Class 5: Zero-free region

Andrés Chirre Norwegian University of Science and Technology - NTNU

16-September-2021

Review

Review:

Review:

The Riemann ξ -function is an entire function defined as:

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s),$$

and
$$\xi(s) = \xi(1 - s)$$
.

Review

 $\xi(s)$ is an entire function of finite order, and $o(\xi) = 1$.

1
$$o(\xi) \leq 1$$
:

$$\log |\xi(s)| \le C|s| \log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

1
$$o(\xi) \leq 1$$
:

$$\log |\xi(s)| \le C|s|\log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

$$|\xi(s)| \le e^{|s|^{1+\varepsilon}}$$
, as $|s|$ big.

- $\xi(s)$ is an entire function of finite order, and $o(\xi) = 1$.
 - **1** $o(\xi) \leq 1$:

$$\log |\xi(s)| \le C|s|\log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

$$|\xi(s)| \leq e^{|s|^{1+\varepsilon}}, \ \ \text{as} \ |s| \ \ \text{big}.$$

2
$$o(\xi) = 1$$
: if not, $o(\xi) < 1$:

1
$$o(\xi) \leq 1$$
:

$$\log |\xi(s)| \le C|s|\log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

$$|\xi(s)| \le e^{|s|^{1+\varepsilon}}$$
, as $|s|$ big.

2
$$o(\xi) = 1$$
: if not, $o(\xi) < 1$:

$$|\xi(s)| \leq Me^{|s|^{\eta}} \leq Me^{|s|^1}.$$

1
$$o(\xi) \leq 1$$
:

$$\log |\xi(s)| \le C|s|\log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

Then

$$|\xi(s)| \le e^{|s|^{1+\varepsilon}}$$
, as $|s|$ big.

2
$$o(\xi) = 1$$
: if not, $o(\xi) < 1$:

$$|\xi(s)| \leq Me^{|s|^{\eta}} \leq Me^{|s|^1}.$$

$$\log |\xi(s)| \le \log M + |s|.$$

1
$$o(\xi) \leq 1$$
:

$$\log |\xi(s)| \le C|s|\log |s| \le |s|^{1+\varepsilon}$$
, as $|s| \to \infty$.

Then

$$|\xi(s)| \le e^{|s|^{1+\varepsilon}}$$
, as $|s|$ big.

2
$$o(\xi) = 1$$
: if not, $o(\xi) < 1$:

$$|\xi(s)| \leq Me^{|s|^{\eta}} \leq Me^{|s|^1}.$$

$$\log |\xi(s)| \le \log M + |s|.$$

But, as
$$\sigma \to \infty$$
:

$$\frac{\sigma \log \sigma}{2} + O(\sigma) = \log |\xi(\sigma)| \le M + |\sigma|.$$

1 Hadamard product:

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

1 Hadamard product:

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

2 For any $\varepsilon > 0$,

$$\sum_{\rho} \frac{1}{|\rho|^{1+\varepsilon}} < \infty.$$

Hadamard product:

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

2 For any $\varepsilon > 0$,

$$\sum_{\rho} \frac{1}{|\rho|^{1+\varepsilon}} < \infty.$$

 $\xi(s)$ has infinity zeros.

1 Hadamard product:

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

2 For any $\varepsilon > 0$,

$$\sum_{\rho} \frac{1}{|\rho|^{1+\varepsilon}} < \infty.$$

- $\xi(s)$ has infinity zeros.
- 4

$$\sum_{\rho} \frac{1}{|\rho|} = \infty.$$

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

where

$$A = -\log 2$$

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

where

$$A = -\log 2$$
,

$$B = -\frac{\gamma}{2} - 1 + \frac{\log 4\pi}{2} = -0.023...,$$

where γ is the Euler's constant.

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

Logarithmic derivative of $\xi(s)$:

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

Logarithmic derivative of $\xi(s)$:

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right).$$

$$\xi(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}.$$

Logarithmic derivative of $\xi(s)$:

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right).$$

Note that this sum is uniform convergent (absolutely convergent) in compacts.

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right).$$

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$

We know that

$$\sum_{\rho} \frac{1}{|\rho|} = \infty,$$

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right).$$

We know that

$$\sum_{\rho} \frac{1}{|\rho|} = \infty,$$

but with a certain order the sum (without modulus) converges. In fact, summing over

$$\operatorname{Re}\left\{\frac{1}{\rho}\right\} = \frac{1}{2}\left(\frac{1}{\rho} + \frac{1}{\overline{\rho}}\right) = \frac{\rho + \overline{\rho}}{2|\rho|^2} = \frac{\operatorname{Re}\rho}{|\rho|^2}.$$

$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right).$$

We know that

$$\sum_{\rho} \frac{1}{|\rho|} = \infty,$$

but with a certain order the sum (without modulus) converges. In fact, summing over

$$\operatorname{Re}\left\{\frac{1}{\rho}\right\} = \frac{1}{2}\left(\frac{1}{\rho} + \frac{1}{\overline{\rho}}\right) = \frac{\rho + \overline{\rho}}{2|\rho|^2} = \frac{\operatorname{Re}\rho}{|\rho|^2}.$$

In particular $\sum_{\rho} \operatorname{Re} \left\{ \frac{1}{\rho} \right\}$ is absolutely convergent.

