Class 2: The Riemann zeta-function in $\operatorname{Re} s > 0$

Andrés Chirre Norwegian University of Science and Technology - NTNU

06-September-2021

(ロ)、(型)、(E)、(E)、 E) の(()

Review

Review:

Review:

1 For $\operatorname{Re} s > 1$ we define the Riemann zeta-function $\zeta(s)$ by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}.$$

Review:

1 For $\operatorname{Re} s > 1$ we define the Riemann zeta-function $\zeta(s)$ by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}$$

•

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Uniformly in compacts of $\operatorname{Re} s > 1$, we have that

$$\sum_{n=1}^{N} rac{1}{n^s}
ightarrow \zeta(s), \ \ ext{as} \ \ N
ightarrow \infty.$$

Review:

1 For $\operatorname{Re} s > 1$ we define the Riemann zeta-function $\zeta(s)$ by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}$$

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Uniformly in compacts of $\operatorname{Re} s > 1$, we have that

$$\sum_{n=1}^{N} \frac{1}{n^s} \to \zeta(s), \text{ as } N \to \infty.$$

3 $\zeta(s) \neq 0$ for $\operatorname{Re} s > 1$.

1 For $\operatorname{Re} s > 0$ we define the Dirichlet eta function $\eta(s)$ by

(ロ)、(型)、(E)、(E)、 E) の(()

1 For $\operatorname{Re} s > 0$ we define the Dirichlet eta function $\eta(s)$ by

$$\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

1 For $\operatorname{Re} s > 0$ we define the Dirichlet eta function $\eta(s)$ by

$$\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}.$$

2 Uniformly in compacts of $\operatorname{Re} s > 0$, we have that

$$\sum_{n=1}^{N}rac{(-1)^{n+1}}{n^s}
ightarrow\eta(s), ext{ as } N
ightarrow\infty.$$

Class 2: The Riemann zeta-function in $\operatorname{Re} s > 0$

Analytic continuation of $\zeta(s)$

For $\operatorname{Re} s > 1$ we have

$$\zeta(s) - \eta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} - \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$$
$$= \sum_{n=1}^{\infty} \frac{1 - (-1)^{n+1}}{n^s}$$
$$= \sum_{n: \text{ even}} \frac{2}{n^s}$$
$$= \sum_{k=1}^{\infty} \frac{2}{(2k)^s}$$
$$= 2^{1-s} \sum_{k=1}^{\infty} \frac{1}{k^s} = 2^{1-s} \zeta(s)$$

Therefore we have for $\operatorname{Re} s > 1$:

Class 2: The Riemann zeta-function in $\operatorname{Re} s > 0$

Analytic continuation of $\zeta(s)$

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = rac{\eta(s)}{1-2^{1-s}}.$$

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

1
$$(1-2^{1-s})\sum_{n=1}^{\infty}\frac{1}{n^s} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

1
$$(1-2^{1-s})\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.
2 Note that $\eta(1) = \log 2$.

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

1
$$(1-2^{1-s})\sum_{n=1}^{\infty}\frac{1}{n^s} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.

2 Note that $\eta(1) = \log 2$.

3 For $\operatorname{Re} s > 0$, define the meromorphic function

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

1
$$(1-2^{1-s})\sum_{n=1}^{\infty}\frac{1}{n^s} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.

2 Note that $\eta(1) = \log 2$.

3 For $\operatorname{Re} s > 0$, define the meromorphic function

$$F(s)=\frac{\eta(s)}{1-2^{1-s}}.$$

Therefore we have for $\operatorname{Re} s > 1$:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

1
$$(1-2^{1-s})\sum_{n=1}^{\infty}\frac{1}{n^s} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.

2 Note that $\eta(1) = \log 2$.

3 For $\operatorname{Re} s > 0$, define the meromorphic function

$$F(s)=\frac{\eta(s)}{1-2^{1-s}}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

F has a pole (simple) in $\operatorname{Re} s > 0$ at the point s = 1.

Therefore we have for Re s > 1:

$$\zeta(s) = \frac{\eta(s)}{1-2^{1-s}}.$$

1
$$(1-2^{1-s})\sum_{n=1}^{\infty}\frac{1}{n^s} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^s}$$
, for $\operatorname{Re} s > 1$.

