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Theorem (Borel-Carathéodory theorem)

Let Q C C be an open set such that contains the disc |z| < R.
Then, for 0 < r < R we have that

R
s Blaf(z) Rf 1F(0)]

<
lz|I<r T R—r |z=R
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Theorem (Hadamard's three-circles theorem)

Let 2 C C be an open set such that contains the annulus

n <|z| < r. Let f : Q — C be an holomorphic function. Define
M(r) the maximum of |f(z)| on the circle |z| = r. Then, for

rn < rn < r3 we have:

(M2)log(r3/r1) < (Ml)log(rs/rz)(M3)|0g(rz/r1).
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Let T sufficiently large. Then, there is a zero p = 3 + iy of ((s)
such that

Theorem

A

Tl
i = log loglog T’

for some universal constant A > 0.
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set of circles such for v = 0,1, ..., n where n = [12/6] + 1, so that
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C,, and C, respectively.
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Theorem (Borel-Carathéodory theorem)

Let Q C C be an open set such that contains the disc |z| < R.
Then, for 0 < r < R we have that
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have
Mo <T7(A1log T + Az),
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Using Borel-Carathéodory theorem for the circles Cy and [y we
have
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and in particular

llog((2— 4 +iT)| < 7(Arlog T + Ay).
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Now, we apply Borel-Carathéodory theorem to the circles C; and
"1 we have

My < 7(Arlog T+[log((2— g +iT)|) < (T+7%)Arlog T + 7.
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Now, we apply Borel-Carathéodory theorem to the circles C; and
"1 we have

My < 7(Arlog T+[log((2— g +iT)|) < (T+7%)Arlog T + 7.
In general

Then
M, <T7’Aslog T.
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Theorem (Hadamard's three-circles theorem)

Let 2 C C be an open set such that contains the annulus

n <|z| < r. Let f : Q — C be an holomorphic function. Define
M(r) the maximum of |f(z)| on the circle |z| = r. Then, for

rn < rn < r3 we have:

(M2)log(r3/r1) < (Ml)log(rs/rz)(M3)|0g(rz/r1).
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Then, using Hadamard's three-circles theorem we have
M, < (m,)*(M,)P,

where a = log(3/2)/log3, b =log2/log3 and a+ b= 1.
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Then, using Hadamard's three-circles theorem we have
M, < (m,)*(M,)P,

where a = log(3/2)/log3, b =log2/log3 and a+ b = 1. Since
the circle C,_1 includes the circle ¢, we have m, < M,_;. Hence

M, < (My-1)>(M,)? forv=1,2,...n
Thus
My < (Mo)?(M1)®,

My < (My)2(Ma)P < (Mo)® (M1)?2(M)P.

We continue until

My < (M) (M1)¥ P(M3)?" b (M)
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We have
My < (Mo)?" (M) B(Mo)>" b (M,)P,
and using M, < 7”Aslog T, we arrive at

Mn < (Mo)a" 73”*1b+2a”*2b+...+nb (A3 Iog T)a”*1b+a”*2b+...+b‘

We have
a" b +2a"2b+ ..+ nb < n,
and
A" lb+a" b+ ... +b=1-—2a".
Then

M, < (Mo)?" 7" (Aslog T)~".
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We have
M, < (Mo)?" 7" (Aslog T)~".
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We have
M, < (Mo)?" 7" (Aslog T)~".

Recall that My is bounded (as T — o0). Then

M, < Ay 7" (log T)1 =",
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We want a lower bound for M,. Recall that M,, > log|((s)]| at the
circle C,. We need a lower bound for |((s)| on C, (Res < —1).
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Recalling the functional equation:
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Recalling the functional equation:

W—s/zg(s)r@ 92y s)r(l = )

Then, we write

¢(s) = x(s)¢(1 = s),

where e /a 1
r U 22r(ige)

&=

Using Stiriing’s formula we have for a < o < 3, as t — oo:

MBI (T)
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Then, in =2 < o < —0.5, we have

2T

o3
- > > Kt > K, TC

x(s)| = K<
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Then, in =2 < o < —0.5, we have
1
27(' 772 C c
Ix(s)] > K e > Kit- > KT

and |{(1 — s)| > K3 (use Mobilis function).
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Then, in =2 < o < —0.5, we have
1
27(' 772 C c
Ix(s)] > K e > Kit- > KT

and [{(1 — s)| > K3 (use Mobilis function). Therefore
C(s) = T7%,

in the circle C,. Therefore M, > Aslog T.
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We have prove that

M, < Ay 7" (log T)} =",
and M, > Aslog T. This implies that

As < Ay 7" (log T)™".