The functional equation gives $\xi(s) = \xi(1-s)$.

The functional equation gives $\xi(s) = \xi(1-s)$. Then

$$\frac{\xi'(s)}{\xi(s)} = -\frac{\xi'(1-s)}{\xi(1-s)}$$

The functional equation gives $\xi(s) = \xi(1-s)$. Then

$$\frac{\xi'(s)}{\xi(s)} = -\frac{\xi'(1-s)}{\xi(1-s)}$$

$$B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) = -B - \sum_{\rho} \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right)$$

The functional equation gives $\xi(s) = \xi(1-s)$. Then

$$\frac{\xi'(s)}{\xi(s)} = -\frac{\xi'(1-s)}{\xi(1-s)}$$

$$B + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) = -B - \sum_{\rho} \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right)$$

$$B + \operatorname{Re}\left\{\sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right)\right\} = -B - \operatorname{Re}\left\{\sum_{\rho} \left(\frac{1}{1-s-\rho} + \frac{1}{\rho}\right)\right\}.$$

$$B + \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) \right\} = -B - \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right) \right\}.$$

$$B + \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) \right\} = -B - \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right) \right\}.$$

$$B + \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} + \sum_{\rho} \operatorname{Re} \frac{1}{\rho} = -B - \sum_{\rho} \operatorname{Re} \frac{1}{1 - s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}.$$

$$B + \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) \right\} = -B - \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right) \right\}.$$

$$B + \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} + \sum_{\rho} \operatorname{Re} \frac{1}{\rho} = -B - \sum_{\rho} \operatorname{Re} \frac{1}{1 - s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}.$$

Since ρ is a zero if and only if $1-\rho$ is a zero. Then

$$\sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} = \sum_{\rho} \operatorname{Re} \frac{1}{s - (1 - \rho)} = -\sum_{\rho} \operatorname{Re} \frac{1}{1 - s - \rho}.$$

$$B + \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{s - \rho} + \frac{1}{\rho} \right) \right\} = -B - \sum_{\rho} \operatorname{Re} \left\{ \left(\frac{1}{1 - s - \rho} + \frac{1}{\rho} \right) \right\}.$$

$$B + \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} + \sum_{\rho} \operatorname{Re} \frac{1}{\rho} = -B - \sum_{\rho} \operatorname{Re} \frac{1}{1 - s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}.$$

Since ρ is a zero if and only if $1-\rho$ is a zero. Then

$$\sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} = \sum_{\rho} \operatorname{Re} \frac{1}{s - (1 - \rho)} = -\sum_{\rho} \operatorname{Re} \frac{1}{1 - s - \rho}.$$
$$-2B = 2\sum_{\rho} \operatorname{Re} \frac{1}{\rho}.$$

$$-B = \sum_{\rho} \operatorname{Re} \left\{ \frac{1}{\rho} \right\}$$

$$-B = \sum_{\rho} \operatorname{Re} \left\{ \frac{1}{\rho} \right\}$$

Assume that $\rho = \beta + i\gamma$. Then

$$-B = \sum_{\gamma > 0} \left(\operatorname{Re} \left\{ \frac{1}{\beta + i\gamma} \right\} + \operatorname{Re} \left\{ \frac{1}{\beta - i\gamma} \right\} \right) = \sum_{\gamma > 0} \frac{2\beta}{\beta^2 + \gamma^2}.$$

$$-B = \sum_{\rho} \operatorname{Re} \left\{ \frac{1}{\rho} \right\}$$

Assume that $\rho = \beta + i\gamma$. Then

$$-B = \sum_{\gamma > 0} \left(\operatorname{Re} \left\{ \frac{1}{\beta + i \gamma} \right\} + \operatorname{Re} \left\{ \frac{1}{\beta - i \gamma} \right\} \right) = \sum_{\gamma > 0} \frac{2\beta}{\beta^2 + \gamma^2}.$$

Fix $\rho = \beta_0 + i\gamma_0$ such that $\beta_0 \ge \frac{1}{2}$ and $\gamma_0 > 0$. Then

$$-\frac{B}{2} = \sum_{\gamma > 0} \frac{\beta}{\beta^2 + \gamma^2} \ge \frac{\beta_0}{\beta_0^2 + \gamma_0^2} \ge \frac{1/2}{1 + \gamma_0^2}.$$

$$-\frac{B}{2}\geq \frac{1/2}{1+\gamma_0^2}.$$

$$-\frac{B}{2} \ge \frac{1/2}{1+\gamma_0^2}.$$

Since B = -0.023... we obtain that

$$|\gamma_0| > 6$$
.

$$-\frac{B}{2} \ge \frac{1/2}{1 + \gamma_0^2}.$$

Since B = -0.023... we obtain that

$$|\gamma_0| > 6$$
.

