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The Riemann &-function is an entire function defined as:

£(6) = 55— 0721 (5)<6o)

and £(s) =¢(1 —s).
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&(s) is an entire function of finite order, and o(§) = 1.
| o() < L

log |£(s)| < Cls|log|s| < |s|*T5, as |s| — oco.

Then X
l€(s)| < eI, as |s| big.

o(¢) = 1: if not, o(§) < 1:
6(s)] < Mell" < Mell
Then
log [£(s)| < log M + |s].
But, as 0 — oo:

ologo

2

+ 0(0) = log¢(o)| < M+ |o].
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P P

where
A= —log2,

log4
L

where v is the Euler's constant.

= —0.023...,
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Logarithmic derivative of £(s):

e (5 )

Note that this sum is uniform convergent (absolutely convergent)
in compacts.
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Lower bound for zeros of ((s)

We know that

but with a certain order the sum (without modulus) converges. In
fact, summing over

1) 1/1 1 » R
w10
p) 2\p P 2|p| |l

1
In particular Zp Re {} is absolutely convergent.
P
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§(s) _ (-5
§(s) §(1—5s)

S R e
!

)-
o5 (2 41)] p
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Since p is a zero if and only if 1 — p is a zero. Then

ZRe —ZRes_(l_ ZR 1_5_

—25:22Re1.
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Assume that p = 8+ iy. Then

5= Z( {B+W}+RQ{B—1W}> _Zﬁffvz

¥>0 v>0
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ey

Assume that p = 8+ iy. Then

S S Rt

v>0

1 B 23
—iv}) _§)62+72'

Fix p = By + ivo such that fy > % and 79 > 0. Then

B Z Bo > 1/2
B2+’y N IT REtT
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Theorem (Hadamard, de la Vallée -Poussin 1896)
For t € R, we have ((1+ it) # 0.
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First proof

We have uniformly in compacts of Res > 1:

€& =T1(1-) "
;

Then 1
og (s) =~ > log (1 ).
p

such that log ((2) € R. Therefore for s =o +it, 0 > 1
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L Remember of the Riemann zeta-function in Res = 1

First proof

We have uniformly in compacts of Res > 1:

€& =T1(1-) "
;

Then

log ((s Z log (1 — —)
such that log ((2) € R. Therefore for s =o +it, 0 > 1
—iktlog p

IOgC o+ It Z Z k(a+lt Z Z ko'k

pkl p k=1
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o
cos(kt log p)
oglc(o + i) = Y0 3 <otlons)
p k=1

Recalling that 3 + 4 cosd + cos26 > 0, we have

3|og|C( )I + 4log |¢(0 + it)| + log [¢(o + 2it)|

Z Z Rk (3 + 4 cos(kt log p) + cos(2kt log p)) 0

Pkl
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The inequality
3log |C(o)| + 4log |((o + it)| + log |((o + 2it)| > 0,

implies
C(@)PI¢(o + it)[*[¢(o + 2it)] > 1,

foro >1and t € R.
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Assume that 1 + ity is a zero of ((s), then as 0 — 1T:

(0 + ito) — C(1 + ito) |*
1

1
2itg)| > ——.
(o +2it0)| =~

(o~ ()R]

ot
e ¥
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L Remember of the Riemann zeta-function in Res = 1

Second proof

We have uniformly in compacts of Res > 1:

Then, we have uniformly in compacts of Res > 1:
1
log ¢(s) = —Zlog (1 - E)
P

Taking derivative, we have
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L Remember of the Riemann zeta-function in Res = 1

Therefore, we can write, for Res > 1:

_CC/(S) — Z A(n)

ns’
n=1

where A(n) is the von Mangoldt function defined as:

logp if n=pk

N(n) =
0 if n# pk.
Note that this series converges absolutely for Res > 1, because
IN(n)| <lognand 3 &7 < o6 for o > 1.

n n%
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Recall that, for o > 1, t € R:

_C/(s) _ Z /\,(727)
n=1

Re{—ga+lt} Z( cos(t log n).
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Recall that, for o > 1, t € R:

One can see that

¢ ¢ ¢ :
Re { - 32(0) - 42(0 + it) — Z(U + 21t)}

n

— A
= Z (:) <3 + 4 cos(t log n) + cos(2t log n)> > 0.
n=1
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() =28 B £
¢ B'(s)
Z(S)_ Bs) s—1 around 1.
¢ B'(0)

1
+—— o—1".
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L Remember of the Riemann zeta-function in Res = 1

¢(s) has a unique simple pole in s = 1. Then,

_ B(s)

()= 28 (1) £0
¢y Bl 1
Z(S)— B(S) :, around 1.
_ga :_B,(U) 1 o +
C() B(a)+a—1’ — 17,
—C—/(J) Bi+——, o0 =17

¢\ T
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Suppose that sp = 1+ itg (to # 0) is a zero of order m > 1 of ((s).