2 Note that
$$\eta(1) = \log 2$$
.

3 For $\operatorname{Re} s > 0$, define the meromorphic function

$$F(s)=\frac{\eta(s)}{1-2^{1-s}}.$$

F has a pole (simple) in $\operatorname{Re} s > 0$ at the point s = 1.

4 The function F(s) is an analytic continuation (meromorphic extension) of $\zeta(s)$ in $\operatorname{Re} s > 0$.

Class 2: The Riemann zeta-function in $\operatorname{Re} s > 0$

Analytic continuation of $\zeta(s)$

We will call this F(s) as $\zeta(s)$, because the extension is unique.

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

$$1 \sum_{1 \le n \le x} 1 = [x]$$

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

$$\sum_{1 \le n \le x} 1 = [x] = x + [x] - x$$

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

$$\sum_{1 \le n \le x} 1 = [x] = x + [x] - x = x + ([x] - x).$$

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

1
$$\sum_{1 \le n \le x} 1 = [x] = x + [x] - x = x + ([x] - x).$$

2 $\sum_{1 \le n \le x} \log n$

In many applications in Number Theory, it will be good to change our world: "from discrete world to continuous world, considering x so big."

$$\sum_{1 \le n \le x} 1 = [x] = x + [x] - x = x + ([x] - x).$$

$$\sum_{1 \le n \le x} \log n = ?$$

Theorem (Abel's identity)

Let a_n be a sequence of complex numbers., and define the function $A:(0,\infty)\to\mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Abel's identity)

Let a_n be a sequence of complex numbers., and define the function $A:(0,\infty)\to\mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

and A(x) = 0 if 0 < x < 1.

Theorem (Abel's identity)

Let a_n be a sequence of complex numbers., and define the function $A:(0,\infty)\to\mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

and A(x) = 0 if 0 < x < 1. Assume f has a continuous derivative on the interval [y, x] where 0 < y < x. Then we have

Theorem (Abel's identity)

Let a_n be a sequence of complex numbers., and define the function $A:(0,\infty)\to\mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

and A(x) = 0 if 0 < x < 1. Assume f has a continuous derivative on the interval [y, x] where 0 < y < x. Then we have

$$\sum_{y < n \leq x} a_n f(n) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t) dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let a_n be a sequence of complex numbers., and define the function $A:(0,\infty)\to\mathbb{C}$

$$A(x) = \sum_{n \le x} a_n,$$

Let a_n be a sequence of complex numbers., and define the function $A: (0, \infty) \to \mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

and A(x) = 0 if 0 < x < 1.

Let a_n be a sequence of complex numbers., and define the function $A: (0,\infty) \to \mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

and A(x) = 0 if 0 < x < 1. Assume *f* has a continuous derivative on the interval [y, x] where 0 < y < x. Then, we have

Let a_n be a sequence of complex numbers., and define the function $A: (0,\infty) \to \mathbb{C}$

$$A(x)=\sum_{n\leq x}a_n,$$

and A(x) = 0 if 0 < x < 1. Assume f has a continuous derivative on the interval [y, x] where 0 < y < x. Then, we have

$$\sum_{y < n \le x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

Using integration by parts:

$$\sum_{y < n \le x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Using integration by parts:

$$\sum_{y < n \le x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x^+)f(x^+) - A(y^+)f(y^+) - \int_{y^+}^{x^+} f'(t)A(t) \, \mathrm{d}t$$

Using integration by parts:

$$\sum_{y < n \leq x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x^+)f(x^+) - A(y^+)f(y^+) - \int_{y^+}^{x^+} f'(t)A(t) \, \mathrm{d}t$$
$$A(x) = \sum a_n,$$

 $n \le x$
Using integration by parts:

$$\sum_{y < n \le x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x^+)f(x^+) - A(y^+)f(y^+) - \int_{y^+}^{x^+} f'(t)A(t) \, \mathrm{d}t$$

$$A(x)=\sum_{n\leq x}a_n,$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x)f(x) - A(y)f(y) - \int_{y}^{x} f'(t)A(t) \, \mathrm{d}t$$

