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¢(s) # 0 for Res > 1.
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n(s)
(s) = o1
o0 oo
1 1n+1
1_2152722 T for Res>1
n
=1 n=1

Note that (1) log 2.
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LAnalytic continuation of ¢(s)

Therefore we have for Res > 1:

o) = 71

(1-217))y — =) *——— for Res>1.
Note that 7(1) = log 2.
For Res > 0, define the meromorphic function

F(s) = lﬁ(;)_

F has a pole (simple) in Res > 0 at the point s = 1.

The function F(s) is an analytic continuation (meromorphic
extension) of ((s) in Res > 0.
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LAnalytic continuation of ¢(s)

We will call this F(s) as ((s), because the extension is unique.
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3 a,,f(n):/_ F(£) dA(t)

y<n<x Y
| a0 = A - A6 - [ FAmar
y- y-



Class 2: The Riemann zeta-function in Re s

L ntegration by parts




Class 2: The Riemann zeta-function in Res > 0

L ntegration by parts

For example

xT

Z Iogn:/ log(t) d[t]

1<n<x 1=

= log xT[xT] — log(17)[17] - /lx [i] dt

zlogx[x]—/lx[t]t_tdt—/::dt

:xlogx+|ogx([x]—x)+/lxt_t[t]dt—(x—l)

“t— |t
=x|ogx—x+1+logx([x]—x)+/t“dt_
1
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Let f, g be two functions such that g(x) > 0 for x large. Then we
write

f=0(g),
if there is M > 0 such that |f(x)| < M g(x) for x large.
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1<n<x
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1 t 1 t

/ t—1t dt‘ = O(log x).

1 t

1 <logx. Then 1 = O(log x).
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1

1<n<x

! log x([x] — x)} < log x. Then log x([x] — x) = O(log x).
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1 t 1 t

/ t—1t dt‘ = O(log x).

1 t

1 <logx. Then 1 = O(log x).

Then

Z log n = xlog x — x + O(log x).
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For Res > 1 and N > 2, using integration by parts:

v, M
I\/5_15+S/1t dt

N Nt -t Nt
:I\/s+s/1 PENE] dH's/l ts+1dt

N N
t|—t
:N15+s/ tsdt+s/ 1] dt
1 1

t5+1

N1—s 1 Nt -t
— N1-s —
=N +s<l_s 1_5>+s/1 P dt

N1-s 1 Nt -t
= +1+S+S/1 prE] dt.
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1 N-s 1 NTt] -t
— = 1 dt
Zns 1—5+ +s—1+5/1 tstl

n=1
Then, as N — oo, we have for Res > 1,

B 1 ] -t
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1 N-s 1 NTt] -t
— = 1 dt
Zns 1—5+ +s—1+5/1 tstl

n=1
Then, as N — oo, we have for Res > 1,

B 1 ] -t
((s)—1+s_1—|—s/1 pr=s] dt.

The function

< [t] -t . . .
S [1] dt is an analytic function in Res > 0,
1 t5+1

Morera’s theorem
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When Res > 1,

1 [t —t
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When Res > 1,

s—1 terl

IR R B
((s)=1+ +/1 dt.

Therefore, the right-hand side is an analytic continuation of ((s) in
Res > 0.
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log p logp ('
zp: o1 Szpz_l——g(a)<oo.



Class 2: The Riemann zeta-function in Res > 0

L_The Riemann zeta-function in Re s = 1

Note that for Res > 1:

log p log p ¢’

Then, we can reorder the series:
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1 p—°

) = )

Therefore
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L_The Riemann zeta-function in Re s = 1

Therefore, we can write, for Res > 1:

where A(n) is the von Mangoldt function defined as:

logp if n=pk

A =
() 0 if n# pk.

Note that this series converges absolutely for Res > 1.
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Theorem (Hadamard, de la Vallée -Poussin 1896)
For t € R, we have ((1+ it) # 0.

