ADVANCES IN MATHEMATIcs 13, 383-436 (1974)
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1. INTRODUCTION

An historical account as well as the techniques used to prove the
existence of zeros of the Riemann zeta-function, {(s), s = ¢ + i, on
o = 1/2 appears in [1, Chap. X]. Let Ny(T) be the number of zeros
of {(1/2 + #t) on 0 < t << T. The best result to date is due to Selberg [2]
who showed that there is an effectively computable positive constant ¢
such that

Ny(T) > eN(T),
where

T T T

N(T) =

is the number of zeros of the zeta-function in 0 <o 1,0 <t < T,

Selberg’s proof actually goes further and proves the result in (7, T + U)

for suitable U. Selberg’s proof involved combining a very effective

non-negative mollifier to compensate for irregularities in the size of

| £(1/2 4 it)| with the method of Hardy and Littlewood [1, §10.7; 3].
Here it will be proved by a different method that

Ny(T) > 1/3N(T).

The method will depend on the fact that the argument of an appropriate
function changes sufficiently rapidly. A device of this kind was used by
Siegel [4] on the function A(s) f,(s), described later, which occurs in
the Riemann-Siegel formula, (2.7), to get the Hardy-Littlewood result
that Ny(T) > CT. Siegel obtained a definite value for C. It appears to
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me that the function f;(s) is not amenable to improvement with a mollifier.
It will be convenient to let

L = log(T[2x).
THEOREM. Let U = T|L*. Then
N(T + U) — N{T) > }[N(T + U) — N(T)].

An announcement of this result appeared in [5].
A consequence of the proof pointed out to me by H. L, Montgomery
is the following.

COROLLARY. Let m denote the multiplicity of a zero of the zeta-function
ono =1(2. Then

33U T
Lim—1) <5 —lgs,

where Y. is over the zeros in the interval from 1/2 + iT to 1/2 + (T + U).
From this follows at once

66U T
) m <y —logoo

mx2

The basic idea of the proof can be developed quickly although the
subsequent details are lengthy. Let A(s) = n~/2 n(s/2). Then

h(s) i(s) = A(1 — 5) L1 — 9). (L.T)
By Stirling’s formula A(s) = exp f(s), where

§

1
f(6) =4 — Dlog - — 3+ G+ 0 () (12)
for |arg s | < 7 — 8 and | Im log(s/27)| < . Differentiation yields
4 e s 1
GO =F) = 4log5—+0 (). (1.3)

For | o | < 10 and large ¢, it follows that
F105) + /(1 = 5) = log(t/2m) + O(12). (1.4)
Taking the derivative of (1.1) and using (1.1) to eliminate {(1 — s) yields
RS L) + (0 —9)] = =) ) — A1 — LA —9).  (1.3)
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On s = 1/2 + it the right side of (1.5) is the sum of two complex
conjugate, and zeros of the right side will occur where

arglhl'(1/2 + it)] = =/2(mod ). (1.6)

Taking account of (1.4), it follows that the zeros due to (1.6) are those of
h{(1/2 + it) on the left side of (1.5). Since 4 is never zero, they are the
zeros of {(1/2 -+ it) itself. Thus where (1.6) holds there occurr the zeros
of {(1/2 4 it).

By (1.1), if x(s) = k(1 — s)/h(s), then {(s) = x(s){(1 — s) and so

L'(s) = —xORLf ) + /(1 — 141 —8) + &1 — )} (1.7)
Thus by (1.6) the zeros of {(1/2 + #) occur where
arg(h(1 — sHLf'(s) + f'(1 — ) (1 — 5) + {'(1 — s)}) = m/2(mod =)
on o = 1/2 or, what is the same thing, where
arg(h(sK[f'(s) + /(1 — 9] &s) + L'(5)}) = =/2(mod =) (1.8)

on ¢ = 1/2. But arg k(s) is available from (1.2). Because of this and (1.4),
it suffices in determining how frequently (1.8) holds to find the change
in the argument of

G(s) = i) + L@ () +f(1 — )] (1.9)

on the 1/2-line. Indeed, if arg G(1/2 + it) did not change, it would follow
from (1.8) and Stirling’s formula (1.2) that {(1/2 + #) would have
essentially its full quota of zeros, Ni(T') = N(T) + O(log T'). What will
be shown here is that arg G(1/2 + i) is sufficiently restricted so that
the Theorem can be proved.

Let D be the closed rectangle with vertices at 1/2 + (T, 3 4 1T,
3 +4(T + U),1/2 + (T + U). Putting aside for the present the compli-
cation of zeros of G(s) on the boundary, the change in arg G(s) around D is
27 times the number of zeros of G in D, Ng(D). On the right side D

|GG +if)— 1] < T+ 0QD)
12 (1.10)
+j S 400 <13
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for large ¢. Hence arg G changes by less than 7. On the lower side of D,
Jensen’s theorem is used in a familiar way [1, §9.4] on

G(T + w) + G(—iT + w) (1.11)

in a circle of radius 3 with center at w = 3 to show that on this side
arg G = O(L). A similar result holds in the upper edge. Thus

arg G(1/2 + it)]5*Y = —2aN4(D) + O(L). (1.12)

It is important therefore to find an upper bound for Ng(D), the number
of zeros of G in D, in order to find the change in arg G on the 1/2-line.