Using integration by parts:

$$\sum_{y < n \le x} a_n f(n) = \int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x^+)f(x^+) - A(y^+)f(y^+) - \int_{y^+}^{x^+} f'(t)A(t) \, \mathrm{d}t$$

$$A(x)=\sum_{n\leq x}a_n,$$

$$\int_{y^+}^{x^+} f(t) \, \mathrm{d}A(t) = A(x)f(x) - A(y)f(y) - \int_{y}^{x} f'(t)A(t) \, \mathrm{d}t$$

$$\sum_{y < n \le x} a_n f(n) = A(x)f(x) - A(y)f(y) - \int_y^x f'(t)A(t) dt.$$

Using integration by parts:

$$\sum_{y \le n \le x} a_n f(n) = \int_{y^-}^{x^+} f(t) \, \mathrm{d}A(t)$$

Using integration by parts:

$$\sum_{y \le n \le x} a_n f(n) = \int_{y^-}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^{-}}^{x^{+}} f(t) \, \mathrm{d}A(t) = A(x^{+})f(x^{+}) - A(y^{-})f(y^{-}) - \int_{y^{-}}^{x^{+}} f'(t)A(t) \, \mathrm{d}t$$

Using integration by parts:

$$\sum_{y \le n \le x} a_n f(n) = \int_{y^-}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^{-}}^{x^{+}} f(t) \, \mathrm{d}A(t) = A(x^{+})f(x^{+}) - A(y^{-})f(y^{-}) - \int_{y^{-}}^{x^{+}} f'(t)A(t) \, \mathrm{d}t$$

$$\int_{y^{-}}^{x^{+}} f(t) \, \mathrm{d}A(t) = A(x)f(x) - A(y^{-})f(y) - \int_{y}^{x} f'(t)A(t) \, \mathrm{d}t$$

Using integration by parts:

$$\sum_{y \le n \le x} a_n f(n) = \int_{y^-}^{x^+} f(t) \, \mathrm{d}A(t)$$

$$\int_{y^{-}}^{x^{+}} f(t) \, \mathrm{d}A(t) = A(x^{+})f(x^{+}) - A(y^{-})f(y^{-}) - \int_{y^{-}}^{x^{+}} f'(t)A(t) \, \mathrm{d}t$$

$$\int_{y^{-}}^{x^{+}} f(t) \, \mathrm{d}A(t) = A(x)f(x) - A(y^{-})f(y) - \int_{y}^{x} f'(t)A(t) \, \mathrm{d}t$$

$$\sum_{y\leq n\leq x}a_nf(n)=A(x)f(x)-A(y^-)f(y)-\int_y^xf'(t)A(t)\,\mathrm{d}t.$$

1

For example

$$\sum_{\leq n \leq x} \log n = \int_{1^{-}}^{x^{+}} \log(t) d[t]$$

= $\log x^{+}[x^{+}] - \log(1^{-})[1^{-}] - \int_{1}^{x} \frac{[t]}{t} dt$
= $\log x [x] - \int_{1}^{x} \frac{[t] - t}{t} dt - \int_{1}^{x} \frac{t}{t} dt$
= $x \log x + \log x([x] - x) + \int_{1}^{x} \frac{t - [t]}{t} dt - (x - 1)$
= $x \log x - x + 1 + \log x([x] - x) + \int_{1}^{x} \frac{t - [t]}{t} dt.$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Let f, g be two functions such that $g(x) \ge 0$ for x large. Then we write

$$f = O(g),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

if there is M > 0 such that $|f(x)| \le M g(x)$ for x large.

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

- -

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

$$\left| \log x([x] - x) \right| \leq \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\left| \int_{1}^{x} \frac{t - [t]}{t} dt \right| \leq \int_{1}^{x} \frac{1}{t} dt = \log x.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\left|\int_1^x \frac{t - [t]}{t} dt\right| \le \int_1^x \frac{1}{t} dt = \log x.$$

r 1

(ロ)、(型)、(E)、(E)、 E) の(()

av

Then

$$\left|\int_{1}^{x} \frac{t-[t]}{t} \, \mathrm{d}t\right| = O(\log x).$$

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\left| \int_1^x \frac{t - [t]}{t} dt \right| \le \int_1^x \frac{1}{t} dt = \log x.$$
Then
$$\left| \int_1^x t - [t] dt \right| \le O(t - x).$$

$$\left|\int_{1}^{x} \frac{t-[t]}{t} \,\mathrm{d}t\right| = O(\log x).$$

. .

