Class 22: Zeros on the critical line II

Andrés Chirre
Norwegian University of Science and Technology - NTNU

18-November-2021

Theorem (Hardy and Littlewood: 1921)
For $T \geq 15$ we have

$$
N_{0}(T) \gg T,
$$

where $N_{0}(T)$ is the number of zeros $\rho=\frac{1}{2}+i \gamma$ with $0<\gamma \leq T$.

Define

$$
Z(u)=\frac{H\left(\frac{1}{2}+i u\right)}{\left|H\left(\frac{1}{2}+i u\right)\right|} \zeta\left(\frac{1}{2}+i u\right)
$$

where

$$
H(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) .
$$

Recall the functional equation $H(s) \zeta(s)=H(1-s) \zeta(1-s)$. Note that $Z(u)$ is real an even, for $u \in \mathbb{R}$. Then, if Z changes sign, ζ has a zero on the critical line. Therefore we want to show that the sign change of $Z(u)$ occurs quite often.

Let T sufficiently large. Let us define

$$
I(t)=\int_{t}^{t+\Delta} Z(u) \mathrm{d} u
$$

and

$$
J(t)=\int_{t}^{t+\Delta}|Z(u)| \mathrm{d} u
$$

in the range $T \leq t \leq 2 T$ and $1 \leq \Delta \leq T^{1 / 6}$ large to be chosen.

Let T sufficiently large. Let us define

$$
I(t)=\int_{t}^{t+\Delta} Z(u) \mathrm{d} u
$$

and

$$
J(t)=\int_{t}^{t+\Delta}|Z(u)| \mathrm{d} u
$$

in the range $T \leq t \leq 2 T$ and $1 \leq \Delta \leq T^{1 / 6}$ large to be chosen.
We need a lower bound for $\int_{\mathcal{T}} J(t) \mathrm{d} t$, and an upper bound for $\int_{\mathcal{T}}|I(t)| \mathrm{d} t$ over a subset $\mathcal{T} \subset[T, 2 T]$.

We remark that, for $s=\frac{1}{2}+i u$ with $T \leq u \leq 3 T$:

$$
\zeta\left(\frac{1}{2}+i u\right)=\sum_{n \leq T} n^{-\frac{1}{2}-i u}+O\left(T^{-1 / 2}\right)
$$

We remark that, for $s=\frac{1}{2}+i u$ with $T \leq u \leq 3 T$:

$$
\zeta\left(\frac{1}{2}+i u\right)=\sum_{n \leq T} n^{-\frac{1}{2}-i u}+O\left(T^{-1 / 2}\right)
$$

Then

$$
\begin{aligned}
J(t) & =\int_{t}^{t+\Delta}\left|\zeta\left(\frac{1}{2}+i u\right)\right| \mathrm{d} u \geq\left|\int_{t}^{t+\Delta} \zeta\left(\frac{1}{2}+i u\right) \mathrm{d} u\right| \\
& \geq \Delta-\left|\int_{t}^{t+\Delta}\left(\zeta\left(\frac{1}{2}+i u\right)-1\right) \mathrm{d} u\right| \\
& \geq \Delta-\left|\int_{t}^{t+\Delta}\left(\sum_{1<n \leq T} n^{-\frac{1}{2}-i u}\right) \mathrm{d} u\right|+O\left(\Delta T^{-1 / 2}\right) \\
& \geq \Delta-\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|+O\left(\Delta T^{-1 / 2}\right) .
\end{aligned}
$$

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|,
$$

we use Problem (50):

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|,
$$

we use Problem (50): Let $\left\{a_{n}\right\}_{n=1}^{N}$ be complex numbers. Then, we have for $T \geq 2$:

$$
\int_{0}^{T}\left|\sum_{n=1}^{N} a_{n} n^{i t}\right|^{2} \mathrm{~d} t=(T+O(N)) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

To bound the term

$$
\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|
$$

we use Problem (50): Let $\left\{a_{n}\right\}_{n=1}^{N}$ be complex numbers. Then, we have for $T \geq 2$:

$$
\int_{0}^{T}\left|\sum_{n=1}^{N} a_{n} n^{i t}\right|^{2} \mathrm{~d} t=(T+O(N)) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

This implies

$$
\int_{T}^{2 T}\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|^{2} \mathrm{~d} t \ll T
$$