Recall that n = [12/0] + 1. We conclude.
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Let N(T)=#{p=0+iv:0<B<1,{(p)=0,0<y<T}
For T > 3 we have the Riemann-von Mangoldt Formula:

T T T

M(T) = 5o g27r—2+7+5(7')+0<;_)
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Let N(T)=#{p=0+iv:0<B<1,{(p)=0,0<y<T}
For T > 3 we have the Riemann-von Mangoldt Formula:

T T T 7 1

Since S(T) = O(log T), we get

T T
N(T) = 5_log 5~ +O(T).
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Define N(o, T) = #{p= B+ iv:5>0,((p) =0,0 <y < T}.
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Define N(o, T) = #{p= B +iv: >0, ((p) =0,0 <7 < T}.
In this notation, Riemann hypothesis is equivalent to
N(o, T) =0 for any o > 1/2.
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Define N(o, T)=#{p=8+iv:8>0,((p)=0,0<~y < T}.
In this notation, Riemann hypothesis is equivalent to
N(o, T) =0 for any o > 1/2.
Note that N(o, T) =0 for 0 > 1.
Density conjecture: N(o, T) < T2(1=%) |og T
Selberg : N(o, T) < T-3(=2) |og T.
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Define No(T) =#{p=8+iv: =13, ((p)=0,0<y < T}
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Define No(T) =#{p=B+iv:8=13,((p)=0,0<y< T}
Riemann hypothesis is equivalent to No(T) = N(T).
Dave Platt and Tim Trudgian, 21 April 2020:
The Riemann Hypothesis is true up to height 3000175332800.
That is, the lowest 12363153437138 non-trivial zeros p have
Rep=1/2.
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Theorem (Hardy and Littlewood: 1921)
For T > 15 we have

No(T)>T.



Class 21: Unconditional gaps and Zeros on the critical line

Define
H(3 + iu)

1 .
|H(%+iu)\<(2 + i),

Z(u) =

where

H(s) = %s(s - 1)7r5/2|_<;>.

Recall the functional equation H(s)((s) = H(1 — s)¢(1 — s). Note
that Z(u) is real an even, for u € R. Then Z changes sign when ¢
has a zero on the critical line. Therefore we want to show that the
sign change of Z(u) occurs quite often.
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Let us compare the integrals:

and
t+A
s - [ 2w du,

in the range T <t < 2T and A large to be chosen later
(A < TV/9).
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Let us compare the integrals:

and
t+A
s - [ 2w du,

in the range T <t < 2T and A large to be chosen later
(A < T'/%). We need an upper bound for |/(t)| and a lower bound
for J(t) on average over a subset 7 C [T,2T].
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We remark that, for s = % +iuwith T <u<3T:

<< +/u> S o(TV?).

n<T
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We remark that, for s = % +iuwith T <u<3T:

6

> A -

> A -

t+A
/ ¢(3 + iu)| du >

+ /u> Z nT2 4 T-1/2),

n<T

t+A
/ ¢(3 + iu)du

t+A
/t (¢(3 +iu) — 1) du

t+A L 1
/ > ) dul+ O(AT1?)
t 1<n<T

1 i _
S i po(aT ),
log n
1<n<T
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To bound the term

we use Problem (50):
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To bound the term
—iA
log n ’

we use Problem (50): Let {a,}"N_; be complex numbers. Then, we
have for T > 2:

T|N 2

/ Zannit dt=(T+ O(N Z|3"|2
0

n=1
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To bound the term

—iA
> g
log n

we use Problem (50): Let {a,}"N_; be complex numbers. Then, we
have for T > 2:

TN P2
| |3 e de= (T o(n ZW
0 n=1

This implies
. 2
2T 7N
1_ 1
/ > o " it ar< T
T |1in<T 1087




Class 21: Unconditional gaps and Zeros on the critical line

Therefore, from

1-— n_"A 1. 1/2
VOEY S lin—é—’t + O(ATY/?),
1en<T 081
and )

2T _in

1— .
/ > o T it dr < T,
T |1in<rT 087

we obtain, for any subset 7 C [T,2T], we have

/ J(t)dt > A|T| + O(’T’1/2 T2 4 AlT] T71/2).
T