(ロ)、(型)、(E)、(E)、 E) の(()

3 $1 \leq \log x$.

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_1^x \frac{t - [t]}{t} dt.$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\left| \int_1^x \frac{t - [t]}{t} dt \right| \le \int_1^x \frac{1}{t} dt = \log x.$$
Then
$$\left| \int_1^x \frac{t - [t]}{t} dt \right| = O(\log x).$$

. .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3 $1 \le \log x$. Then $1 = O(\log x)$.

$$\sum_{1 \le n \le x} \log n = x \log x - x + 1 + \log x([x] - x) + \int_{1}^{x} \frac{t - [t]}{t} dt.$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$|\log x([x] - x)| \le \log x. \text{ Then } \log x([x] - x) = O(\log x).$$

$$\left|\int_{1}^{x} \frac{t-[t]}{t} \,\mathrm{d}t\right| \leq \int_{1}^{x} \frac{1}{t} \,\mathrm{d}t = \log x.$$

. .

Then

$$\left|\int_{1}^{x} \frac{t-[t]}{t} \, \mathrm{d}t\right| = O(\log x).$$

3 $1 \le \log x$. Then $1 = O(\log x)$.

$$\sum_{1 \le n \le x} \log n = x \log x - x + O(\log x).$$

n

For Re s > 1 and $N \ge 2$, using integration by parts:

$$\begin{split} \sum_{n=1}^{N} \frac{1}{n^{s}} &= \int_{1^{-}}^{N^{+}} \frac{1}{t^{s}} \mathrm{d}[t] \\ &= \frac{[N^{+}]}{N^{s}} - \frac{[1^{-}]}{1^{s}} + s \int_{1}^{N} \frac{[t]}{t^{s+1}} \mathrm{d}t \\ &= \frac{N}{N^{s}} + s \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t + s \int_{1}^{N} \frac{t}{t^{s+1}} \mathrm{d}t \\ &= N^{1-s} + s \int_{1}^{N} t^{-s} \mathrm{d}t + s \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t \\ &= N^{1-s} + s \left(\frac{N^{1-s}}{1-s} - \frac{1}{1-s}\right) + s \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t \\ &= \frac{N^{1-s}}{1-s} + 1 + \frac{1}{s-1} + s \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\sum_{n=1}^{N} \frac{1}{n^{s}} = \frac{N^{1-s}}{1-s} + 1 + \frac{1}{s-1} + s \int_{1}^{N} \frac{[t]-t}{t^{s+1}} \mathrm{d}t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sum_{n=1}^{N} \frac{1}{n^{s}} = \frac{N^{1-s}}{1-s} + 1 + \frac{1}{s-1} + s \int_{1}^{N} \frac{[t]-t}{t^{s+1}} \mathrm{d}t$$

Then, as $N o \infty$, we have for $\operatorname{Re} s > 1$,

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

$$\sum_{n=1}^{N} \frac{1}{n^{s}} = \frac{N^{1-s}}{1-s} + 1 + \frac{1}{s-1} + s \int_{1}^{N} \frac{[t]-t}{t^{s+1}} \mathrm{d}t$$

Then, as $N
ightarrow \infty$, we have for $\operatorname{Re} s > 1$,

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

The function

 $s\mapsto \int_1^\infty rac{[t]-t}{t^{s+1}}\mathrm{d}t$ is an analytic function in $\operatorname{Re} s>0,$