Therefore, from

$$
J(t) \geq \Delta-\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|+O\left(\Delta T^{-1 / 2}\right)
$$

and

$$
\int_{T}^{2 T}\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|^{2} \mathrm{~d} t \ll T
$$

Therefore, from

$$
J(t) \geq \Delta-\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|+O\left(\Delta T^{-1 / 2}\right)
$$

and

$$
\int_{T}^{2 T}\left|\sum_{1<n \leq T} \frac{1-n^{-i \Delta}}{\log n} n^{-\frac{1}{2}-i t}\right|^{2} \mathrm{~d} t \ll T
$$

using Cauchy-Schwarz inequality we obtain, for any subset $\mathcal{T} \subset[T, 2 T]$,

$$
\int_{\mathcal{T}} J(t) \mathrm{d} t>\Delta|\mathcal{T}|+O\left(|\mathcal{T}|^{1 / 2} T^{1 / 2}+\Delta|\mathcal{T}| T^{-1 / 2}\right)
$$

Lemma

For $1 \leq \Delta \leq T^{1 / 6}$ we have:

$$
\int_{T}^{2 T}|I(t)|^{2} \mathrm{~d} t \ll \Delta T
$$

Lemma

$$
\text { For } 1 \leq \Delta \leq T^{1 / 6} \text { we have: }
$$

$$
\int_{T}^{2 T}|I(t)|^{2} \mathrm{~d} t \ll \Delta T
$$

Assume this lemma, and let us prove our theorem.

Using Cauchy-Schwarz inequality we have for any subset $\mathcal{T} \subset[T, 2 T]:$
$\int_{\mathcal{T}}|I(t)| \mathrm{d} t \leq\left(\int_{\mathcal{T}}|I(t)|^{2} \mathrm{~d} t\right)^{1 / 2}\left(\int_{\mathcal{T}} 1 \mathrm{~d} t\right)^{1 / 2} \ll \Delta^{1 / 2}|\mathcal{T}|^{1 / 2} T^{1 / 2}$.

Let T sufficiently large and $1 \leq \Delta \leq T^{1 / 6}$. For

$$
I(t)=\int_{t}^{t+\Delta} Z(u) \mathrm{d} u, \quad \text { and } \quad J(t)=\int_{t}^{t+\Delta}|Z(u)| \mathrm{d} u
$$

we have that:

$$
\int_{\mathcal{T}} J(t) \mathrm{d} t>\Delta|\mathcal{T}|+O\left(|\mathcal{T}|^{1 / 2} T^{1 / 2}+\Delta|\mathcal{T}| T^{-1 / 2}\right)
$$

and

$$
\int_{\mathcal{T}}|I(t)| \mathrm{d} t \ll \Delta^{1 / 2}|\mathcal{T}|^{1 / 2} T^{1 / 2}
$$

Now, consider \mathcal{T} the subset of $[T, 2 T]$ such that: $|I(t)|=J(t)$. This is the set of t^{\prime} s such that $Z(u)$ does not chang sign in the interval $(t, t+\Delta)$.

Now, consider \mathcal{T} the subset of $[T, 2 T]$ such that: $|I(t)|=J(t)$. This is the set of t^{\prime} s such that $Z(u)$ does not chang sign in the interval $(t, t+\Delta)$. Then

$$
\int_{\mathcal{T}}|I(t)| \mathrm{d} t=\int_{\mathcal{T}} J(t) \mathrm{d} t
$$

Now, consider \mathcal{T} the subset of $[T, 2 T]$ such that: $|I(t)|=J(t)$. This is the set of t^{\prime} s such that $Z(u)$ does not chang sign in the interval $(t, t+\Delta)$. Then

$$
\int_{\mathcal{T}}|I(t)| \mathrm{d} t=\int_{\mathcal{T}} J(t) \mathrm{d} t
$$

and we deduce that $|\mathcal{T}| \ll \Delta^{-1} T$.