2. AN INTEGRAL ASSOCIATED WITH THE NUMBER OF
ZErROS oOF G IN D

An upper bound for N4(D) is found in a familiar way using a lemma
of Littlewood [1, §9.9]. Let a be a function of T to be specified precisely
later. For the present, it suffices to take 0 << @ < 1/2 and

112 — a = O(L/L). @.1)

Let D, be the closed rectangle with vertices a + 7, 3 + T,
34+4T+ U), a+ T+ U). Let F(s) be analytic in D;. Suppose
F(3 + it) # 0. Determine argF(o + iT) by continuation left from
3 4 7. If a zero is reached on the lower edge, use im F(o + T — ie)
as ¢ > +0 and limF(o + (T + U + ¢€)) on the upper edge. Make
horizontal cuts in D, from the left side to the zeros of F in D, . Take
[ log F(s) around the contour consisting of D, and the cuts to get

T+U T+U
[ tog | F@tinidt— [ log | F3 + i) dt
T T
. f3 arg F(o + i(T + U)) do — fs arg F(o -+ iT) do

=2nY dist, 22

where Y dist is the sum of the distances of the zeros of F in D, from the
left side. This is Littlewood’s lemma. It will be applied not to G but to
G, where ¢ is a mollifier the rationale of which will be explained later.
Let y = T7/2/L%, Then

P(s) = Y il (2.3)
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where 3 is for 1 <j <y and

_ p(j)logylj
b, = o logy (2.4)

where p is the Mobius function. It was already shown in connection

with (1.11) that arg G(o + ¢T) and arg G(o + (T + U)) = O(L).
Similar reasoning applies to . Hence

f * arg(@Glo + iT)) do — O(L)
and similarly at T 4 U. From (1.9),
U T+U
[ 10gGE +iyar = log 43 + it) dt + O(UL).
T T
Since for o > 1

An)

nlogn

log {(s) = —),
it follows taking the real part that
T+U
| 1081 6@ + ity at = O(UIL).
T
For the entire function y(s), let
$(s) =1 4 h(s)-
Then for o > 3, since | b; | < 1,

dv 1 51
w S T23 <

2

1 1 b
|‘/‘1(5)|<§;+§+L %

Therefore, log (s) is analytic for ¢ > 3. Integrating on the contour
o+ iT, 3<o<w; 34+ T<t<T+ U; o+ (T + U),
3 < o << o gives

|f:+"1og¢(3 +it) dt( <3 f’;_‘j = o)

and so

L”U log | $(3 -+ it)| dt = O(1).
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Taking F = G in (2.2) and using all of the above,
T+U
[ tog | 4G(a + it)l dt + O(UIL) = 2n ¥, dist,
T
where here the distances are to the zeros of )G in D, . These zeros
include those of G itself in the closed rectangle D, Ng(D). These latter

are at least distance 1/2 — a from ¢ = a. Hence

f " log | 4G(a + it) dt + O(UIL) > 20(1]2 — @) No(D).  (2.5)
T

Using the concavity of the logarithm,
T+U T+U
[ oglyGa +inldt =12 [ log | 4Gla + i dt
T T

< 1Ulog (—ll]— fTT+U| 4G +i)edr). (26)

The role of ¢ is to make the last inequality sharper since | 4G {2 is
flatter than | G |2 itself.

To compute the last integral it is necessary to express G(s) by the
Riemann-Siegel formula [4; 1, §2.10; 6] which is

i) = fil8) +x() fols), - @7
where
56 =57 [, S 4 (8)

where C is the line of slope 1 through w = 1/2 and with Im = decreasing.
Similarly,

1 e—miwigps—1

)

fls) = 3; fc ~imoa (2.9)

where C has slope — 1, passes through w = 1/2, and has Im = decreasing
From the derivative of (2.7) follows

G(s) = A(8) + (L) + xf (DIE) + /(1 — 9))- (2.10)

Deforming the contour of (2.8), for | ¢ | < 10, so that it goes through the
saddle point, essentially at @ = (¢/2m)1/2, yields [4]

fi(s) = &ls) + O(t7),
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where

a) = Yy (2.11)

n<(tf2m)/2

as is familiar from the approximate functional equation. Similarly for
the derivatives, one finds

() = —gas) + O(t~/log 1),
J2'(s) = gs(s) + OtV log 1),

where
()= Y n’logn, (2.12)
n<(tf2m)L/2
gGi= Y ntlgn (2.13)
n<(¢/2m)l/2

It is a consequence of Stirling’s formula that [1, §4.12.3] for | o | < 10,

7t

X() = (5‘;)1'2_" exp [ - — it log ﬁ] (1+o (—i—)) (2.14)

Note x, depends on o where

1/2—¢ - .
xt) = ({1—7—) exp [—4i — it log ﬁ] (2.15)
Then because of (2.1), (1.4) and the above yields in (2.10)
Gla + it) = H(a + it) + Hy(2), (2.16)
where
H(s) = g1(5) + [—2:(5) + x:(2) £(5))/log(#/2) 217
and

Hy(t) = O(t7) + (1 goa + it)| + | gala + 32)]) O(7Y)
= O(1), (2.18)

since by (2.12), |g(a + it)] = O(t'/4log t) and similarly for |g;|.
From (2.16),

T+U
f | $G(a + it)|2 dt
T

— L”" | $H(a + it dt + O ( jT”U | Ey(e) Yla + i)l di)

1/

+ ([ vr@ e a) o ([T By a4 i d) ). 219)
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From (2.3) and (2.4) follows in a standard way that

[ 4@ + it at = UL b2 + O log T)
T

= O(UL).
From this and (2.18),

[ 12000 wa i e = o,
Thus (2.19) becomes
J7 106t - injran = [ VB i ar -+ O@)
1 O(U4) ( f:“'] JH(a + it)? dt)l/z. (2.20)

Most of the results that follow concern the evaluation of the first integral
on the right of (2.20). By (2.17),