Then
((s) = (s — s0)"A(s), A(so) #0;

¢ m__ Als)

Z(s) i A(s) around sp.

¢ m A'(o + itp)

S otitg)=—"—— 1t
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L Remember of the Riemann zeta-function in Res = 1

Suppose that sy = 1 + ity (tg # 0) is a zero of order m > 1 of ((s).
Then

((s) = (s — 0)"A(s), Also) #O;

/ A/
Q(s) = sTso A((.:)) around sp.
! ) m A'(o + itp)
- to) = — — 1t
C(G+IO) o—1 Alo+it)’ 7

!

§(U+ ito) < *Ll + A1, o — 1.
O'_
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L Remember of the Riemann zeta-function in Res = 1

Resumming: around ¢ > 1
With m > 1 we have

R L N P

With kK > 0 we have

!/

¢ . k
2 L
C(O‘—}—2It0)_ J_1+C1
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Resumming: around ¢ > 1
With m > 1 we have
C/ ] m é—/ 1
— ) < ——— 4+ A;;  —>(0) < B+ ——.
g(a—i-lo)_ a—1+ 1 C((7) 1+0

With kK > 0 we have

!/

k
C(0+2It0) < —74— G

1

Re { —32/(0) CC/(UM ) 2(04—211‘0)} %er.
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L Remember of the Riemann zeta-function in Res = 1

Resumming: around ¢ > 1
With m > 1 we have
C/ ] m é—/ 1
— ) < ——— 4+ A;;  —>(0) < B+ ——.
g(a—i-lo)_ a—1+ 1 C((7) 1+0

With kK > 0 we have

!/

k
C(0+2It0) < —74— G

1

Re{—3<€/() g(a+lt)—c(0+2/to)} %er.

Then, when ¢ — 17, we have that

Re{—3i( ) — i(a+/to)—i(a+2/to)}<0
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L Zero-free region

Zero-free region

Recall that, for o > 1, t € R:

Re{ - g;(U + /t)} Z A,S:) cos(tlog n).

n=1
One can see that

C/ C/ !
Re{—3g( ) — C( +It)—(0+21t)}

= i Aln) <3 + 4 cos(t log n) + cos(2t log n)) > 0.
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¢(s) has a unique simple pole in s = 1. Then,

B
o) =28 By 20
_g(g)§31+ , o>1,0—1%.
Re—c—/(a)<B +# o>10—1"
cIEERT T ’ ‘
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£(s) = yss— 0721 (5 )<to

£(s)=(s—1)m /2T <; + 1) ¢(s)

Logarithmic derivative of £(s):

! 1 I 1r !
2(5): s_1 — 0§W+2r<5+1> +£(S)




£(s) = yss— 0721 (5 )<to

£(s) = (s — 1)n /2 F(; + 1) ¢(s)
Logarithmic derivative of £(s):

! 1 | 1r
55 _og7T+<

()=s=1-% *ar §+1>+</(5)'

e (5))

s—p
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L Zero-free region

Lets=c+it,t>2and 1 <o <2;

= e )

¢’ 1 logm 1_ ["[s 1 1
3 (s)=Re — — “Re—|(241)=-B— E el
Re=pls) = Re ==~ HaRewl5F fe \s=p"p
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Lets=o+it,t>2and 1 <o <2
¢ 1 logm 1r’
2 (s) = — — B
(=51 " +Z s—p p
¢! 1 |og7r 1o, T 11
Re—>(s) = Re ——— “Re — ~B-R =
e C(s) S T ezp: s—p+p
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Stirling’s formula for the Gamma function:
For a fixed § > 0 and —7m + § < arg(s) < 7 — ¢,
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— logs + O(|s| ),

as |s| — oc.
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Summarize: Fix p =  + it a zero of ((s). For o > 1, close to 1 we
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There is C > 0 such that, if p = 8+ it is a non-trivial zero of ((s),

then c
B<1l— .
log t
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There is C > 0 such that {(s) has no zeros in the region

C
co>1———,
logt

with t > 2.
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