Morera's theorem

The function f_N is analytic in Re s > 0:

$$f_N(s) = \int_1^N \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

The function f_N is analytic in Re s > 0:

$$f_N(s) = \int_1^N \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

Also, in compacts of $\operatorname{Re} s > 0$,

$$\left|\int_{1}^{N} \frac{[t]-t}{t^{s+1}} \mathrm{d}t - \int_{1}^{\infty} \frac{[t]-t}{t^{s+1}} \mathrm{d}t\right| \leq \left|\int_{N}^{\infty} \frac{1}{t^{s+1}} \mathrm{d}t\right| \leq \int_{N}^{\infty} \frac{1}{t^{\sigma_{0}+1}} \mathrm{d}t \to 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

as $N o \infty.$

The function f_N is analytic in Re s > 0:

$$f_N(s) = \int_1^N \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

Also, in compacts of $\operatorname{Re} s > 0$,

$$\left| \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t - \int_{1}^{\infty} \frac{[t] - t}{t^{s+1}} \mathrm{d}t \right| \le \left| \int_{N}^{\infty} \frac{1}{t^{s+1}} \mathrm{d}t \right| \le \int_{N}^{\infty} \frac{1}{t^{\sigma_{0}+1}} \mathrm{d}t \to 0,$$

as $N \to \infty$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Therefore, as $N
ightarrow \infty$

The function f_N is analytic in Re s > 0:

$$f_N(s) = \int_1^N \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

Also, in compacts of $\operatorname{Re} s > 0$,

$$\left| \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t - \int_{1}^{\infty} \frac{[t] - t}{t^{s+1}} \mathrm{d}t \right| \le \left| \int_{N}^{\infty} \frac{1}{t^{s+1}} \mathrm{d}t \right| \le \int_{N}^{\infty} \frac{1}{t^{\sigma_{0}+1}} \mathrm{d}t \to 0,$$

Therefore, as $N
ightarrow \infty$

$$f_N(s) \rightarrow \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t,$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The function f_N is analytic in Re s > 0:

$$f_N(s) = \int_1^N \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

Also, in compacts of $\operatorname{Re} s > 0$,

$$\left| \int_{1}^{N} \frac{[t] - t}{t^{s+1}} \mathrm{d}t - \int_{1}^{\infty} \frac{[t] - t}{t^{s+1}} \mathrm{d}t \right| \le \left| \int_{N}^{\infty} \frac{1}{t^{s+1}} \mathrm{d}t \right| \le \int_{N}^{\infty} \frac{1}{t^{\sigma_{0}+1}} \mathrm{d}t \to 0,$$

as $N \to \infty$.

Therefore, as $N
ightarrow \infty$

$$f_N(s) \rightarrow \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t,$$

uniformly in compacts of $\operatorname{Re} s > 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

When $\operatorname{Re} s > 1$,

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

When $\operatorname{Re} s > 1$,

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t]-t}{t^{s+1}} \mathrm{d}t.$$

Therefore, the right-hand side is an analytic continuation of $\zeta(s)$ in $\operatorname{Re} s > 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

We have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}$$

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

We have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\zeta(s) = \prod_p \left(1 - rac{1}{p^s}
ight)^{-1}$$

Then, we have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s}\right).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

L The Riemann zeta-function in $\operatorname{Re} s = 1$

We have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then, we have uniformly in compacts of Re s > 1:

$$\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s}\right).$$

Taking derivative, we have

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

L The Riemann zeta-function in $\operatorname{Re} s = 1$

We have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then, we have uniformly in compacts of Re s > 1:

$$\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s}\right).$$

Taking derivative, we have

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Note that for $\operatorname{Re} s > 1$:

$$\sum_p \left| rac{\log p}{p^s - 1}
ight| \leq \sum_p rac{\log p}{p^\sigma - 1} = -rac{\zeta'}{\zeta}(\sigma) < \infty.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Note that for $\operatorname{Re} s > 1$:

$$\sum_p \left| rac{\log p}{p^s - 1}
ight| \leq \sum_p rac{\log p}{p^\sigma - 1} = -rac{\zeta'}{\zeta}(\sigma) < \infty.$$

Then, we can reorder the series:

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

Note that for $\operatorname{Re} s > 1$:

$$\frac{1}{p^{s}-1} = \frac{p^{-s}}{1-p^{-s}} = p^{-s} \sum_{k=0}^{\infty} (p^{-s})^{k} = \sum_{k=1}^{\infty} (p^{-s})^{k}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