T+U
[ 19t it =T+ T+ Tog + Dy o+ I

+2Relyy + 2 Rely, (2.21)
where
T+U
L= [ le(a+ i), (2.22)
T+U .
Lo = [ Igale + i)l drflog*(t/2m), (2.23)
T+U
Iy = [ 1 I Lga(a + i)l deflog(f2m), (224)
T+U . -
Le=—[ " 141 eusale -+ it) diflog(ef2m) = I, (2.25)
T+U .
Lo = | 14 Petgle + i) diflog(tf2m), (2.26)
T+U .
I = _fr |4 | gok1Za(a + it) diflog?(t/2m). (2.27)

The evaluation of the I's which begins in §4 is similar in some respects
to analysis done by Selberg [2].
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3. SoME LEMMAS

Lemma 3.1. Let f(u) have a continuous derivative f'(u) for u = 1.
Let f(u) -0 as u-— oo, and let f(u) be monotone for u > x. Then for
large x,

Y fy = f@ydu+ 1)~ [ £ + 112 — ) du
1<nge 1 1
+ O(f (=) EXY

where [u] is the integral part of u.
Proof. 'The well-known proof follows.

Y fo) =] fwau+],

1<nge

where
=] fede+ 12—
— 120 + @+ 12— 0f() — [ F el + 12— 9 du

+ [ Foe + 12—

Since f'(u) is of one sign for « > x and f(co0) = 0, the last integral is
O( f(x)) and this proves the lemma.

Let 4, and A4, be positive integers, and let (4, , A,) denote the greatest
common divisor of 4, and 4, .

Lemma 3.2, Letl < A,, A, < T2, Let (4, , A,) = 1. Let ¥ denote
a sum of over jy, j, with 1 <j,, jo < T2 and such that only the terms
Sy 7 jods
are included. Then, with a satisfying (2.1) as usual,

g

N 1t 1og T
L Tiog(jsAyi Ay < 1007 log T. (3.2)

Proof. Divide ¥ into two sums 3, and 3, . For 3, , let
s _ 1 jelly 3

~ or
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Then
Jit ( -_a)2
21 Toglarap = *\ 2,7
T1/2-a/2 \2 e
<16 (r——) <1007 (33)

For 3,,

1 jeds 3

oo J2te o

2574, 53
and so

o " .

T ) ) o W
Zz [ log(j242/j141)| = 22 [ J2As — j1 A1 | 11%°
(rdsjudp}? 1
| jeds — j141 | 1%
1
< YA, AN T2y
44y Z [J2As — j1d4 |

The case j, A, — jiA; = 1 will be considered. The other case is the
same if the order is reversed. Let m > 1. Let j,’ be the least j, > 1 for
which there is a j;" > 1 such that

<4y

(3.4)

Jo' Ay —ji' 4, = m.
If
724y — 14y = m, (3.5

then subtraction yields (j, — j, )4, = (j; — ji' )4, - Since (4, , 4,) =1,
there is an # such that

Jo = ndy +jd, h=nd, +j (3.6)

The case n < 0 implies that either 7, or j, << 0 by the definition of j,’
and son > 0.

Let A, = max{4,; , A,}. From (3.6) follows n4,, < T'/2. So for fixed
m the subset of j, , j, for which (3.5) holds contains at most 271/2/4,,
elements. Thus

y 1 4712 1
2 | jade — 14, | = Ay mear ™

< 5T2L/A,,.




RIEMANN’S ZETA-FUNCTION 393
Used in (3.4) this gives

192 -
R 20T 0L,
2 TTog(oAs Ay

With (3.3) this proves (3.2).

LemMa 3.3. There is a small ¢ > 0 such that
7(14c)

I= o exp [tt log —-] (Er—)llz—a dt

= (27.,.)11 rl-ag—irtmifd | 0(11/2—11)
for large r and a near 1/2.

Proof. Lett =r(1 + x) so that

I = (2.”)11—1/2 ra/2—ae—i1‘1'1 ,

where
L= f " explir(l + ) log(l + %) — ira](1 + x)y2-a d.
Let
L= f : explir(1 + x) log(l + %) — irx] dx.
Then

L—1I,— f " explir(l + #) log(l + x) — irs] log(l + %)

exp[(1/2 - a)log(1 + x)] — 1
% z log(1l + x) dz.

An integration by parts shows that

I, — I, = O(1)r).
Expanding log(1 + 2) in a power series shows

(1 + 2) log(l + 2) — = = 1221 + 2g(z)],
where g(2) is analytic for | 2 | < 1. If

w = 2[1 + 2g(2)]*/*
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where the square root is 1 for # = 0, then there is a ¢ > 0 such that
for | 2] <c¢

7 = w - wig(w),
where g,(w) is real for real w and is analytic. Let
—o = —dll — (=1, e = dll + g
Then if gy(w) = 2g, + wg,/,

I = [ e + ug(u)) du

—cy

= * et gy 4 [ ergw) d@p).

—C =0

Integrating the second term by parts gives O(1/r). Hence

I, = [ enirau g I, + J, + O(1r),
where

S = fw TR dy = f N et I2d(u? 2yt

C2 2

and J, is similar. Integration by parts shows J, = O(1/r) and similarly
for J,. Hence

L= " ez gy O(1r).

But an elementary change of contour allows the evaluation of the integral
to give
I, = (2ajry et £ O(1)r),

which completes the proof.
The next lemma is similar to one in [2, Lemma 2].