Therefore, if $\rho = \beta + i\gamma$ is a non-trivial zero of $\zeta(s)$, then $|\gamma| > 6$.

$$-\frac{B}{2} \ge \frac{1/2}{1 + \gamma_0^2}.$$

Since B = -0.023... we obtain that

$$|\gamma_0| > 6$$
.

Therefore, if $\rho = \beta + i\gamma$ is a non-trivial zero of $\zeta(s)$, then $|\gamma| > 6$.

Remember of the Riemann zeta-function in $\operatorname{Re} s = 1$

Theorem (Hadamard, de la Vallée -Poussin 1896)

For $t \in \mathbb{R}$, we have $\zeta(1+it) \neq 0$.

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then

$$\log \zeta(s) = -\sum_{\rho} \log \left(1 - \frac{1}{\rho^s}\right),\,$$

such that $\log \zeta(2) \in \mathbb{R}$.

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then

$$\log \zeta(s) = -\sum_{\rho} \log \left(1 - \frac{1}{\rho^s}\right),\,$$

such that $\log \zeta(2) \in \mathbb{R}$. Therefore for $s = \sigma + it$, $\sigma > 1$

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then

$$\log \zeta(s) = -\sum_{p} \log \left(1 - \frac{1}{p^{s}}\right),\,$$

such that $\log \zeta(2) \in \mathbb{R}$. Therefore for $s = \sigma + it$, $\sigma > 1$

$$\log \zeta(\sigma + it) = \sum_{p} \sum_{k=1}^{\infty} \frac{1}{p^{k(\sigma + it)}k} = \sum_{p} \sum_{k=1}^{\infty} \frac{e^{-ikt \log p}}{p^{k\sigma}k}$$

$$\log|\zeta(\sigma+it)| = \sum_{p} \sum_{k=1}^{\infty} \frac{\cos(kt \log p)}{p^{k\sigma}k}$$

$$\log|\zeta(\sigma+it)| = \sum_{p} \sum_{k=1}^{\infty} \frac{\cos(kt \log p)}{p^{k\sigma}k}$$

$$\log |\zeta(\sigma + it)| = \sum_{p} \sum_{k=1}^{\infty} \frac{\cos(kt \log p)}{p^{k\sigma}k}$$

Recalling that $3 + 4\cos\theta + \cos 2\theta \ge 0$, we have

$$\log |\zeta(\sigma + it)| = \sum_{p} \sum_{k=1}^{\infty} \frac{\cos(kt \log p)}{p^{k\sigma} k}$$

Recalling that $3 + 4\cos\theta + \cos 2\theta \ge 0$, we have

$$3 \log |\zeta(\sigma)| + 4 \log |\zeta(\sigma + it)| + \log |\zeta(\sigma + 2it)|$$

$$\sum_{p} \sum_{k=1}^{\infty} \frac{1}{p^{k\sigma}k} \left(3 + 4\cos(kt\log p) + \cos(2kt\log p) \right) \ge 0$$

The inequality

$$3\log|\zeta(\sigma)| + 4\log|\zeta(\sigma+it)| + \log|\zeta(\sigma+2it)| \ge 0,$$

implies

The inequality

$$3\log|\zeta(\sigma)| + 4\log|\zeta(\sigma+it)| + \log|\zeta(\sigma+2it)| \ge 0,$$

implies

$$|\zeta(\sigma)|^3|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)|\geq 1,$$

for $\sigma > 1$ and $t \in \mathbb{R}$.

$$|\zeta(\sigma)|^3|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)|\geq 1,$$

$$|\zeta(\sigma)|^3|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)|\geq 1,$$

We conclude the game:

Assume that $1 + it_0$ is a zero of $\zeta(s)$, then as $\sigma \to 1^+$:

$$|\zeta(\sigma)|^3|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)|\geq 1,$$

We conclude the game:

Assume that $1 + it_0$ is a zero of $\zeta(s)$, then as $\sigma \to 1^+$:

$$|(\sigma-1)\zeta(\sigma)|^3\bigg|\frac{\zeta(\sigma+it_0)-\zeta(1+it_0)}{\sigma-1}\bigg|^4|\zeta(\sigma+2it_0)|\geq \frac{1}{\sigma-1}.$$

$$|\zeta(\sigma)|^3|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)|\geq 1,$$

We conclude the game:

Assume that $1 + it_0$ is a zero of $\zeta(s)$, then as $\sigma \to 1^+$:

$$|(\sigma-1)\zeta(\sigma)|^3 \left| \frac{\zeta(\sigma+it_0)-\zeta(1+it_0)}{\sigma-1} \right|^4 |\zeta(\sigma+2it_0)| \geq \frac{1}{\sigma-1}.$$

