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For Res > 1 we define the Riemann zeta-function {(s) by
1 1\-1
n=1 P

For Res > 0,

1 It -t
C(s):1+5_1+s/1 ) dt.
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Let -
w(x) = Z e ™™ for x > 0.
n=1

Then, for Res > 1:
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Let -
w(x) = Z e ™™ for x > 0.
n=1

Then, for Res > 1:

1 1 e d
7512 F(Z)C(s) = - —i—/l w(x)(x5/2 +X(1_5)/2) el

s—1 X

It gives an analytic continuation (meromorphic) of {(s) in C. In
particular:

52 r<;><(s) _ (192 r<1 . 5> c1—s).
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The Riemann &-function is an entire function defined as:
1 _5/2 S
() = (s — a1 (2 )¢(s),

and £(s) = &(1 —s).

The functions £(s) and ((s) have the same zeros in 0 < Res < 1.
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&(s) e R and ((s) € R for s € R.

&(s) =&(3) for all seC.
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The Riemann Hypothesis - R.H.

Conjecture (18 November 1859)

All non-trivial zeros of ((s) have real part equal to 1/2.
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Theorem (Dave Platt and Tim Trudgian, 21 April 2020)

The Riemann Hypothesis is true up to height 3000175332800. That
is, the lowest 12363153437138 non-trivial zeros p have Rep = 1/2.
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The order of £(s)

We say that f is an entire function of finite order if there is
a > 0 such that

‘ «

1F(2)| < M el?

for some M > 0 and for all z € C.
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The order of £(s)

We say that f is an entire function of finite order if there is
a > 0 such that

1£(z)| < M el
for some M > 0 and for all z € C.

The infimum of s that satisfy the above expression is called
order of f.

The function f(z) = e* has order 1.
The function £ has order 1.
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£(s) = %s(s ~1)esl2rT (;) c(s).

Assume that s is no a zero of £ and |s| > 2.
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1
£(6) = 55— 0721 (5)<(o)
2 2
Assume that s is no a zero of £ and |s| > 2. We want to prove that
log |£(s)| < [s]log]s]-

Then, assume that Res > %:
log |3/ < Is].
log |s|.
log |s — 1| < log(|s| + 1) < 2log s].
log |[7=5/2| = log m~Res/2 <« |s.



Class 4: The Riemann &-function and the zeros of ((s)
LThe order of £(s)

We want to bound log ‘F(;) in |s| > 2 and Res > 3.




Class 4: The Riemann &-function and the zeros of ((s)
LThe order of £(s)

We want to bound log ‘F(;) in |s| > 2 and Res > 3.

Stirling’s formula:




Class 4: The Riemann &-function and the zeros of ((s)
LThe order of £(s)

We want to bound log ‘F(;) in |s| > 2 and Res > 3.

Stirling’s formula:
For a fixed § > 0 and —m + ¢ < arg(s) < m — J, show that

1 1
logF(s) = (s - 2> logs — s+ 5 log 27 + O(|s| 1),

as |s| — oc.



Class 4: The Riemann &-function and the zeros of ((s)
LThe order of £(s)

We want to bound log ‘F(;) in |s| > 2 and Res > 3.

Stirling’s formula:
For a fixed § > 0 and —m + ¢ < arg(s) < m — J, show that

1 1
logF(s) = (s - 2> logs — s+ 5 log 27 + O(|s| 1),

l‘(;)’ < |s|log]s].

as |s| — oo. Then

log
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Then
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We want to bound log [¢(s)| in |s| > 2 and Res > 3.

1 ©t] -t
C(S):1+H+S/1 prE] dt.

Therefore
IC(s) < [s].

Then
log |¢(s)| < log s|
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We conclude that
log [§(s)| < |s|log |s].

Therefore & has order at most 1.
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£(s) = %s(s C1)es2r (;) c(s).

Assume s = o, o > 1 so large.
log|3] = O(1).
log |o| = O(log o).

]

log|o — 1| = O(log o).
log |7=7/%| = O(0).
log |¢()| = O(log o).
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We want to estimate log ‘F(;) ‘

Stirling’s formula:
For a fixed § > 0 and —m + ¢ < arg(s) < m — J, show that

1 1
logF(s) = (s - 2> logs — s+ 5 log 27 + O(|s| 1),

as |s| — oo. Then

o\| ologo
Iog‘r<2>‘ =— O(o).
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We conclude that

ologo

log £(o)] = 7

+ O(o),

as o — 0.
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We conclude that

ologo

l0g|€(0)] = 7

+ O(o),

as o — 0.

Therefore £ is an entire function of order 1.
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The theory of entire functions give us:
Hadamard product:

g(s) = B (1 - 5) es/e.

p

For any € > 0,

]

1
Z 1+e < 0.
P

&(s) has infinity zeros.
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LThe order of £(s)

The theory of entire functions give us:

Hadamard product:

g(s) = B (1 - ;) es/e.

p

For any € > 0,

1 < 0
2 : 1+e ’
0 ’p’

&(s) has infinity zeros.

1
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A =log&(0) = —log2,

log 4
B:—%—l+ o8 T

where v is the Euler's constant.

= —0.023...,
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Computing A and B:

A =log&(0) = —log2,

log 4
B:—%—l+ o8 T

where v is the Euler's constant.

= —0.023...,

AN
v = lim — —log V.

N— n
=1
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Logarithmic derivative of £(s):

e (5 )

Note that this sum is uniform convergent (absolutely convergent)
in compacts.
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g 1 1 logm 11" /[s ¢’
Pl +zr<z>+g
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£(6) = 55— 0721 (5 )¢to

Logarithmic derivative of £(s):

g 1 1 logm 11" /[s ¢’
Pl +zr<>+g

2)+%0)

£(s) = (s—1)m /2T <; + 1) ¢(s)
Logarithmic derivative of £(s):

g 1 logmr 11" (s ¢’
o=y

s—1 2 2T



Class 4: The Riemann &-function and the zeros of ((s)
LThe order of £(s)

¢

5(5):8+Z< ! +1>

s—p

g 1 logmr 11" (s ¢’
f0= g (3r1) v e
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o= (50))

s—p

¢ 1 logm 11" [s ¢
S () = _ (241 >
W=7 5 Tarla YTl
At the point s = 0 we have
logm 1T’ ¢!
B=-1- 5 +§?(1)+Z(0)‘
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Lower bound for zeros of ((s)

Another interpretation for B:

9o ()

We know that

but with a certain order the sum (without modulus) converges. In
fact, summing over

1] 1/1 1 » R
wfi}-30ed) s
p) 2\p P 2|p| |l
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The functional equation gives £(s) = £(1 — s).Then

§(s) _ (-5
§(s) §(1—5s)

0BT

~\s—p p
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The functional equation gives £(s) = £(1 — s).Then

§(s) _ (-5
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oonef 5 (o) o[ ()

p

Since p is a zero if and only if 1 — p is a zero. Then

ZRe Z s—(l ZRel—s—

—2B = 2;Re{;}.
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ey

Assume that p = 8+ iy. Then

5= Z( {B+W}+Re{ﬁ—1iv}> _Zﬁffvz

¥>0 v>0
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ey

Assume that p = 8+ iy. Then

B:Z(Re{ﬁjw}nLRe

v>0

{ﬁ—liv}) :Zﬁffvz

v>0

Fix p = By + ivo such that fy > % and 79 > 0. Then
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