Lemma 3.4. For large A and A <r < B < A + Aflog 4,

f ? explit log(t/re)](/2m)/>0 dt — (2m)e ri-ee-irtnift 4 E(r), (3.7
A
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where a is such that A'>-* = O(1) and where

A B
E(r)=0(1)—|—0( ]A—r]+A1/2)+O(_———|B—r|+31/2)' (3.8)
Forr <Aorr> B,
f ? explit log(tlre)](t/2m)/—2 dt — E(r).
A
Proof. It will be convenient to use
F(t,r) = exp[it log(t/re)]. 3.9
Let A -+ A2 < r < B — B2, Then
B r(14¢)
[ Ferezmpred = [ @ nepmpredi+ L+ T,
A ril—c
where
4
T = f F(t, r)(t[2n)%-0 dt
r(1—c)

and J, is the integral over (B, r(1 + ¢)). Since d/dt t log(t/er) = log t/r,
integration by parts gives

(my\2-a J, = F(t,r) /2~/(log t}r}il 4
+0(1) f ‘  dil(t1og? 1)

+ O(1/log r/4) j w
= O(l/log r[A4).
For A + A2 <r < 32 4,

1r— 4 1r—4 1
log 77 > 344 23 4 +8A1/2’

and so in any case J, = E(r). Similarly J, = E(r) By Lemma 3.3, (3.7)
holds.
IfA— A2 <r <A+ A2 then

J. F(t,r)1/%-a dt = O(AY?) + J' F(z, ) 1112 d

Ava4l/e
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(where the second term does not appear if B << 4 + 2A4'/2). Note that
for the present range of r. E(r) is of magnitude A!/2. The integral on the
right is integrated by parts to give

0 1o (424 ot

and so again the lemma is valid. The case B — BY? <y << B - B'/2
is treated similarly.

If r <A — A'Y2 one integration by parts establishes the lemma
directly where r is considered first in the range 7 < 34/4 and then
34/4 <r < A — AY%: The case r > B 4 B2 is treated similarly.,

Lemma 3.5. Form =1,2, Alargeand A <r < B < 4 + A/log 4,
t \1/2-a dt
J. L P [lt log —] (_2;) log™(t/2m)

— (2m)e rl-vg=irtmi/A[logm(r|2:r) + E(r)/logm A,

while for r << A or r > B,

8 t\e dr E(r)
L xp [’t log —] (?;) log™(t/27) ~ logm A’
where E(r) s (3.8).

Proof. The case m = 1 will be treated. The case m = 2 is similar.
Using F(t, r) as before, for 4 — A% << r < B + B3

f F@, ”(%)H log((f/t27r) = log(rl/zw) j Fir) (2%)1/2_0 a—J

where

dt

B t
Zflf—a "~
Ft,r) log -0 oo

1
oo |,

1 £112-aF(t, r) 1B
= Tlog(r/2n) [ Tog(z]27) ]

1 BF(t,r)t/2-a 1
ilog(r/2m) )4 tlog(t/2m) [ log(t/2m)

= O(log A4).

@mpee ] =

+

—1/2+a] dt
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By Lemma 3.4, this proves the result in the above range of r. If
r < A — A2, then
B
f F (t, r) 11122 dt[log(t/2m)
A

. F(t,7) r/2-o B
o [ i log(t/2n) log t[r ] 4

1 J‘B F(t,r) t1/%-¢ 1
A

1 [+
1, tlog(t/2n)log t/r Llog tfr = logt/2w

— 12+ ajdt

- 1 _ E@)
—O(logAlogA/r)_logA'

The case r > B -+ B'/2 is treated similarly.

LemMma 3.6. Let 1 <k, ky, <y, and let k = (k,, k;) be the greatest
common divisor. Then

k

L%k

2

= O(log* y).

Proof. Clearly,

S <Earii=Zi(Z )

ik iy ik, T
1 1,2 1 y 2
< = -1 < < log—. + 10
\Z'”]("gﬁn) \Z;]( j )
= O(log® ).

Lemma 3.7. Let K be the region in the first quadrant given by
C, <uw <Gy, Cou < v < Cuy,
where C; > 0 and C3 > 0. Let f, of/0u and f |0v be continous. Let | K | be

the area of K. Let u, be the u-coordinate of the right-most point of K and
vy, the v-coordinate of the highest point of K. Let n and m be integers. Then

% f(n, m) = j fx f(u,v)dudv + ],

607/13/4-2
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where Y. is over the lattice points in K and
d
| J1<21f lulune +om + D)+ (1 K| +2v’")|%‘,w

+|Kl|g[M,

where | f |y is max | f | in K and similarly for | Of [ou |y and | Of [0v | .

Proof. Let the upper boundary of K be given by v = g,,(u) and
the lower boundary be v =g, (u), for u,, <u < u,, where u, is
the u-coordinate of the left-most point of K and u,, of the right-most.
Then

gprr(n)

Simm =Y [ " foe)do—J, (3.10)

Im(n)

where ¥ on the right is for u,, << n < u,, and
apr(n)
Lh=X[ feo)de—@) =L+ ],
]1 = Zf(n’ ‘l})(?) - [v])gr((:)) r

ope(n)
Jo=-Y fy o g(n, )0 — [o]) de.

Clearly,
| ol < 20w — st + 1) | f|me

and
of
)

| Ja | < ) (gm(n) — gul))

o
Integrating the term in d(u — [u]) by parts in what follows,
uM
T (glm) — gmlr) = [ " (gnl) — g du + Jo + o

=|K|+]3+]4,

where

Js = —(gum(¥) — gn(@)( — [])],¥ = O,
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since gy(%,,) = g,(1,) and similarly at u,, and where

Jo= [ (e @) — W) — ) .

Um

Thus

<[ oG] + '@ da

If v, and vy are the v-coordinates of the left-most and right-most points

of K, then
M
[ Tew @) du = vpy — v + vy — v,

Usm

M
[ 1w @) du = 0, — 05 + 05 — 0.

