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Class 2: The Riemann zeta-function in Re s > 0

Review

Review:

1 For Re s > 1 we define the Riemann zeta-function ζ(s) by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
.

2 Uniformly in compacts of Re s > 1, we have that

N∑
n=1

1

ns
→ ζ(s), as N →∞.

3 ζ(s) 6= 0 for Re s > 1.
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Analytic continuation of ζ(s)

For Re s > 1 we have

ζ(s)− η(s) =
∞∑
n=1

1

ns
−
∞∑
n=1

(−1)n+1

ns

=
∞∑
n=1

1− (−1)n+1

ns

=
∑

n: even

2

ns

=
∞∑
k=1

2

(2k)s

= 21−s
∞∑
k=1

1

ks
= 21−sζ(s)
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Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

Therefore we have for Re s > 1:

ζ(s) =
η(s)

1− 21−s
.

1 (1− 21−s)
∞∑
n=1

1

ns
=
∞∑
n=1

(−1)n+1

ns
, for Re s > 1.

2 Note that η(1) = log 2.

3 For Re s > 0, define the meromorphic function

F (s) =
η(s)

1− 21−s
.

F has a pole (simple) in Re s > 0 at the point s = 1.

4 The function F (s) is an analytic continuation (meromorphic
extension) of ζ(s) in Re s > 0.



Class 2: The Riemann zeta-function in Re s > 0

Analytic continuation of ζ(s)

We will call this F (s) as ζ(s), because the extension is unique.
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Integration by parts

In many applications in Number Theory, it will be good to change
our world: ”from discrete world to continuous world, considering x

so big.”

1

∑
1≤n≤x

1 = [x ] = x + [x ]− x = x +
(
[x ]− x

)
.

2

∑
1≤n≤x

log n =?
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Integration by parts

Theorem (Abel’s identity)

Let an be a sequence of complex numbers., and define the function
A : (0,∞)→ C

A(x) =
∑
n≤x

an,

and A(x) = 0 if 0 < x < 1. Assume f has a continuous derivative
on the interval [y , x ] where 0 < y < x. Then we have∑

y<n≤x
anf (n) = A(x)f (x)− A(y)f (y)−

∫ x

y
A(t)f ′(t)dt
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Integration by parts

For example

∑
1≤n≤x

log n =

∫ x+

1−
log(t) d[t]

= log x+[x+]− log(1−)[1−]−
∫ x

1

[t]

t
dt

= log x [x ]−
∫ x

1

[t]− t

t
dt −

∫ x

1

t

t
dt

= x log x + log x([x ]− x) +

∫ x

1

t − [t]

t
dt − (x − 1)

= x log x − x + 1 + log x([x ]− x) +

∫ x

1

t − [t]

t
dt.
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Integration by parts

Let f , g be two functions such that g(x) ≥ 0 for x large. Then we
write

f = O(g),

if there is M > 0 such that |f (x)| ≤ M g(x) for x large.
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Integration by parts

∑
1≤n≤x

log n = x log x − x + 1 + log x([x ]− x) +

∫ x

1

t − [t]

t
dt.

1
∣∣ log x([x ]− x)

∣∣ ≤ log x . Then log x([x ]− x) = O(log x).

2 ∣∣∣∣ ∫ x

1

t − [t]

t
dt

∣∣∣∣ ≤ ∫ x

1

1

t
dt = log x .

Then ∣∣∣∣ ∫ x

1

t − [t]

t
dt

∣∣∣∣ = O(log x).

3 1 ≤ log x . Then 1 = O(log x).∑
1≤n≤x

log n = x log x − x + O(log x).
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N∑
n=1

1

ns
=

∫ N+

1−

1

ts
d[t]
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Morera’s theorem
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1
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When Re s > 1,

ζ(s) = 1 +
1

s − 1
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∫ ∞
1

[t]− t
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Therefore, the right-hand side is an analytic continuation of ζ(s) in
Re s > 0.
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We have uniformly in compacts of Re s > 1:

ζ(s) =
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(
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ps

)−1

Then, we have uniformly in compacts of Re s > 1:
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Taking derivative, we have
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(s) =
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log p

ps − 1
.
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.
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Therefore, we can write, for Re s > 1:
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′

ζ
(s) =

∞∑
n=1

Λ(n)

ns
,

where Λ(n) is the von Mangoldt function defined as:

Λ(n) =

 log p if n = pk

0 if n 6= pk .

Note that this series converges absolutely for Re s > 1.
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The Riemann zeta-function in Re s = 1

Theorem (Hadamard, de la Vallée -Poussin 1896)

For t ∈ R, we have ζ(1 + it) 6= 0.

If t 6= 0 it is true. Assume t 6= 0. Suppose that s0 = 1 + it0
(t0 6= 0) is a zero of order m ≥ 1 of ζ(s).

Then
ζ(s) = (s − s0)mA(s), A(s0) 6= 0;

ζ ′

ζ
(s) =

m

s − s0
+

A′(s)

A(s)
around s0.

ζ ′

ζ
(σ + it0) =

m

σ − 1
+

A′(σ + it0)

A(σ + it0)
around σ > 1.
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ζ(s) has a unique simple pole in s = 1. Then,

ζ(s) =
B(s)

s − 1
, B(1) 6= 0;

ζ ′

ζ
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B(s)
− 1

s − 1
around 1.

ζ ′

ζ
(σ) =

B ′(σ)

B(σ)
− 1

σ − 1
around σ > 1.
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ζ(s) is analytic in s2 = 1 + 2it0.

1 If s = 1 + 2it0 is a zero (of order k ≥ 1)

ζ(s) = (s − s2)kC (s), C (s2) 6= 0;

ζ ′

ζ
(s) =

k

s − s2
+

C ′(s)

C (s)
around s2.

ζ ′

ζ
(σ + 2it0) =

k

σ − 1
+

C ′(σ + 2it0)

C (σ + 2it0)
around σ > 1.

2 If s = 1 + 2it0 is not a zero, consider k = 0 and C = ζ.
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Lemma

For any θ ∈ R we have: 3 + 4 cos θ + cos 2θ ≥ 0.

Demostración.

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1

= 2 cos2 θ + 4 cos θ + 2 = 2(cos θ + 1)2 ≥ 0.
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