Second proof

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Second proof

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then, we have uniformly in compacts of $\operatorname{Re} s > 1$:

$$\log \zeta(s) = -\sum_{p} \log \left(1 - \frac{1}{p^s}\right).$$

Second proof

We have uniformly in compacts of Re s > 1:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Then, we have uniformly in compacts of Re s > 1:

$$\log \zeta(s) = -\sum_{p} \log \left(1 - \frac{1}{p^s}\right).$$

Taking derivative, we have

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}.$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

Note that for Re s > 1:

$$\frac{1}{p^{s}-1} = \frac{p^{-s}}{1-p^{-s}} = p^{-s} \sum_{k=0}^{\infty} (p^{-s})^{k} = \sum_{k=1}^{\infty} (p^{-s})^{k}.$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \frac{\log p}{p^s - 1}$$

Note that for Re s > 1:

$$\frac{1}{p^{s}-1} = \frac{p^{-s}}{1-p^{-s}} = p^{-s} \sum_{k=0}^{\infty} (p^{-s})^{k} = \sum_{k=1}^{\infty} (p^{-s})^{k}.$$

Therefore

$$-\frac{\zeta'}{\zeta}(s) = \sum_{p} \sum_{k=1}^{\infty} \frac{\log p}{p^{sk}}.$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$

where $\Lambda(n)$ is the von Mangoldt function defined as:

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$

where $\Lambda(n)$ is the von Mangoldt function defined as:

$$\Lambda(n) = \begin{cases} \log p & \text{if} \quad n = p^k \\ 0 & \text{if} \quad n \neq p^k. \end{cases}$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$

where $\Lambda(n)$ is the von Mangoldt function defined as:

$$\Lambda(n) = \begin{cases} \log p & \text{if} \quad n = p^k \\ 0 & \text{if} \quad n \neq p^k. \end{cases}$$

Note that this series converges absolutely for $\operatorname{Re} s > 1$, because $|\Lambda(n)| \leq \log n$ and $\sum_n \frac{\log n}{n^{\sigma}} < \infty$ for $\sigma > 1$.

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

$$\operatorname{Re}\left\{-\frac{\zeta'}{\zeta}(\sigma+it)\right\} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n).$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

$$\operatorname{Re}\left\{-\frac{\zeta'}{\zeta}(\sigma+it)\right\} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n).$$

One can see that

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it)-\frac{\zeta'}{\zeta}(\sigma+2it)\right\}$$

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

$$\operatorname{Re}\left\{-\frac{\zeta'}{\zeta}(\sigma+it)\right\} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n).$$

One can see that

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it)-\frac{\zeta'}{\zeta}(\sigma+2it)\right\}$$

$$=\sum_{1}^{\infty}\frac{\Lambda(n)}{n^{\sigma}}\bigg(3+4\cos(t\log n)+\cos(2t\log n)\bigg)\geq 0.$$

Remember of the Riemann zeta-function in $\mathrm{Re}\, s=1$

 $\zeta(s)$ has a unique simple pole in s=1. Then,

 $\zeta(s)$ has a unique simple pole in s=1. Then,

$$\zeta(s) = \frac{B(s)}{s-1}, \quad B(1) \neq 0;$$

 $\zeta(s)$ has a unique simple pole in s=1. Then,

$$\zeta(s)=\frac{B(s)}{s-1},\quad B(1)\neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{B'(s)}{B(s)} - \frac{1}{s-1}, \text{ around } 1.$$

$$\zeta(s) = \frac{B(s)}{s-1}, \quad B(1) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{B'(s)}{B(s)} - \frac{1}{s-1}, \text{ around } 1.$$

$$-rac{\zeta'}{\zeta}(\sigma) = -rac{B'(\sigma)}{B(\sigma)} + rac{1}{\sigma - 1}, \quad \sigma o 1^+.$$

$$\zeta(s) = \frac{B(s)}{s-1}, \quad B(1) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{B'(s)}{B(s)} - \frac{1}{s-1}, \quad \text{around } 1.$$

$$-\frac{\zeta'}{\zeta}(\sigma) = -\frac{B'(\sigma)}{B(\sigma)} + \frac{1}{\sigma-1}, \quad \sigma \to 1^+.$$

$$-\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}, \quad \sigma \to 1^+.$$

Remember of the Riemann zeta-function in $\operatorname{Re} s = 1$

$$\zeta(s) = (s - s_0)^m A(s), \quad A(s_0) \neq 0;$$

$$\zeta(s) = (s - s_0)^m A(s), \quad A(s_0) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{m}{s - s_0} + \frac{A'(s)}{A(s)}$$
 around s_0 .

$$\zeta(s) = (s - s_0)^m A(s), \quad A(s_0) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{m}{s - s_0} + \frac{A'(s)}{A(s)}$$
 around s_0 .