Note that for $\operatorname{Re} s > 1$:

$$\frac{1}{p^{s}-1} = \frac{p^{-s}}{1-p^{-s}} = p^{-s} \sum_{k=0}^{\infty} (p^{-s})^{k} = \sum_{k=1}^{\infty} (p^{-s})^{k}.$$

Therefore

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \sum_{k=1}^{\infty} \frac{\log p}{p^{sk}}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Therefore, we can write, for $\operatorname{Re} s > 1$:

$$-rac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} rac{\Lambda(n)}{n^s},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ
L The Riemann zeta-function in $\operatorname{Re} s = 1$

Therefore, we can write, for $\operatorname{Re} s > 1$:

$$-rac{\zeta'}{\zeta}(s)=\sum_{n=1}^{\infty}rac{\Lambda(n)}{n^s},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $\Lambda(n)$ is the von Mangoldt function defined as:

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Therefore, we can write, for $\operatorname{Re} s > 1$:

$$-rac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} rac{\Lambda(n)}{n^s},$$

where $\Lambda(n)$ is the von Mangoldt function defined as:

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{if } n \neq p^k. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, we can write, for $\operatorname{Re} s > 1$:

$$-rac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} rac{\Lambda(n)}{n^s}$$

where $\Lambda(n)$ is the von Mangoldt function defined as:

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{if } n \neq p^k. \end{cases}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Note that this series converges absolutely for $\operatorname{Re} s > 1$.

Theorem (Hadamard, de la Vallée -Poussin 1896)

For $t \in \mathbb{R}$, we have $\zeta(1 + it) \neq 0$.

If $t \neq 0$ it is true. Assume $t \neq 0$. Suppose that $s_0 = 1 + it_0$ $(t_0 \neq 0)$ is a zero of order $m \geq 1$ of $\zeta(s)$.

Theorem (Hadamard, de la Vallée -Poussin 1896)

For $t \in \mathbb{R}$, we have $\zeta(1 + it) \neq 0$.

If $t \neq 0$ it is true. Assume $t \neq 0$. Suppose that $s_0 = 1 + it_0$ ($t_0 \neq 0$) is a zero of order $m \ge 1$ of $\zeta(s)$. Then

$$\zeta(s) = (s - s_0)^m A(s), \quad A(s_0) \neq 0;$$

Theorem (Hadamard, de la Vallée -Poussin 1896)

For $t \in \mathbb{R}$, we have $\zeta(1 + it) \neq 0$.

If $t \neq 0$ it is true. Assume $t \neq 0$. Suppose that $s_0 = 1 + it_0$ ($t_0 \neq 0$) is a zero of order $m \ge 1$ of $\zeta(s)$. Then

$$\zeta(s)=(s-s_0)^mA(s), \quad A(s_0)\neq 0;$$

$$rac{\zeta'}{\zeta}(s) = rac{m}{s-s_0} + rac{\mathcal{A}'(s)}{\mathcal{A}(s)}$$
 around s_0

Theorem (Hadamard, de la Vallée -Poussin 1896)

For $t \in \mathbb{R}$, we have $\zeta(1 + it) \neq 0$.

If $t \neq 0$ it is true. Assume $t \neq 0$. Suppose that $s_0 = 1 + it_0$ ($t_0 \neq 0$) is a zero of order $m \ge 1$ of $\zeta(s)$. Then

$$\zeta(s)=(s-s_0)^mA(s), \quad A(s_0)\neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{m}{s - s_0} + \frac{A'(s)}{A(s)} \text{ around } s_0.$$

$$rac{\zeta'}{\zeta}(\sigma+it_0)=rac{m}{\sigma-1}+rac{\mathcal{A}'(\sigma+it_0)}{\mathcal{A}(\sigma+it_0)} \ \ \, ext{around} \ \ \, \sigma>1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\zeta(s)$ has a unique simple pole in s = 1. Then,

$\zeta(s)$ has a unique simple pole in s = 1. Then,

$$\zeta(s)=rac{B(s)}{s-1}, \hspace{1em} B(1)
eq 0;$$

 $\zeta(s)$ has a unique simple pole in s = 1. Then,

$$\zeta(s) = rac{B(s)}{s-1}, \quad B(1)
eq 0;$$

$$rac{\zeta'}{\zeta}(s)=rac{B'(s)}{B(s)}-rac{1}{s-1}$$
 around 1.

