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Class 21: Unconditional gaps and Zeros on the critical line

Gaps between zeros of zeta

Let 0 < γ1 ≤ γ2 ≤ ... be the consecutive ordinates of the
non-trivial zeros of ζ(s) with positive imaginary parts (counting
multiplicity).

1 Unconditional:
γn+1 − γn = O(1).

2 Unconditional: for some A > 0 we have

γn+1 − γn ≤
A

log log log γn
.

3 Conditional:

γn+1 − γn ≤
π + ε

log log γn
.
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Theorem (Borel-Carathéodory theorem)

Let Ω ⊂ C be an open set such that contains the disc |z | ≤ R.
Then, for 0 < r < R we have that

máx
|z|≤r
|f (z)| ≤ 2r

R − r
máx
|z|=R

Re f (z) +
R + r

R − r
|f (0)|.
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Theorem (Hadamard’s three-circles theorem)

Let Ω ⊂ C be an open set such that contains the annulus
r1 ≤ |z | ≤ r3. Let f : Ω→ C be an holomorphic function. Define
M(r) the maximum of |f (z)| on the circle |z | = r . Then, for
r1 < r2 < r3 we have:

(M2)log(r3/r1) ≤ (M1)log(r3/r2)(M3)log(r2/r1).
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Theorem

Let T sufficiently large. Then, there is a zero ρ = β + iγ of ζ(s)
such that

|γ − T | ≤ A

log log logT
,

for some universal constant A > 0.
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Suppose that ζ(s) has no zeros in T − δ ≤ Im s ≤ T + δ, with
0 < δ < 1

2 . Define the function log ζ(s), analytic in −2 ≤ Re s ≤ 3
and T − δ ≤ Im s ≤ T + δ.

Let cν , Cν , Cν and Γν be four concentric circles, with centre
2− ν

4δ + iT and radii δ4 , δ
2 , 3δ

4 and δ respectively. Consider these
set of circles such for ν = 0, 1, ..., n where n = [12/δ] + 1, so that
2− n

4δ ≤ −1.
Define mν , Mν and Mν the maxima of | log ζ(s)| on the circles cν ,
Cν , and Cν respectively.
We have for all circles that

Re {log ζ(s)} = log |ζ(σ + it)| ≤ A1 logT ,

and
| log ζ(2 + iT )| ≤ A2.
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Using Borel-Carathéodory theorem for the circles C0 and Γ0 we
have

M0 ≤ 7(A1 logT + A2),

and in particular

| log ζ(2− δ
4 + iT )| ≤ 7(A1 logT + A2).
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Now, we apply Borel-Carathéodory theorem to the circles C1 and
Γ1 we have

M1 ≤ 7(A1 logT + | log ζ(2− δ
4 + iT )|) ≤ (7 + 72)A1 logT + 72A2.

In general

Mν ≤ (7 + 72 + ...+ 7ν+1)A1 logT + 7ν+1A2.

Then
Mν ≤ 7νA3 logT .
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Then, using Hadamard’s three-circles theorem we have

Mν ≤ (mν)a(Mν)b,

where a = log(3/2)/ log 3, b = log 2/ log 3 and a + b = 1.

Since
the circle Cν−1 includes the circle cν , we have mν ≤ Mν−1. Hence

Mν ≤ (Mν−1)a(Mν)b for ν = 1, 2, ..., n.

Thus
M1 ≤ (M0)a(M1)b,

M2 ≤ (M1)a(M2)b ≤ (M0)a
2
(M1)ab(M2)b.

We continue until

Mn ≤ (M0)a
n
(M1)a

n−1b(M2)a
n−2b... (Mn)b.
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We have

Mn ≤ (M0)a
n
(M1)a

n−1b(M2)a
n−2b... (Mn)b,

and using Mν ≤ 7νA3 logT , we arrive at

Mn ≤ (M0)a
n

7a
n−1b+2an−2b+...+nb (A3 logT )a

n−1b+an−2b+...+b.

We have
an−1b + 2an−2b + ...+ nb < n,

and
an−1b + an−2b + ...+ b = 1− an.

Then
Mn ≤ (M0)a

n
7n (A3 logT )1−an .
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We have
Mn ≤ (M0)a

n
7n (A3 logT )1−an .

Recall that M0 is bounded (as T →∞). Then

Mn ≤ A4 7n (logT )1−an .
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We want a lower bound for Mn. Recall that Mn ≥ log |ζ(s)| at the
circle Cn. We need a lower bound for |ζ(s)| on Cn (Re s ≤ −1).
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Recalling the functional equation:

π−s/2ζ(s)Γ

(
s

2

)
= π−(1−s)/2ζ(1− s)Γ

(
1− s

2

)
.

Then, we write
ζ(s) = χ(s) ζ(1− s),

where

χ(s) =
π−(1−2s)/2 Γ

(
1−s

2

)
Γ
(
s
2

) .

Using Stiriing’s formula we have for α ≤ σ ≤ β, as t →∞:

|χ(s)| ∼
(

2π

t

)σ− 1
2

.
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Then, in −2 ≤ σ ≤ −0.5, we have

|χ(s)| ≥ K

(
2π

t

)σ− 1
2

≥ K1t
C ≥ K2T

C

and |ζ(1− s)| ≥ K3 (use Mobiüs function). Therefore

|ζ(s)| ≥ TA5 ,

in the circle Cn. Therefore Mn ≥ A5 logT .
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We have prove that

Mn ≤ A4 7n (logT )1−an ,

and Mn ≥ A5 logT .