$$-\frac{\zeta'}{\zeta}(\sigma+it_0)=-\frac{m}{\sigma-1}-\frac{A'(\sigma+it_0)}{A(\sigma+it_0)}, \quad \sigma\to 1^+.$$

$$\zeta(s) = (s - s_0)^m A(s), \quad A(s_0) \neq 0;$$

$$rac{\zeta'}{\zeta}(s) = rac{m}{s-s_0} + rac{A'(s)}{A(s)} ext{ around } s_0.$$
 $-rac{\zeta'}{\zeta}(\sigma+it_0) = -rac{m}{\sigma-1} - rac{A'(\sigma+it_0)}{A(\sigma+it_0)}, \quad \sigma o 1^+.$
 $-rac{\zeta'}{\zeta}(\sigma+it_0) \leq -rac{m}{\sigma-1} + A_1, \quad \sigma o 1^+.$

Remember of the Riemann zeta-function in $\mathrm{Re}\,s=1$

 $\zeta(s)$ is analytic in $s_2 = 1 + 2it_0$.

- $\zeta(s)$ is analytic in $s_2 = 1 + 2it_0$.
 - 1 If $s = 1 + 2it_0$ is a zero (of order $k \ge 1$)

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)=-\frac{k}{\sigma-1}-\frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}, \quad \sigma\to 1^+.$$

- $\zeta(s)$ is analytic in $s_2 = 1 + 2it_0$.
 - If $s = 1 + 2it_0$ is a zero (of order $k \ge 1$)

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)=-\frac{k}{\sigma-1}-\frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}, \quad \sigma\to 1^+.$$

2 If $s = 1 + 2it_0$ is not a zero, consider k = 0 and $C = \zeta$.

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)=-\frac{k}{\sigma-1}-\frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}, \quad \sigma\to 1^+.$$

- 2 If $s = 1 + 2it_0$ is not a zero, consider k = 0 and $C = \zeta$.
- 3 In any case we can write

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1, \quad \sigma\to 1^+.$$

$$\zeta(s)$$
 is analytic in $s_2 = 1 + 2it_0$.

$$\zeta(s) = (s - s_2)^k C(s), \quad C(s_2) \neq 0;$$

$$\frac{\zeta'}{\zeta}(s) = \frac{k}{s - s_2} + \frac{C'(s)}{C(s)}$$
 around s_2 .

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)=-\frac{k}{\sigma-1}-\frac{C'(\sigma+2it_0)}{C(\sigma+2it_0)}, \quad \sigma\to 1^+.$$

- 2 If $s = 1 + 2it_0$ is not a zero, consider k = 0 and $C = \zeta$.
- 3 In any case we can write

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1, \quad \sigma\to 1^+.$$

lacksquare Remember of the Riemann zeta-function in $\mathrm{Re}\,s=1$

Resumming: around $\sigma > 1$

1 With $m \ge 1$ we have

$$-\frac{\zeta'}{\zeta}(\sigma+it_0) \leq -\frac{m}{\sigma-1} + A_1; \quad -\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}.$$

1 With m > 1 we have

$$-\frac{\zeta'}{\zeta}(\sigma+it_0) \leq -\frac{m}{\sigma-1} + A_1; \quad -\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1$$

1 With m > 1 we have

$$-\frac{\zeta'}{\zeta}(\sigma+it_0) \leq -\frac{m}{\sigma-1} + A_1; \quad -\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}.$$

2 With k > 0 we have

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1$$

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it_0)-\frac{\zeta'}{\zeta}(\sigma+2it_0)\right\}\leq \frac{3-4m-k}{\sigma-1}+D_1.$$

1 With m > 1 we have

$$-\frac{\zeta'}{\zeta}(\sigma+it_0) \leq -\frac{m}{\sigma-1} + A_1; \quad -\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1$$

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it_0)-\frac{\zeta'}{\zeta}(\sigma+2it_0)\right\}\leq \frac{3-4m-k}{\sigma-1}+D_1.$$

Then, when $\sigma \to 1^+$, we have that

1 With $m \ge 1$ we have

$$-\frac{\zeta'}{\zeta}(\sigma+it_0) \leq -\frac{m}{\sigma-1} + A_1; \quad -\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}.$$

2 With $k \ge 0$ we have

$$-\frac{\zeta'}{\zeta}(\sigma+2it_0)\leq -\frac{k}{\sigma-1}+C_1$$

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it_0)-\frac{\zeta'}{\zeta}(\sigma+2it_0)\right\}\leq \frac{3-4m-k}{\sigma-1}+D_1.$$

Then, when $\sigma \to 1^+$, we have that

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it_0)-\frac{\zeta'}{\zeta}(\sigma+2it_0)\right\}<0$$

Zero-free region

Zero-free region

Recall that, for $\sigma > 1$, $t \in \mathbb{R}$:

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

$$\operatorname{Re}\left\{-\frac{\zeta'}{\zeta}(\sigma+it)\right\} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos(t \log n).$$

