 Riemann hypothesis is equivalent to $N_{0}(T)=N(T)$.

Define $N_{0}(T)=\#\left\{\rho=\beta+i \gamma: \beta=\frac{1}{2}, \zeta(\rho)=0,0<\gamma \leq T\right\}$.
1 Riemann hypothesis is equivalent to $N_{0}(T)=N(T)$.
2 Dave Platt and Tim Trudgian, 21 April 2020:
The Riemann Hypothesis is true up to height 3000175332800. That is, the lowest 12363153437138 non-trivial zeros ρ have $\operatorname{Re} \rho=1 / 2$.

Theorem (Hardy and Littlewood: 1921)

For $T \geq 15$ we have
$N_{0}(T) \gg T$.

Define

$$
Z(u)=\frac{H\left(\frac{1}{2}+i u\right)}{\left|H\left(\frac{1}{2}+i u\right)\right|} \zeta\left(\frac{1}{2}+i u\right)
$$

where

$$
H(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) .
$$

Recall the functional equation $H(s) \zeta(s)=H(1-s) \zeta(1-s)$. Note that $Z(u)$ is real an even, for $u \in \mathbb{R}$. Then Z changes sign when ζ has a zero on the critical line. Therefore we want to show that the sign change of $Z(u)$ occurs quite often.

Let us compare the integrals:

$$
I(t)=\int_{t}^{t+\Delta} Z(u) \mathrm{d} u
$$

and

$$
J(t)=\int_{t}^{t+\Delta}|Z(u)| \mathrm{d} u
$$

in the range $T \leq t \leq 2 T$ and Δ large to be chosen later ($\Delta \leq T^{1 / 6}$).

Let us compare the integrals:

$$
I(t)=\int_{t}^{t+\Delta} Z(u) \mathrm{d} u
$$

and

$$
J(t)=\int_{t}^{t+\Delta}|Z(u)| \mathrm{d} u
$$

in the range $T \leq t \leq 2 T$ and Δ large to be chosen later
$\left(\Delta \leq T^{1 / 6}\right)$. We need an upper bound for $|I(t)|$ and a lower bound for $J(t)$ on average over a subset $\mathcal{T} \subset[T, 2 T]$.

We remark that, for $s=\frac{1}{2}+i u$ with $T \leq u \leq 3 T$:

$$
\zeta\left(\frac{1}{2}+i u\right)=\sum_{n \leq T} n^{-\frac{1}{2}-i u}+O\left(T^{-1 / 2}\right)
$$

We remark that, for $s=\frac{1}{2}+i u$ with $T \leq u \leq 3 T$:

$$
\zeta\left(\frac{1}{2}+i u\right)=\sum_{n \leq T} n^{-\frac{1}{2}-i u}+O\left(T^{-1 / 2}\right)
$$

Then

$$
\begin{aligned}
J(t) & =\int_{t}^{t+\Delta}\left|\zeta\left(\frac{1}{2}+i u\right)\right| \mathrm{d} u \geq\left|\int_{t}^{t+\Delta} \zeta\left(\frac{1}{2}+i u\right) \mathrm{d} u\right| \\
& \geq \Delta-\left|\int_{t}^{t+\Delta}\left(\zeta\left(\frac{1}{2}+i u\right)-1\right) \mathrm{d} u\right| \\
& \geq \Delta-\left|\int_{t}^{t+\Delta}\left(\sum_{1<n \leq T} n^{-\frac{1}{2}-i u}\right) \mathrm{d} u\right|+O\left(\Delta T^{-1 / 2}\right) \\
& \geq \Delta-\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|+O\left(\Delta T^{-1 / 2}\right) .
\end{aligned}
$$

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|,
$$

we use Problem (50):

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|,
$$

we use Problem (50): Let $\left\{a_{n}\right\}_{n=1}^{N}$ be complex numbers. Then, we have for $T \geq 2$:

$$
\int_{0}^{T}\left|\sum_{n=1}^{N} a_{n} n^{i t}\right|^{2} \mathrm{~d} t=(T+O(N)) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|
$$

we use Problem (50): Let $\left\{a_{n}\right\}_{n=1}^{N}$ be complex numbers. Then, we have for $T \geq 2$:

$$
\int_{0}^{T}\left|\sum_{n=1}^{N} a_{n} n^{i t}\right|^{2} \mathrm{~d} t=(T+O(N)) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

This implies

$$
\int_{T}^{2 T}\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|^{2} \mathrm{~d} t \ll T
$$

Therefore, from

$$
J(t) \geq \Delta-\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|+O\left(\Delta T^{-1 / 2}\right)
$$

and

$$
\int_{T}^{2 T}\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|^{2} \mathrm{~d} t \ll T,
$$

we obtain, for any subset $\mathcal{T} \subset[T, 2 T]$, we have

$$
\int_{\mathcal{T}} J(t) \mathrm{d} t>\Delta|\mathcal{T}|+O\left(|\mathcal{T}|^{1 / 2} T^{1 / 2}+\Delta|\mathcal{T}| T^{-1 / 2}\right)
$$