Um

%,

U,

Thus
| Jal < 2(om — vi)

and so
g
R <K+ | 2]

Proceeding similarly with the main term in (3.10),

op(n)

Z J:l,,.(n)

an(w)

fonoyds = [ au " " o)do+ o+ o+ Jy

Im

=ﬂxf(u,v)dudv + L+ Je+ T

where

am(w)
Jo=—@—)[ feo)dd¥ =0,

Urr aaru)
J=["a—wa|" " Luoam,

Uy I (u

Jo= [ (e — B @ ) £ ) — (0, ) ' (40 i

U
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Thus 5
<1kl Z

"
and much as for J,,
| Ja | < 2(vm — om) | f lne -

Taking account of J,, J,, J5, Je, and J;, the lemma is proved.

Lemma 3.8. Let f(n) be given. Let
g(m) = Y, u(r)f(mir).

Then "
f(n) =3 g(m)

m|n

The proof is easy and well-known.
Lemma 3.9. For large square-free j,

lo ,
Y o8P O(log log j),
?(i
where p is a prime number.
Proof. The function log x/x is decreasing for x >3. Also

log 2/2 > log 5/5. Let ¢, ¢,, ¢5,... be the sequence of increasing
primes 2, 3, 5,... . Let » be chosen so that

O <) @G GG > -
Then for large j

logp < logg;
< )
,,Z,; b4 \; 95

From a well-known elementary result,

"1 .
Y —ngq’ = log ¢, + O(1).

1 7

Another elementary consequence of

T
Y log ¢; < logj
1

is ¢, << 2 logj. This proves the lemma.
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LemMA 3.10. For large square~free j,

log® .
% 22 . 0((log log ).
»l

Proof. The proof is very similar to that of Lemma 3.9. The function
log® x/x is decreasing for x > e2.
The next lemma is a special case of a result of [7].

Lemma 3.11. Let
Jy = 3 B0,
<
ewhere

fO =TI,  f(® =1+ 0(r™), G.11)

p|r

where c > 0. Then

I =T] (1 + fgf’)_k . )(1 - %) log % + O(1),

where [] is over all primes.

Proof. Let
pf(p)— 1) __PHf(p)
A ="5301 BO =55 =1
Then
F(p) = A(p)(1 + B(p))-
Let
A(r) = H Ap), B(r)= Il‘[ B(p).

Then

&) = ¥ 0 40) ¥ Bim)

r<e m|r

Ifr = jm, then

Je) = 3 T2 a(jm) Bom)

imge

=3y = P(m) A(m)B(m) ¥’ £ ](])A(J), (3.12)

mge igx/m
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where Y’ if for (j, m) = 1. By (3.11), there is a constant }; such that
| A(p)) < M,jpe,

and so if w() is the number of distinct primes which are factors of 7, then
| A0 < My, (3.13)

Obviously,

v 2D ag) = 3L ag) + &, (.14)

ige/m
where Y is over allj > 1, (j, m) = 1, and
27+ Mw(j)
IR < ¥ £OMT
izeim J

It is a simple elementary fact that

2logr
log log 7

w(r) <

for large r. Choose j; large so the above holds for v > j; and also

2logM, ¢ L
log log j <§’ ]2

Then
MED e, j =

Hence for some M, and all j,
MPY < M,jen, (3.15)
Thus
c/2
IR <M, ¥ jir < M, (x)

izxfm

for some constant M, . By writing the sum on the right in (3.14) as a
product,

Z#(])A(]) H( A(p))/n( A(P))_{_Rl.

ige/m J Pim
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Thus by (3.12),

- A(p) pi(m) — A(p) B(p)
Jeoy =T (1 + ? ),,é m L T agyp + R

where
| Ry | < Myrore ¥ 2200 4y Bim.

mi—c/z
mge

Since A(p) B(p) = 1 + A(p)/p,
S =TT (1 + 42 5 £ g

? me
and
4
| 4 B = T] [1+-220 (P) | <T(1+ e ) =M, (16)
p|m
where the last product is over all primes. Thus
| Ry | < MM ) m~teiz = O(1),
mge

and so

- A(p) p(m)

J& =T {1+ )Ez 1 o).
But
2
mge m<e 12|m 'rg?gm r]
M(])
L LN L
where . : e
r
,R3l Ex P g/rF\gm;o(m) =0(1).

Since

Z - =log x 4 O(1),
rgw

the lemma is proved.

Lemma 3.12. Let
](x) 2 [l (r)f(r) 1

r<e
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where f is as in Lemma 3.11. Then
_1 f(A =1y, _ 1
J(x) = 3 II (1 + FES| )(1 e ) log? x + O(log ).

Proof. In place of (3.12) now

J) = 3 LB 1o 2 50 D) )y,
mge igaim

where

Ro— 3 KOVAMBm) o 2G) 4o

me m ige/m

From (3.13) and (3.15),
LA < Mafjer?,

and this with (3.16) leads easily to
— O(log ).
The rest of the derivation is very similar to that in Lemma 3.11.
Lemma 3.13. Let
_ 3 HOS0) g
r<e

where f is as in Lemma 3.11. Then

) =31 +%{1—1)(1 — 7)2—) log® & + O(log® #).

Proof. 'The procedure in Lemma 3.12 is elaborated in an obvious way
4. EvVALUATION OF I,
From (2.22),
T+U _ )
Iy = J.T Wgigi(a + it) dt

T+U
:fT+ ylu buy L 1,

a+it La—it yatit ja—it
Ryttt kg Ty
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where the second Y is for 1 <jf,, jp < (¢/27)'/% For k,, ky, Y is for
1 <k, ky <y.Hence, t > T, 21,2 < t, and 2,2 < ¢. Thus, if

T, = max(T, 2nj,?%, 2mj,%),
then

bad T+
I, =% kk“k:a Zh s fl exp (zt loghkz) 4.1)

and now Y forj, ,jyisfor 1 <j, < wherer, = (T + U)2n)1/2 < T2/
and similarly 1 <j, < ;.