If t £ 0 it is true. Assume t £ 0. Suppose that sp = 1 + ity
(to # 0) is a zero of order m > 1 of ((s).
Then

((s) = (s = 50)"A(s), Also) #O0;

i(s) = TSO /j\((ss)) around sp.
! A/(U + ito)

around o > 1.

¢ m
E(G—i_lto) o1 * A(o + itp)
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CI = B,(S) — aroun
Z(S) ~Bls) 5= d 1.

around o > 1.
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¢(s) is analytic in s, = 1 + 2ity.
If s =1+ 2ity is a zero (of order k > 1)

((s) = (s = 2)*C(s), C(s2) #0;

!/ k /!
CC(S) = + i'((ss)) around sp.
-
/! / .
C—(a + 2ity) = k C'(o + 2ito) around o > 1.

¢ oc—1 C(U + 2it0)

If s =1+ 2ity is not a zero, consider k =0 and C = (.
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L_The Riemann zeta-function in Re s = 1

Resumming: around ¢ > 1
With m > 1 we have

¢! oy om Ao +it) ¢,
E(J_Hto)_ 0'—1+ A(o + ity) ' Z(U)_ B(c) o-1

With kK > 0 we have

¢ : k C'(o + 2itg)
> (o + 2ity) = .
Lo+ 2m) = T+ o 2m)

Re {32/(a)+4g(a+ito)+g(a+2ito)} = M—I—bounded.
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L_The Riemann zeta-function in Re s = 1

Resumming: around ¢ > 1
With m > 1 we have

¢! oy om Ao +it) ¢,
E(J_Hto)_ 0'—1+ A(o + ity) ' Z(U)_ B(c) o-1

With kK > 0 we have

¢ : k C'(o + 2itg)
> (o + 2ity) = .
Lo+ 2m) = T+ o 2m)

+bounded.
o—1

fte {3§(U)+4g(a+it0)+g(0+2ito)} _ 3 FAm+k

Then, when ¢ — 17, we have that
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L_The Riemann zeta-function in Re s = 1

Resumming: around ¢ > 1
With m > 1 we have

¢! oy om Ao +it) ¢,
E(J+,t0)_a—1+A(a+ito)' Z(U)_B(J) o—1

With kK > 0 we have

¢ : k C'(o + 2itg)
> (o + 2ity) = .
Lo+ 2m) = T+ o 2m)

Re { CC( )+4i(0+ito)+gc(0+2ito)} Z%’q—i_k—l—bounded.

Then, when ¢ — 17, we have that

!

Re{ 30 1480+ i) + &

R R C(o+2ito)}>0
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L_The Riemann zeta-function in Re s = 1

Lemma

For any 6 € R we have: 3+ 4 cosf + cos26 > 0.

Demostracion.

3+4cosf+ cos20 =3+ 4cosh +2cos>f — 1
—=2cos?f +4cosf +2 =2(cosf +1)> > 0.

Ol
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Recall that
¢\ x=An)
C (S) - ; ns
Then
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L_The Riemann zeta-function in Re s = 1

Recall that / -
_E_(s) — Z /\’SZ)
n=1
Then .
Re {CC(S)} = —Re { Z ,/,\a(:/)t }
n=1
) 0
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Req >=(s)p = — n—:cos(tlogn),
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L_The Riemann zeta-function in Re s = 1

Since, for o > 1;

Re{cl(s)} =— 3 A—n)cos(tlog n),
C n=1 n’

one can see that

Re{ CC( )+4C<(0+ito)+i(0+2ito)}
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Since, for o > 1;

Re {g(s)} =— i An:) cos(t log n),

one can see that

C’ ns ¢ :
Re{ C( o)+ C(0'+/to)—|—C(0+2/to)}

nO'

= — Z Aln) (3 + 4 cos(tg log n) + cos(2ty log n))
n=1

<0.
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