 $\zeta(s)$ has a unique simple pole in s = 1. Then,

$$\zeta(s) = rac{B(s)}{s-1}, \quad B(1)
eq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{B'(s)}{B(s)} - \frac{1}{s-1} \text{ around } 1.$$
$$\frac{\zeta'}{\zeta}(\sigma) = \frac{B'(\sigma)}{B(\sigma)} - \frac{1}{\sigma-1} \text{ around } \sigma > 1.$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$\zeta(s)$ is analytic in $s_2 = 1 + 2it_0$.

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.
1 If $s = 1 + 2it_0$ is a zero (of order $k \ge 1$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$\begin{split} \zeta(s) \text{ is analytic in } s_2 &= 1 + 2it_0. \\ & \blacksquare \text{ If } s = 1 + 2it_0 \text{ is a zero (of order } k \geq 1) \\ & \zeta(s) &= (s - s_2)^k C(s), \quad C(s_2) \neq 0; \end{split}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$\begin{aligned} \zeta(s) \text{ is analytic in } s_2 &= 1 + 2it_0. \\ 1 \quad \text{If } s &= 1 + 2it_0 \text{ is a zero (of order } k \geq 1) \\ \zeta(s) &= (s - s_2)^k C(s), \quad C(s_2) \neq 0; \\ \zeta' & k & C'(s) \end{aligned}$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s-s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

L The Riemann zeta-function in $\operatorname{Re} s = 1$

ζ(

s) is analytic in
$$s_2 = 1 + 2it_0$$
.
If $s = 1 + 2it_0$ is a zero (of order $k \ge 1$)
 $\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \ne 0;$
 $\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)} \text{ around } s_2.$
 $\frac{\zeta'}{\zeta}(\sigma + 2it_0) = \frac{k}{\sigma - 1} + \frac{C'(\sigma + 2it_0)}{C(\sigma + 2it_0)} \text{ around } \sigma > 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

L The Riemann zeta-function in $\operatorname{Re} s = 1$

$$\begin{aligned} \zeta(s) \text{ is analytic in } s_2 &= 1 + 2it_0. \end{aligned}$$

$$If s = 1 + 2it_0 \text{ is a zero (of order } k \geq 1) \\ \zeta(s) &= (s - s_2)^k C(s), \quad C(s_2) \neq 0; \end{aligned}$$

$$\frac{\zeta'}{\zeta}(s) &= \frac{k}{s - s_2} + \frac{C'(s)}{C(s)} \text{ around } s_2. \end{aligned}$$

$$\frac{\zeta'}{\zeta}(\sigma + 2it_0) &= \frac{k}{\sigma - 1} + \frac{C'(\sigma + 2it_0)}{C(\sigma + 2it_0)} \text{ around } \sigma > 1. \end{aligned}$$

2 If $s = 1 + 2it_0$ is not a zero, consider k = 0 and $C = \zeta$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it_0) = \frac{m}{\sigma-1} + \frac{A'(\sigma+it_0)}{A(\sigma+it_0)}; \qquad \frac{\zeta'}{\zeta}(\sigma) = \frac{B'(\sigma)}{B(\sigma)} - \frac{1}{\sigma-1}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it_0)=\frac{m}{\sigma-1}+\frac{A'(\sigma+it_0)}{A(\sigma+it_0)};\qquad \frac{\zeta'}{\zeta}(\sigma)=\frac{B'(\sigma)}{B(\sigma)}-\frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$\frac{\zeta'}{\zeta}(\sigma+2it_0)=\frac{k}{\sigma-1}+\frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}.$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it_0) = \frac{m}{\sigma-1} + \frac{A'(\sigma+it_0)}{A(\sigma+it_0)}; \qquad \frac{\zeta'}{\zeta}(\sigma) = \frac{B'(\sigma)}{B(\sigma)} - \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$\frac{\zeta'}{\zeta}(\sigma+2it_0) = \frac{k}{\sigma-1} + \frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}.$$

Re $\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma+it_0) + \frac{\zeta'}{\zeta}(\sigma+2it_0)\right\} = \frac{-3+4m+k}{\sigma-1}$ +bounded.