One can see that

$$\operatorname{Re}\left\{-3\frac{\zeta'}{\zeta}(\sigma)-4\frac{\zeta'}{\zeta}(\sigma+it)-\frac{\zeta'}{\zeta}(\sigma+2it)\right\}$$

$$= \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \left(3 + 4\cos(t\log n) + \cos(2t\log n) \right) \ge 0.$$

$$\zeta(s) = \frac{B(s)}{s-1}, \quad B(1) \neq 0;$$

$$\begin{split} \zeta(s) &= \frac{B(s)}{s-1}, \quad B(1) \neq 0; \\ &- \frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}, \quad \sigma > 1, \ \sigma \to 1^+. \end{split}$$
 Re $-\frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma-1}, \quad \sigma > 1, \ \sigma \to 1^+.$

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\,\Gamma\!\left(\frac{s}{2}\right)\!\zeta(s)$$

$$\xi(s) = rac{1}{2}s(s-1)\pi^{-s/2} \, \Gammaigg(rac{s}{2}igg) \zeta(s)$$
 $\xi(s) = (s-1)\pi^{-s/2} \, \Gammaigg(rac{s}{2}+1igg) \zeta(s)$

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)\zeta(s)$$

$$\xi(s) = (s-1)\pi^{-s/2} \, \Gamma\bigg(\frac{s}{2} + 1\bigg) \zeta(s)$$

Logarithmic derivative of $\xi(s)$:

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s)$$

$$\xi(s) = (s-1)\pi^{-s/2} \, \Gamma\left(\frac{s}{2} + 1\right) \zeta(s)$$

Logarithmic derivative of $\xi(s)$:

$$\frac{\xi'}{\xi}(s) = \frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1\right) + \frac{\zeta'}{\zeta}(s).$$

$$\xi(s) = rac{1}{2}s(s-1)\pi^{-s/2}\,\Gammaigg(rac{s}{2}igg)\zeta(s)$$
 $\xi(s) = (s-1)\pi^{-s/2}\,\Gammaigg(rac{s}{2}+1igg)\zeta(s)$

Logarithmic derivative of $\xi(s)$:

$$\frac{\xi'}{\xi}(s) = \frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1\right) + \frac{\zeta'}{\zeta}(s).$$
$$\frac{\xi'}{\xi}(s) = B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right)$$

Let
$$s = \sigma + it$$
, $t \ge 2$ and $1 < \sigma \le 2$:

Let
$$s = \sigma + it$$
, $t \ge 2$ and $1 < \sigma \le 2$:

$$\frac{\zeta'}{\zeta}(s) = -\left\{\frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1\right)\right\} + B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$

Let $s = \sigma + it$, t > 2 and $1 < \sigma < 2$:

$$\frac{\zeta'}{\zeta}(s) = -\left\{\frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1\right)\right\} + B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(s) = \operatorname{Re} \frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \operatorname{Re} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1 \right) - B - \operatorname{Re} \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right)$$

Let $s = \sigma + it$, t > 2 and $1 < \sigma < 2$:

$$\frac{\zeta'}{\zeta}(s) = -\left\{\frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1\right)\right\} + B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(s) = \operatorname{Re} \frac{1}{s-1} - \frac{\log \pi}{2} + \frac{1}{2} \operatorname{Re} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1 \right) - B - \operatorname{Re} \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right)$$

$$\operatorname{Re}\,-\frac{\zeta'}{\zeta}(s) \leq C + \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\bigg(\frac{s}{2} + 1\bigg) - \operatorname{Re}\,\sum_{\rho}\bigg(\frac{1}{s - \rho} + \frac{1}{\rho}\bigg).$$

Stirling's formula for the Gamma function: For a fixed $\delta > 0$ and $-\pi + \delta < \arg(s) < \pi - \delta$,

$$\frac{\Gamma'(s)}{\Gamma(s)} = \log s + O(|s|^{-1}),$$

as $|s| \to \infty$.

Let
$$s = \sigma + it$$
, $t \ge 2$ and $1 < \sigma \le 2$:

$$\mathrm{Re}\, - \frac{\zeta'}{\zeta}(s) \leq C + \frac{1}{2}\mathrm{Re}\, \frac{\Gamma'}{\Gamma}\bigg(\frac{s}{2} + 1\bigg) - \mathrm{Re}\, \sum_{\rho} \bigg(\frac{1}{s-\rho} + \frac{1}{\rho}\bigg)$$

Let
$$s = \sigma + it$$
, $t > 2$ and $1 < \sigma < 2$:

$$\operatorname{Re}\,-\frac{\zeta'}{\zeta}(s) \leq C + \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\bigg(\frac{s}{2} + 1\bigg) - \operatorname{Re}\,\sum_{\rho}\bigg(\frac{1}{s - \rho} + \frac{1}{\rho}\bigg)$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(s) \le C_1 \log t - \operatorname{Re} \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right).$$

