
Class 4: The Riemann ξ-function and the zeros of ζ(s)

Class 4: The Riemann ξ-function
and the zeros of ζ(s)

Andrés Chirre
Norwegian University of Science and Technology - NTNU

13-September-2021



Class 4: The Riemann ξ-function and the zeros of ζ(s)

Review

Review:

1 For Re s > 1 we define the Riemann zeta-function ζ(s) by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
.

2 For Re s > 0,

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.
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Review

Let

ω(x) =
∞∑
n=1

e−πxn
2
, for x > 0.

Then, for Re s > 1:

π−s/2 Γ

(
s

2

)
ζ(s) =

1

s − 1
− 1

s
+

∫ ∞
1

ω(x)
(
x s/2 + x (1−s)/2

) dx
x
.

It gives an analytic continuation (meromorphic) of ζ(s) in C. In
particular:

π−s/2 Γ

(
s

2

)
ζ(s) = π−(1−s)/2 Γ

(
1− s

2

)
ζ(1− s).
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Review

The Riemann ξ-function is an entire function defined as:

ξ(s) =
1

2
s(s − 1)π−s/2 Γ

(
s

2

)
ζ(s),

and ξ(s) = ξ(1− s).

The functions ξ(s) and ζ(s) have the same zeros in 0 < Re s < 1.
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The Riemann Hypothesis - R.H.

Conjecture (18 November 1859)

All non-trivial zeros of ζ(s) have real part equal to 1/2.
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Theorem (Dave Platt and Tim Trudgian, 21 April 2020)

The Riemann Hypothesis is true up to height 3000175332800. That
is, the lowest 12363153437138 non-trivial zeros ρ have Re ρ = 1/2.
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The order of ξ(s)

1 We say that f is an entire function of finite order if there is
α > 0 such that

|f (z)| ≤ M e |z|
α
,

for some M > 0 and for all z ∈ C.

2 The infimum of α′s that satisfy the above expression is called
order of f .

3 The function f (z) = ez has order 1.

4 The function ξ has order 1.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

The order of ξ(s)

1 We say that f is an entire function of finite order if there is
α > 0 such that

|f (z)| ≤ M e |z|
α
,

for some M > 0 and for all z ∈ C.

2 The infimum of α′s that satisfy the above expression is called
order of f .

3 The function f (z) = ez has order 1.

4 The function ξ has order 1.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

The order of ξ(s)

1 We say that f is an entire function of finite order if there is
α > 0 such that

|f (z)| ≤ M e |z|
α
,

for some M > 0 and for all z ∈ C.

2 The infimum of α′s that satisfy the above expression is called
order of f .

3 The function f (z) = ez has order 1.

4 The function ξ has order 1.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

The order of ξ(s)

1 We say that f is an entire function of finite order if there is
α > 0 such that

|f (z)| ≤ M e |z|
α
,

for some M > 0 and for all z ∈ C.

2 The infimum of α′s that satisfy the above expression is called
order of f .

3 The function f (z) = ez has order 1.

4 The function ξ has order 1.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

ξ(s) =
1

2
s(s − 1)π−s/2 Γ

(
s

2

)
ζ(s).

Assume that s is no a zero of ξ and |s| ≥ 2.

We want to prove that

log |ξ(s)| � |s| log |s|.

Then, assume that Re s ≥ 1
2 :

1 log |12 | ≤ |s|.
2 log |s|.
3 log |s − 1| ≤ log(|s|+ 1) ≤ 2 log |s|.
4 log |π−s/2| = log π−Re s/2 � |s|.
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We want to bound log

∣∣∣∣Γ( s

2

)∣∣∣∣ in |s| ≥ 2 and Re s ≥ 1
2 .