Now, consider \mathcal{T} the subset of $[T, 2 T]$ such that: $|I(t)|=J(t)$. This is the set of t^{\prime} s such that $Z(u)$ does not chang sign in the interval $(t, t+\Delta)$. Then

$$
\int_{\mathcal{T}}|I(t)| \mathrm{d} t=\int_{\mathcal{T}} J(t) \mathrm{d} t
$$

and we deduce that $|\mathcal{T}| \ll \Delta^{-1} T$. Then, we choose Δ sufficiently large such that

$$
|\mathcal{T}| \leq \frac{T}{2}
$$

Since

$$
|\mathcal{T}| \leq \frac{T}{2}
$$

Since

$$
|\mathcal{T}| \leq \frac{T}{2}
$$

the set $\mathcal{S}=[T, 2 T]-\mathcal{T}$, that is that set of t^{\prime} s such that $|I(t)|<J(t)$ has measure

$$
|\mathcal{S}|>\frac{T}{2} .
$$

Since

$$
|\mathcal{T}| \leq \frac{T}{2}
$$

the set $\mathcal{S}=[T, 2 T]-\mathcal{T}$, that is that set of t^{\prime} s such that $|I(t)|<J(t)$ has measure

$$
|\mathcal{S}|>\frac{T}{2}
$$

The set \mathcal{S} contains a sequence $\left\{t_{1}, \ldots, t_{R}\right\}$ of Δ-spaced points of lenght $R \geq T / 4 \Delta$. For every t_{r}, the function $Z(u)$ must change sign in the segment $t_{r}<u<t_{r}+\Delta$, hence there is a critical zero $\rho=\frac{1}{2}+i \gamma_{r}$ with $t_{r}<\gamma_{r}<t_{r}+\Delta$.

Since

$$
|\mathcal{T}| \leq \frac{T}{2}
$$

the set $\mathcal{S}=[T, 2 T]-\mathcal{T}$, that is that set of t^{\prime} s such that $|I(t)|<J(t)$ has measure

$$
|\mathcal{S}|>\frac{T}{2}
$$

The set \mathcal{S} contains a sequence $\left\{t_{1}, \ldots, t_{R}\right\}$ of Δ-spaced points of lenght $R \geq T / 4 \Delta$. For every t_{r}, the function $Z(u)$ must change sign in the segment $t_{r}<u<t_{r}+\Delta$, hence there is a critical zero $\rho=\frac{1}{2}+i \gamma_{r}$ with $t_{r}<\gamma_{r}<t_{r}+\Delta$.

Therefore the number of critical zeros $\rho=\frac{1}{2}+i \gamma$ with $T<\gamma<2 T$ is at least $T / 4 \Delta-1$. We conclude.

Proof of Lemma

By the convexity bound we have that

$$
\begin{aligned}
\int_{T}^{2 T} & |I(t)|^{2} \mathrm{~d} t \\
& =\int_{T}^{2 T}\left|\int_{0}^{\Delta} Z(t+u) \mathrm{d} u\right|^{2} \mathrm{~d} t \\
& =\int_{0}^{\Delta} \int_{0}^{\Delta} \int_{T}^{2 T} Z\left(t+u_{1}\right) \overline{Z\left(t+u_{2}\right)} \mathrm{d} t \mathrm{~d} u_{1} \mathrm{~d} u_{2} \\
& =\int_{0}^{\Delta} \int_{0}^{\Delta} \int_{T}^{2 T} Z(t) \overline{Z\left(t+u_{2}-u_{1}\right)} \mathrm{d} t \mathrm{~d} u_{1} \mathrm{~d} u_{2}+O\left(\Delta^{3} T^{1 / 2}\right) \\
& =\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T} Z(t) \overline{Z(t+u)} \mathrm{d} t \mathrm{~d} u+O\left(\Delta^{3} T^{1 / 2}\right)
\end{aligned}
$$

Using Stirling's formula, we have that

$$
\frac{H\left(\frac{1}{2}+i t\right) \overline{H\left(\frac{1}{2}+i t+i u\right)}}{\left\lvert\, H\left(\frac{1}{2}+i t\right) \overline{\left.H\left(\frac{1}{2}+i t+i u\right) \right\rvert\,}\right.}=\left(\frac{2 \pi}{t}\right)^{i u / 2}\left(1+O\left(\frac{u^{2}+1}{T}\right)\right)
$$

for $T \leq t \leq 2 T$ and $|u| \leq \Delta$.