Let & = (k, , k) be the greatest common divisor of k, and &, , and let
k, = kA, and k, = kA4, . Then (4,, 4,) = 1. Let

Ly =1, + I, (4.2)
Whel‘e for I{l ,jzAz =j1A1 ) and for I;’l )j2A2 - lel # O. FOI‘ I]’_]_ ) Al |j2

since (4,, 4,) = 1. Thus, j, =jA4, and hence j4,4, = j,A, so that
j1 = jA; . Thus, from (4.1),

, bybss 1
Iu=z B

klakza Z jZGAlaAza (T +U-— Tl)’

where Y is for 1 <j < 7,/A4) where

Ay = max{4,, 4;}
and
T, = max{T, 2mj24,%}.

Since k, = kA, , ky = kA, ,

bklbk,k“z T+U—T,

[ =Y 2ulnt . (4.3)
= X g 7

Clearly, since | b, | <1

1 2
I < " — ,
VBl <X o L o TTog kol

where 3" is for 1 < j;, fo < 7, and j,A4, # j34, . By Lemma 3.2,

" _ 1
Iu = ()(T1 a log T)Z E;a_kz_;
= O(T*%*2log T).
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Since T2 = O(1),

Iy = O(TYV*L) == O(T/L®) = O(U|L®). 4.9
Next,
Iil = 111,1 -+ 111,2 ’ (4-5)
where
by bR 1
In,=UY I]:f“,;eg" Y e (4.6)

s for 1 <j << 7[Ay, where 7 = (T/27)'/2, and

b klbkzkza

LI+ U— 2‘rrj2A 2
111,2 = Z ki“kia Z "

]‘Za

’

and here 3" is for v/4,, <j < /4, . Hence, using (2.1),

B o, U
111,2 = O(I)Z—k?,gz ]Ta

But
Z'j’IE< AT )za (TIA—MT +1)
o) a0 ()
Hence,

By Lemma 3.6,

In, =0 (_Uz_l;ga_:r_) -0 (L—U7) @.7)

Hence by (4.2), (4.4), (4.5), and (4.7),
I, = 111.1 + O(U/L7)~

By Lemma 3.1 with C; a constant,

72!5: 1—12a (ATM)I_M“ 1—12a +C1+O(’L_120_)’

1<i<r [ apg)
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where the last term follows from A4,/r = 0(1/L?) since A, << y. The
above in I, , , (4.6), gives

Pl Dbk t buabudk U
Lo =15 L s — (=~ UX ’1?2122«* O (o)
@38)

where k,, = min{k, , k,}, k), = max{k, , ky}.

5. THE EVALUATION OF Iy,

From (2.23),

I — fT+U ‘/J‘ﬁg2g—2 dt
2 T lOg2 t/271'

- f "y B bub, - logjulogjy __at

a-+it ka—tt a+it a—zt 10g2 t /2.”

As in the case of I;; , summation and integration are inverted and the
sum is separated into two parts: Iy, for jyd, = ji4, and I, for
j2ds — j1 A4, 7~ 0. Here in the case of Iy, there occurs

T+U dt 1
3 l J 2442 — O _ _
frl exp (it log JlAl) Tog? £]2m (z [Tog(GaAaln )] )

as shown by integration by parts. Since logj, << 2L and similarly for
log js , I3 can be appraised by Lemma 3.2 just as was Ij; to give

I, = O(UILY). G.1)
For I, , in place of (4.3), the result now is

. v bubikt o, logjd, logjA, (™Y dt
I = Z k2ek2a Z 720 J. T log® t[2n °
Sincefor T, <t << T+ U,

1 U
Togtion L2 5 +0 ()
Iéz = 122.1 + 122.2 + I22,3 s (5'2)

where

bibi k2 < log jA, log jA,
I2I..1 =Z‘2‘Z ’;ei"kk“ Z g/ ]2a &/
2

and as for I}, ,, the inner sum is for 1 <j < 7/4,, . Here

b b k% <, log jA, log jA .
T = Lzz l;zlz;c]:za )Y gJ ;2«; BIZ2 (T + U — 2n24s),

(5.3)
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and as for I, ,, 3" is for 7/4,, <j < 71/Ay . Finally,

. log j4, log jA,
Ips =0 ( TIL3 )2 k2og2e 1<9<§/AMT '

Because T7-%¢ = O(1), the inner sum is O(L3) Thus

fans = 0( )Z kiky
and by Lemma 3.6,
Ins =0 (IUT)

As regards I, , , treating it much like I, , gives

s = 0 (17)
Hence
Iy =Ty + 0 (7).

The inner sum in I,,,, (5.3), is evaluated by Lemma 3.1 to give
log jA, log j4, "4y log vd, log vA,
Z ;2a f ;2 d
1
+ Cylog A, log 4, + Cylog A, + Cy + O(A\L27),

where the term in log A4, is replaced by one in log A, which is allowed
by symmetry of the outer sum in (5.3). The term in O(4,,/7) is O(L-%)
as in I11 and is incorporated into the error term O(U|L?). Integrating by
parts gives

f"/AM log vA4, log vA4, do vl —2 log vA, log vA4,
1 228 (1 —2q)
_ o'%(log v4, 4 log v4,) TP 72 ]"'/AM
(1 — 2a)? (1 —2ap3),
1 2ak1 —2a

= TR logrlog Tom
(1 —2a) kL% BT OB

7.1—2ak1—2a 2,,.1-—2ak1—2a
T 0= 22 R (tog 7 + 10g 7 Fs ) U= 2pr=
1 1 Ry
— gy g log +(“2a)?(1°g 7+ log )
2
T — 228
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Hence,
Iy = ZLng_-zza) Z b;:;b]:a’f log
Lz(({fz.;a)z z 3:‘;";:5? (b + 1og TT]Z”—)
AL ke

v, 1 bubufie) ko Ry
- 17(1 24 Cz) L pmpE k“kz“ 3 le g

2 by by ke
‘?((1—2a)2 +G) X e o8 k

A rearmyA)) f’-'i;%’;;—;— + OUILY).