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it_0) = \frac{m}{\sigma-1} + \frac{A'(\sigma+it_0)}{A(\sigma+it_0)}; \qquad \frac{\zeta'}{\zeta}(\sigma) = \frac{B'(\sigma)}{B(\sigma)} - \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$\frac{\zeta'}{\zeta}(\sigma+2it_0) = \frac{k}{\sigma-1} + \frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}.$$

Re $\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma+it_0) + \frac{\zeta'}{\zeta}(\sigma+2it_0)\right\} = \frac{-3+4m+k}{\sigma-1}$ +bounded.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Then, when $\sigma \rightarrow 1^+$, we have that

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it_0) = \frac{m}{\sigma-1} + \frac{A'(\sigma+it_0)}{A(\sigma+it_0)}; \qquad \frac{\zeta'}{\zeta}(\sigma) = \frac{B'(\sigma)}{B(\sigma)} - \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$\frac{\zeta'}{\zeta}(\sigma+2it_0) = \frac{k}{\sigma-1} + \frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}.$$

Re $\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma+it_0) + \frac{\zeta'}{\zeta}(\sigma+2it_0)\right\} = \frac{-3+4m+k}{\sigma-1}$ +bounded.

Then, when $\sigma \rightarrow 1^+$, we have that

$$\operatorname{Re}\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma + it_0) + \frac{\zeta'}{\zeta}(\sigma + 2it_0)\right\} > 0$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Lemma

For any $\theta \in \mathbb{R}$ we have: $3 + 4\cos\theta + \cos 2\theta \ge 0$.

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Lemma

For any
$$\theta \in \mathbb{R}$$
 we have: $3 + 4\cos\theta + \cos 2\theta \ge 0$.

Demostración.

$$3 + 4\cos\theta + \cos 2\theta = 3 + 4\cos\theta + 2\cos^2\theta - 1$$

= $2\cos^2\theta + 4\cos\theta + 2 = 2(\cos\theta + 1)^2 \ge 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Recall that

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Recall that

$$-\frac{\zeta'}{\zeta}(s)=\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^s}.$$

Then

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\operatorname{Re}\left\{\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{\sigma+it}}\right\}$$

The Riemann zeta-function in $\operatorname{Re} s = 1$

Recall that $-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$ Then $\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\operatorname{Re}\left\{\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma+it}}\right\}$ $\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \operatorname{Re}\left\{\frac{1}{n^{it}}\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Since, for $\sigma > 1$:

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n),$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Since, for $\sigma > 1$:

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n),$$

one can see that

$$\operatorname{Re}\left\{3\frac{\zeta'}{\zeta}(\sigma)+4\frac{\zeta'}{\zeta}(\sigma+it_0)+\frac{\zeta'}{\zeta}(\sigma+2it_0)\right\}$$

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Since, for $\sigma > 1$:

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n),$$

one can see that

$$\operatorname{Re}\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma + it_0) + \frac{\zeta'}{\zeta}(\sigma + 2it_0)\right\}$$
$$= -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \left(3 + 4\cos(t_0\log n) + \cos(2t_0\log n)\right)$$

Class 2: The Riemann zeta-function in Re s > 0

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Since, for $\sigma > 1$:

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n),$$

one can see that

$$\operatorname{Re}\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma + it_0) + \frac{\zeta'}{\zeta}(\sigma + 2it_0)\right\}$$
$$= -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \left(3 + 4\cos(t_0\log n) + \cos(2t_0\log n)\right)$$
$$< 0.$$

L The Riemann zeta-function in $\operatorname{Re} s = 1$

Since, for $\sigma > 1$:

$$\operatorname{Re}\left\{\frac{\zeta'}{\zeta}(s)\right\} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n),$$

one can see that

$$\operatorname{Re}\left\{3\frac{\zeta'}{\zeta}(\sigma) + 4\frac{\zeta'}{\zeta}(\sigma + it_0) + \frac{\zeta'}{\zeta}(\sigma + 2it_0)\right\}$$
$$= -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \left(3 + 4\cos(t_0\log n) + \cos(2t_0\log n)\right)$$

 \leq 0.