Stirling’s formula:
For a fixed δ > 0 and −π + δ < arg(s) < π − δ, show that

log Γ(s) =

(
s − 1

2

)
log s − s +

1

2
log 2π + O(|s|−1),

as |s| → ∞. Then

log

∣∣∣∣Γ( s

2

)∣∣∣∣� |s| log |s|.
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We want to bound log |ζ(s)| in |s| ≥ 2 and Re s ≥ 1
2 .

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.

Therefore
|ζ(s)| � |s|.

Then
log |ζ(s)| � log |s|.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

We want to bound log |ζ(s)| in |s| ≥ 2 and Re s ≥ 1
2 .

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.

Therefore
|ζ(s)| � |s|.

Then
log |ζ(s)| � log |s|.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

We want to bound log |ζ(s)| in |s| ≥ 2 and Re s ≥ 1
2 .

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.

Therefore
|ζ(s)| � |s|.

Then
log |ζ(s)| � log |s|.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

We want to bound log |ζ(s)| in |s| ≥ 2 and Re s ≥ 1
2 .

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.

Therefore
|ζ(s)| � |s|.

Then
log |ζ(s)| � log |s|.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

We want to bound log |ζ(s)| in |s| ≥ 2 and Re s ≥ 1
2 .

ζ(s) = 1 +
1

s − 1
+ s

∫ ∞
1

[t]− t

ts+1
dt.

Therefore
|ζ(s)| � |s|.

Then
log |ζ(s)| � log |s|.



Class 4: The Riemann ξ-function and the zeros of ζ(s)

The order of ξ(s)

We conclude that
log |ξ(s)| � |s| log |s|.

Therefore ξ has order at most 1.
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ξ(s) =
1

2
s(s − 1)π−s/2 Γ

(
s

2

)
ζ(s).

Assume s = σ, σ ≥ 1 so large.

1 log |12 | = O(1).

2 log |σ| = O(log σ).

3 log |σ − 1| = O(log σ).

4 log |π−σ/2| = O(σ).

5 log |ζ(σ)| = O(log σ).
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We want to estimate log

∣∣∣∣Γ(σ2
)∣∣∣∣.

Stirling’s formula:
For a fixed δ > 0 and −π + δ < arg(s) < π − δ, show that

log Γ(s) =

(
s − 1

2

)
log s − s +

1

2
log 2π + O(|s|−1),

as |s| → ∞. Then

log

∣∣∣∣Γ(σ2
)∣∣∣∣ =

σ log σ

2
+ O(σ).
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The order of ξ(s)

We conclude that

log |ξ(σ)| =
σ log σ

2
+ O(σ),

as σ →∞.

Therefore ξ is an entire function of order 1.
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The order of ξ(s)

The theory of entire functions give us:

1 Hadamard product:

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ.

2 For any ε > 0, ∑
ρ

1

|ρ|1+ε
<∞.

3 ξ(s) has infinity zeros.

4 ∑
ρ

1

|ρ|
=∞.
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The order of ξ(s)

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ.

Computing A and B:

A = log ξ(0) = − log 2,

B = −γ
2
− 1 +

log 4π

2
= −0.023...,

where γ is the Euler’s constant.

γ = ĺım
N→∞

N∑
n=1

1

n
− logN.
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Lower bound for zeros of ζ(s)
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ξ
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∑
ρ
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1

s − ρ
+
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.

We know that ∑
ρ

1

|ρ|
=∞,

but with a certain order the sum (without modulus) converges. In
fact, summing over
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{
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ρ
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=

1

2

(
1

ρ
+

1

ρ

)
=
ρ+ ρ

2|ρ|2
=

Re ρ

|ρ|2
.
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2β
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.

Fix ρ = β0 + iγ0 such that β0 ≥ 1
2 and γ0 > 0. Then

−B

2
=
∑
γ>0

β

β2 + γ2
≥ β0
β20 + γ20

≥ 1/2

1 + γ20
.
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Since B = −0.023... we obtain that

|γ0| > 6.

Therefore, if ρ = β + iγ is a non-trivial zero of ζ(s), then |γ| > 6.
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