Let
$$s = \sigma + it$$
, $t \ge 2$ and $1 < \sigma \le 2$:

$$\begin{split} \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C + \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\bigg(\frac{s}{2} + 1\bigg) - \operatorname{Re} \, \sum_{\rho} \bigg(\frac{1}{s - \rho} + \frac{1}{\rho}\bigg) \\ \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C_1 \log t - \operatorname{Re} \, \sum_{\rho} \bigg(\frac{1}{s - \rho} + \frac{1}{\rho}\bigg). \\ \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}. \end{split}$$

Letting
$$\rho = \beta + i\gamma$$
 (0 $\leq \beta \leq$ 1) we have

Let
$$s = \sigma + it$$
, $t \ge 2$ and $1 < \sigma \le 2$:

$$\begin{split} \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C + \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\left(\frac{s}{2} + 1\right) - \operatorname{Re} \, \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho}\right) \\ \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C_1 \log t - \operatorname{Re} \, \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho}\right). \\ \operatorname{Re} \, -\frac{\zeta'}{\zeta}(s) & \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}. \end{split}$$

Letting
$$\rho = \beta + i\gamma$$
 (0 $\leq \beta \leq$ 1) we have

$$\operatorname{Re} \frac{1}{s-\rho} = \operatorname{Re} \frac{1}{\sigma-\beta+i(t-\gamma)} = \frac{\sigma-\beta}{(\sigma-\beta)^2+(t-\gamma)^2} \geq 0.$$

Let $s = \sigma + it$, t > 2 and $1 < \sigma < 2$:

$$\operatorname{Re}\,-\frac{\zeta'}{\zeta}(s) \leq C + \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\bigg(\frac{s}{2} + 1\bigg) - \operatorname{Re}\,\sum_{\rho}\bigg(\frac{1}{s - \rho} + \frac{1}{\rho}\bigg)$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(s) \leq C_1 \log t - \operatorname{Re} \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right).$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(s) \le C_1 \log t - \sum_{\alpha} \operatorname{Re} \frac{1}{s-\rho} - \sum_{\alpha} \operatorname{Re} \frac{1}{\rho}.$$

Letting $\rho = \beta + i\gamma$ (0 $\leq \beta \leq$ 1) we have

$$\operatorname{Re} \frac{1}{s-\rho} = \operatorname{Re} \frac{1}{\sigma-\beta+i(t-\gamma)} = \frac{\sigma-\beta}{(\sigma-\beta)^2+(t-\gamma)^2} \geq 0.$$

$$\operatorname{Re} \frac{1}{\rho} = \operatorname{Re} \frac{1}{\beta + i\gamma} = \frac{\beta}{\beta^2 + \gamma^2} \ge 0.$$

$$\operatorname{Re}\,-\frac{\zeta'}{\zeta}(\sigma+2it)\leq C_1\log(2t)-\sum_{\rho}\operatorname{Re}\frac{1}{s-\rho}-\sum_{\rho}\operatorname{Re}\frac{1}{\rho}.$$

$$egin{aligned} \operatorname{Re} & -rac{\zeta'}{\zeta}(\sigma+2it) \leq \mathit{C}_1\log(2t) - \sum_{
ho}\operatorname{Re}rac{1}{s-
ho} - \sum_{
ho}\operatorname{Re}rac{1}{
ho}. \ \\ \operatorname{Re} & -rac{\zeta'}{\zeta}(\sigma+2it) \leq \mathit{C}_1\log(2t) \leq \mathit{C}_2\log t \end{aligned}$$

Fix
$$\rho = \beta + it$$
 a zero of $\zeta(s)$, with $t \ge 2$. Now, let $s = \sigma + it$.

Fix $\rho = \beta + it$ a zero of $\zeta(s)$, with $t \ge 2$. Now, let $s = \sigma + it$. Then

$$\mathrm{Re}\, - \frac{\zeta'}{\zeta} \big(\sigma + it\big) \leq C_1 \log t - \sum_{\rho} \mathrm{Re}\, \frac{1}{s-\rho} - \sum_{\rho} \mathrm{Re}\, \frac{1}{\rho}.$$

Fix
$$\rho = \beta + it$$
 a zero of $\zeta(s)$, with $t \ge 2$. Now, let $s = \sigma + it$. Then

$$\operatorname{Re}\,-\frac{\zeta'}{\zeta}(\sigma+it)\leq C_1\log t-\sum_{\rho}\operatorname{Re}\frac{1}{s-\rho}-\sum_{\rho}\operatorname{Re}\frac{1}{\rho}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho}.$$

Fix
$$\rho = \beta + it$$
 a zero of $\zeta(s)$, with $t \ge 2$. Now, let $s = \sigma + it$. Then

$$\mathrm{Re}\, - \frac{\zeta'}{\zeta} (\sigma + it) \leq C_1 \log t - \sum_{\rho} \mathrm{Re}\, \frac{1}{s-\rho} - \sum_{\rho} \mathrm{Re}\, \frac{1}{\rho}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \operatorname{Re} \frac{1}{\sigma + it - (\beta + it)}.$$