6. THE EVALUATION OF I

From (2.24),

T+U _ t 1-2q dt
In= | wleats () Tog? 12

_ fr+uz . by,bs log f1log i, ( t )1—2a dt

a+itka—zt 1~a+1t 1—a—it log2 t/21r *

27

As in the case of I}; , the symmation and integration are inverted and the
sum separated into two parts I3; for j,4, = ji4, and I3 for
Jely — 714, # 0. Integration by parts shows as before that

f:u P (” l°g jzAz )(217)1 - logzd ﬁ/z,, =0 (L2 | log(}lAz/jAl)l)’

and much as for I;'z ,

I3y = O(UJlog? T).
For I3y , the result is

. bklbk‘kz_sa , lOng1 long2 ™+U ._t__ 1-2a dt
38 ™ z k1k2 Z jﬁ—ﬁa J;.l (2.”,) logz t/2" ]

where the inner sum if for 1 <j < n/4un.
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By the mean value theorem,

() ) m= - DOlgp) =0 ()
Now

Ig = Igg s + Ing + 1333
much as for I3, and I , and I, 5 are disposed of as before. Hence with

72480 by bk . log jA, log jA
133.12 12 Z kllflk2 Z g j21—2a 2’

where the inner sum is for 1 <<j << 7/4,,
Iy =I5,y + O(Ullog’ T).
The inner sum in Iy, ; is evaluated by Lemma 3.1 to give

¥ log jA, log jA, _f7/AM log vA4, log v4,
1

]'2—2(1 72— —2a
+ Cylog A, log 4, 4 Cglog 4, + C,
+ O(ApL23/7).
The last term is treated much as for I, ; . Integration by parts gives

f’/AM log v4, log vA4, do
1

p2—2e
.U—1+2a
= '—;—(“1—;—7‘;)— IOg 7}141 IOg ‘UA2
g-1+2a Yg-1+28 7/ Ay
03¢ (log w4, + log v4,) — = 2a)3]
—l+2ﬂkl 20

~ = e 0B TloB k

—1+2ak1 2a
————————(1 Sy En (logv' + Iog 3P ) T —2ap ke
1 ky 1 k, ks
g gy g +(—za)z‘(’°g? + log <)

2
T i

—1+2ap1—2a
2 lH2agl
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Hence,
. T 1—2GU bk.\bkz Tk
I = — 2L(1—2a)Z [ lng
1—26U bklbkz ‘l'km
m 3L 4 log =
! —2a)2L22 Kk ( kM)
2712y 5 by,bik
T (T =222~ Rk
-ty bbikt
T (1—2a +C) L — Rk "log % g 7 k
Lt 2 bbbk, R
Iz ((1 — 2a)® + Cs) Z Rk, log—k—
T2y 2 by by 220 U
% ((1 —2ap T )% kT O (z7) ©2
7. EvaLuaTION OF I,
From (2.25),
+U N dt
I, = —'L g 2 __log 12’
r+U B dt
IZl = '_J‘ ‘l“ﬁglgz log t/21r »
™ biybrs 1 logj, dt
Ly = J‘ Z ka+ztka—zt ]a+zt Jg—it log /2w .

As in the case of I;;, the order of summation and integration are
inverted and the sum is separated into Iy, for j,4, = j;4, and Iy, for
7oAy — 14, # 0. The case of Iy, leads as for I, to

17, = O(U/LY.
Just as for Iy, , here I, finally yields
I, = I12.1 + O(U/U)-

Moreover,
Ly + 1y =Ly + 15,1 + O(Uflog" T),
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where

U b b,k < log jA, + logjd
112’1_{_121,1:_74_2 2};23“ Z gJ 1]_2a gJ 2

and the inner sum is for 1 <<j < 7/4,,. By Lemma 3.1,

y log j4, + log j4, _ J‘IT/AM log v4, + log v4, Jo

]‘211 z)211
+ Cylog 4y + Cy + O(AreLjr),

where Cj includes also the coefficient of log 4, which is legitimate
because of symmetry. Integration by parts shows

J'T/AM log vA, + log v4,
1

.Z)Za
pl-2a dpl-2a  qr/dy
= T (log v, + log vd,) — m]l
r1-2ak1-2a 2r1-2af1-2a
= T—2Zai= (tog 7 + tog " ) T A= 2ap

1= (1°g?+1°gT) T U=y

Hence,

Ur-ts bk (s ko,
TR B, 2 (b2 + 1og kM)

2t o bpigk
T A= 2aRL & R, e
U, 2
il

2Ly =1, + 1y =

b, b, k2o k
1—2a4 S) ) I;elf“’;:z“ log?l
2

Uy 2 bubif®
((1 77+ 6) % RIo3e

+ O(U/LY). (1.1)

+

8. THE EvaruaTioN oF [

From (2.26),
T+U
Iy = L Yubig, Goftn dt[log t[2m.
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The computation here is different from the previous ones and more
complicated. Here,

; by,b 1 logjs 7V t \1/20
— p—mif k1Yks 2 .
Iy =e 42 X 2 e ]l—a le (2,”)