Using Stirling's formula, we have that

$$
\frac{H\left(\frac{1}{2}+i t\right) \overline{H\left(\frac{1}{2}+i t+i u\right)}}{\left\lvert\, H\left(\frac{1}{2}+i t\right) \overline{H\left(\frac{1}{2}+i t+i u\right)}\right.}=\left(\frac{2 \pi}{t}\right)^{i u / 2}\left(1+O\left(\frac{u^{2}+1}{T}\right)\right)
$$

for $T \leq t \leq 2 T$ and $|u| \leq \Delta$. Then, using the convexity bound and the approximation formula we have

$$
\begin{aligned}
Z(t) \overline{Z(t+u)}= & \zeta\left(\frac{1}{2}+i t\right) \overline{\zeta\left(\frac{1}{2}+i t+i u\right)}\left(\frac{2 \pi}{t}\right)^{i u / 2}+O\left(\Delta^{2} T^{-1 / 2}\right) \\
= & \sum_{1 \leq m, n \leq T} \frac{1}{\sqrt{m n}}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2}+O\left(\Delta^{2} T^{-1 / 2}\right) \\
& +O\left(T^{-1 / 2}\left|\sum_{n \leq T} \frac{1}{n^{1 / 2+i t}}\right|\right)+O\left(T^{-1 / 2}\left|\sum_{m \leq T} \frac{1}{m^{1 / 2-i t-i u}}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{T}^{2 T} Z(t) \overline{Z(t+u)} \mathrm{d} t= & \int_{T}^{2 T} \sum_{1 \leq m, n \leq T} \frac{1}{\sqrt{m n}}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \\
& +O\left(\Delta^{2} T^{1 / 2}\right) \\
& +O\left(T^{-1 / 2} \int_{T}^{2 T}\left|\sum_{n \leq T} \frac{1}{n^{1 / 2+i t}}\right| \mathrm{d} t\right) \\
& +O\left(T^{-1 / 2} \int_{T}^{2 T}\left|\sum_{m \leq T} \frac{1}{m^{1 / 2-i t-i u}}\right| \mathrm{d} t\right) .
\end{aligned}
$$

$$
\begin{aligned}
\int_{T}^{2 T} Z(t) \overline{Z(t+u)} \mathrm{d} t= & \int_{T}^{2 T} \sum_{1 \leq m, n \leq T} \frac{1}{\sqrt{m n}}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i / 2 / 2} \mathrm{~d} t \\
& +O\left(\Delta^{2} T^{1 / 2}\right)+O\left((\log T)^{1 / 2} T^{1 / 2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\int_{T}^{2 T} & |I(t)|^{2} \mathrm{~d} t \\
& =\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T} Z(t) \overline{Z(t+u)} \mathrm{d} t \mathrm{~d} u+O\left(\Delta^{3} T^{1 / 2}\right) \\
& =\sum_{1 \leq m, n \leq T} \frac{c(m, n)}{\sqrt{m n}}+O\left(\Delta^{2}(\log T)^{1 / 2} T^{1 / 2}\right)+O\left(\Delta^{4} T^{1 / 2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\int_{T}^{2 T} & |I(t)|^{2} \mathrm{~d} t \\
& =\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T} Z(t) \overline{Z(t+u)} \mathrm{d} t \mathrm{~d} u+O\left(\Delta^{3} T^{1 / 2}\right) \\
& =\sum_{1 \leq m, n \leq T} \frac{c(m, n)}{\sqrt{m n}}+O\left(\Delta^{2}(\log T)^{1 / 2} T^{1 / 2}\right)+O\left(\Delta^{4} T^{1 / 2}\right)
\end{aligned}
$$

where

$$
c(m, n)=\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \mathrm{~d} u .
$$

$$
c(m, n)=\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \mathrm{~d} u
$$

$$
c(m, n)=\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \mathrm{~d} u
$$

Then

$$
c(m, n)=\Delta^{2} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t} F\left(\frac{\Delta}{4} \log \frac{2 \pi m^{2}}{t}\right)
$$

$$
c(m, n)=\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \mathrm{~d} u
$$

Then

$$
c(m, n)=\Delta^{2} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t} F\left(\frac{\Delta}{4} \log \frac{2 \pi m^{2}}{t}\right)
$$

where

$$
F(u)=\left(\frac{\sin x}{x}\right)^{2}
$$

$$
c(m, n)=\int_{-\Delta}^{\Delta}(\Delta-|u|) \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t}\left(\frac{2 \pi m^{2}}{t}\right)^{i u / 2} \mathrm{~d} t \mathrm{~d} u
$$

Then

$$
c(m, n)=\Delta^{2} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t} F\left(\frac{\Delta}{4} \log \frac{2 \pi m^{2}}{t}\right)
$$

where

$$
F(u)=\left(\frac{\sin x}{x}\right)^{2}
$$

To be continue...