Fix
$$\rho = \beta + it$$
 a zero of $\zeta(s)$, with $t \ge 2$. Now, let $s = \sigma + it$. Then

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho} - \sum_{\rho} \operatorname{Re} \frac{1}{\rho}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \sum_{\rho} \operatorname{Re} \frac{1}{s - \rho}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \operatorname{Re} \frac{1}{\sigma + it - (\beta + it)}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \frac{1}{\sigma - \beta}.$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma) \le B_1 + \frac{1}{\sigma - 1},$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma) \le B_1 + \frac{1}{\sigma - 1},$$

$$\operatorname{Re} - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \frac{1}{\sigma - \beta}.$$

$$\begin{split} \operatorname{Re} & - \frac{\zeta'}{\zeta}(\sigma) \leq B_1 + \frac{1}{\sigma - 1}, \\ \operatorname{Re} & - \frac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - \frac{1}{\sigma - \beta}. \\ \operatorname{Re} & - \frac{\zeta'}{\zeta}(\sigma + 2it) \leq C_2 \log t. \end{split}$$

$$\operatorname{Re} - rac{\zeta'}{\zeta}(\sigma) \leq B_1 + rac{1}{\sigma - 1},$$
 $\operatorname{Re} - rac{\zeta'}{\zeta}(\sigma + it) \leq C_1 \log t - rac{1}{\sigma - \beta}.$
 $\operatorname{Re} - rac{\zeta'}{\zeta}(\sigma + 2it) \leq C_2 \log t.$

$$0 \le \operatorname{Re} \left\{ -3\frac{\zeta'}{\zeta}(\sigma) - 4\frac{\zeta'}{\zeta}(\sigma + it) - \frac{\zeta'}{\zeta}(\sigma + 2it) \right\}$$

$$\le 2B_1 + \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + C_3 \log t$$

$$\le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D \log t$$

$$0 \le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D \log t$$

$$0 \le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D\log t$$

$$\frac{4}{\sigma - \beta} \le \frac{3}{\sigma - 1} + D \log t.$$

$$0 \le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D \log t$$

$$\frac{4}{\sigma - \beta} \le \frac{3}{\sigma - 1} + D \log t.$$

Choose:

$$\sigma = 1 + \frac{\delta}{\log t}.$$

$$0 \le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D \log t$$

$$\frac{4}{\sigma - \beta} \le \frac{3}{\sigma - 1} + D \log t.$$

Choose:

$$\sigma = 1 + \frac{\delta}{\log t}.$$

$$\frac{4}{1 - \beta + \frac{\delta}{\log t}} \le \frac{3 \log t}{\delta} + D \log t = \left(\frac{3}{\delta} + D\right) \log t$$

$$0 \le \frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} + D \log t$$

$$\frac{4}{\sigma - \beta} \le \frac{3}{\sigma - 1} + D \log t.$$

Choose:

$$\sigma = 1 + \frac{\delta}{\log t}.$$

$$\frac{4}{1-\beta+\frac{\delta}{\log t}} \le \frac{3\log t}{\delta} + D\log t = \left(\frac{3}{\delta} + D\right)\log t$$
$$\beta \le 1 + \frac{\delta}{\log t} - \frac{4}{\left(\frac{3}{\delta} + D\right)\log t}.$$

$$\beta \leq 1 + \frac{\delta}{\log t} - \frac{4}{\left(\frac{3}{\delta} + D\right)\log t}.$$

$$\beta \le 1 + \frac{\delta}{\log t} - \frac{4}{\left(\frac{3}{\delta} + D\right)\log t}.$$
$$\beta \le 1 + \left(1 - \frac{4}{(3 + D\delta)}\right) \frac{\delta}{\log t}.$$

Choosing

$$\beta \le 1 + \frac{\delta}{\log t} - \frac{4}{\left(\frac{3}{\delta} + D\right)\log t}.$$
$$\beta \le 1 + \left(1 - \frac{4}{(3 + D\delta)}\right) \frac{\delta}{\log t}.$$
$$\delta = \frac{1}{2D},$$

$$\beta \le 1 + \frac{\delta}{\log t} - \frac{4}{\left(\frac{3}{\delta} + D\right)\log t}.$$

$$\beta \le 1 + \left(1 - \frac{4}{(3 + D\delta)}\right)\frac{\delta}{\log t}.$$

$$\delta = \frac{1}{2D},$$

Choosing

we have

$$\beta \le 1 - \frac{1}{14D \log t}.$$

There is C>0 such that, if $\rho=\beta+it$ is a non-trivial zero of $\zeta(s)$, then

$$\beta \le 1 - \frac{C}{\log t}.$$

There is C > 0 such that $\zeta(s)$ has no zeros in the region

$$\sigma \ge 1 - \frac{C}{\log t},$$

with $t \ge 2$.