This implies that

A5 ≤ A4 7n (logT )−a
n
.

Recall that n = [12/δ] + 1. We conclude.
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Let N(T ) = #{ρ = β + iγ : 0 < β < 1, ζ(ρ) = 0, 0 < γ ≤ T}.

For T ≥ 3 we have the Riemann-von Mangoldt Formula:

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) + O

(
1

T

)
.

Since S(T ) = O(logT ), we get

N(T ) =
T

2π
log

T

2π
+ O(T ).
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Define N(σ,T ) = #{ρ = β + iγ : β ≥ σ, ζ(ρ) = 0, 0 < γ ≤ T}.

1 In this notation, Riemann hypothesis is equivalent to
N(σ,T ) = 0 for any σ > 1/2.

2 Note that N(σ,T ) = 0 for σ ≥ 1.

3 Density conjecture: N(σ,T )� T 2(1−σ) logT .

4 Selberg : N(σ,T )� T 1− 1
4

(σ− 1
2

) logT .
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Define N0(T ) = #{ρ = β + iγ : β = 1
2 , ζ(ρ) = 0, 0 < γ ≤ T}.

1 Riemann hypothesis is equivalent to N0(T ) = N(T ).

2 Dave Platt and Tim Trudgian, 21 April 2020:
The Riemann Hypothesis is true up to height 3000175332800.
That is, the lowest 12363153437138 non-trivial zeros ρ have
Re ρ = 1/2.
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2 Dave Platt and Tim Trudgian, 21 April 2020:
The Riemann Hypothesis is true up to height 3000175332800.
That is, the lowest 12363153437138 non-trivial zeros ρ have
Re ρ = 1/2.



Class 21: Unconditional gaps and Zeros on the critical line

Theorem (Hardy and Littlewood: 1921)

For T ≥ 15 we have
N0(T )� T .
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Define

Z (u) =
H( 1

2 + iu)

|H( 1
2 + iu)|

ζ( 1
2 + iu),

where

H(s) =
1

2
s(s − 1)π−s/2Γ

(
s

2

)
.

Recall the functional equation H(s)ζ(s) = H(1− s)ζ(1− s). Note
that Z (u) is real an even, for u ∈ R. Then Z changes sign when ζ
has a zero on the critical line. Therefore we want to show that the
sign change of Z (u) occurs quite often.
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Let us compare the integrals:

I (t) =

∫ t+∆

t
Z (u) du,

and

J(t) =

∫ t+∆

t
|Z (u)| du,

in the range T ≤ t ≤ 2T and ∆ large to be chosen later
(∆ ≤ T 1/6).

We need an upper bound for |I (t)| and a lower bound
for J(t) on average over a subset T ⊂ [T , 2T ].
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We remark that, for s = 1
2 + iu with T ≤ u ≤ 3T :

ζ

(
1

2
+ iu

)
=
∑
n≤T

n−
1
2
−iu + O(T−1/2).

Then

J(t) =

∫ t+∆

t

∣∣ζ( 1
2 + iu)

∣∣du ≥ ∣∣∣∣∣
∫ t+∆

t
ζ( 1

2 + iu)du

∣∣∣∣∣
≥ ∆−

∣∣∣∣∣
∫ t+∆

t

(
ζ( 1

2 + iu)− 1
)
du

∣∣∣∣∣
≥ ∆−

∣∣∣∣∣
∫ t+∆

t

( ∑
1<n≤T

n−
1
2
−iu

)
du

∣∣∣∣∣+ O(∆T−1/2)

≥ ∆−

∣∣∣∣∣ ∑
1<n≤T

1− n−i∆

log n
n−

1
2
−it

∣∣∣∣∣+ O(∆T−1/2).
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To bound the term ∣∣∣∣∣ ∑
1<n≤T

1− n−i∆

log n
n−

1
2
−it

∣∣∣∣∣,
we use Problem (50):

Let {an}Nn=1 be complex numbers. Then, we
have for T ≥ 2:∫ T

0

∣∣∣∣∣
N∑

n=1

ann
it

∣∣∣∣∣
2

dt = (T + O(N))
N∑

n=1

|an|2.

This implies

∫ 2T

T

∣∣∣∣∣ ∑
1<n≤T

1− n−i∆

log n
n−

1
2
−it

∣∣∣∣∣
2

dt � T .
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Therefore, from

J(t) ≥ ∆−

∣∣∣∣∣ ∑
1<n≤T

1− n−i∆

log n
n−

1
2
−it

∣∣∣∣∣+ O(∆T−1/2),

and ∫ 2T

T

∣∣∣∣∣ ∑
1<n≤T

1− n−i∆

log n
n−

1
2
−it

∣∣∣∣∣
2

dt � T ,

we obtain, for any subset T ⊂ [T , 2T ], we have∫
T
J(t)dt > ∆|T |+ O

(
|T |1/2T 1/2 + ∆|T |T−1/2

)
.