X exp [it log thy ] dt
2mejy joky 1 log t/2m°

where as before 1 <k, k, <y and | <j},J, <7y < T2 Using
Lemma 3.5,

Ils = Iis +Ifa )
where

” L 1 log j, 2mjy joky
|Ixa | < L Z klakza Zjlajé—a E ( k2 ) (8‘2)
with the above limits and where

blclbkﬂkl_za

2

2 10];(_]:]12(;5]’ kzz) exp[—2mijy joky[Ry), (8.3)

where for I;3 the inner sum is for

Ty < 2ajohafke < T+ U

Iy =2n Z

or, since Ty = max{T, 2nj,?, 2my,%, for

Thy _ .. _(T+ Uk
27Tk1 = = 27Tk1 ’

.k . (8.4)
Jiey hk
E ShsT

To appraise Iy , note that if 2uj, j.k, [k, < 3T/4 or 2njizk, [k, > ST/4,
then E = O(1), and so this part of Ij; is dominated by
O(1/L) ¥, (log jo)/(Fske s jo)** = O(yT) = O(UJL*) (8.5)

so that only the case
3T)4 < 2mjyjubylke < STJ4 (8.6)

remains. The term O(1) is E is already taken care of above. The next
term in E is associated with

TN Ty — 2mjrjehafke | + TP7).

607/x3/4~3
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Using (8.6) in (8.2) shows that the part of Ij5 associated with the above
term is dominated by a constant times I3 , where

T

Y4 J— 1 i
s = 7m L X T g gl 7 TR

This will be summed over all j,,j, <7, and &, b, <y. There are
three cases. First, for j, <7 and j, <7, T, = T. This part of Ij; i
given by

_1__ Z i z T kz/ (27Tf2k1)
T2 = ky = | Tiko/(2mjohy) — jo | + TVhRy/(2mjsky) ©

8.7)

Summing first on 7, , if the absolute value term in the denominator of the
innermost expression is less than 1/2, then the quotient is at most 71/2,
Discarding the last term in the denominator, the rest of the sum on j, is
dominated by

(2L + O(1)) Thy/(2mjkr).

Hence, this part of I} is dominated by two sums. The first is
p 1 y

ol Y —kl—gl = O(T'2yL) = O(U|LY).

Tysky 2 Gy
The second sum is

k

sky 71 4,

T1202L + O(1)) iz}.l = O(T¥yL3) = O(U/LY).

If, for 7 < j, < 7, , the sum in the right term of (8.7) is for j, <j,, then

1 = 2mj,%. The procedure is still as above. Finally, for 7 < j; <{ 7, and
j1 > Jz, the sum is carried out first on j, with T} = 2zj,2 and with
obvious changes in the details. Hence, in all cases,

I, = O(U/LY). (8.8)

For the last term of E, Bis T + U, and so unlike the above, there is now
only one case with the first sum always on 7, . The result is as for I .
All this yields

I, = O(Ujlog’ T)

and so
Iy = Ij; + O(Uflog" T). (8.9
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Turning next to Ij3, (8.3), let k, = kA, and k, = kA4, as before.
Suppose first that j, is restricted so that

A, j, = j(mod 4,), 1<j<4,—1,

and denote this part of the sum of Ij3 by I35 ; . Clearly,

A
).

Hence, using partial summation and recalling (8.4),

. . A
Y. expl—2mijujody/4g] = O (32
i1

-1—2a

J1
— = exp|—27i A, (A (0]
2 Toglu 7ol Pl sl Al = (7

)

Since (4,, 4,) = 1, whenever j, goes through any successive set of
integers of length A, , 4,j, goes through the whole residue set (mod A4,).

Summing next in j, , j, goes through at most r,/4, successive sets of
integers each of length 4, — 1 and for each set j goes from 1 to 4, — 1.
Hence,

jl-2¢ 140 1, ..
Y B oo omij Ay Ay

Jarh log jyjska/ks
Y ( )Agl( A, b ) (0T 2L2).
AN =J
Thus,
Lys = O(TLY) 3. 4 = O(yT*L%) = O{UILY).
Eyoky

Denote the part of Ij; for which 4, | j, by I3, . Then from (8.9) and
the above,

Il3 = I]3.1 + O(U/L7)'
Let j, = jA, . Then by (8.3)

bklbkz kll—zaz 120 08)%s log jAs (8.10)

113,1 - 2#2 log] ]A »

where K will be described. By (8.4), the inner sum is for

T, _.._T+U_ i _._ A
-2—71T1<]1]<-m1—, << .

(8.11)
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Thus, K denotes the region in the j, , j plane which satisfies the above
inequalities. Note that K is empty unless k, < %, . An easy computation
shows that in K

T4, <j < /4, (8.12)

since 7/A, and 7,/4, are the least and greatest height of K, respectively.
Summing first on j, in K,

Zléz}(ZﬂAJ )

J,is€K
UL T2
< A T (8.13)
where use is made of (8.12).
Let
b b 2 a —20
Lyy = L Ty L logjd, (8.14)
Due to (8.11),
1 1 log(1 + U/T) 1
logfijd, L 0( JE ) o (IIT)
Hence,
1 o1
Ly =13, + 0 (Ifz-) = —k—Z-;L
12
By (8.13),
U k T2 1
oy =Tns + 0 (75) Lo + 0 () 2 -
By Lemma 3.6,
U T1P2
Igy =1+ 0 (7,7_) +0 (_LToy—)
U
=Iys + O (37)- (8.15)
Thus,

Iy =1, + 0 ({L’;) (8.16)
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Now, Lemma 3.7 will be used for the inner sum of I3, . In the notation
of Lemma 3.7, | K | satisfies

UL

K| < A,

by proceeding much as in the derivation of (8.13).

It has already been seen that v,, = 7/4; and vy, = 7y/4,. An easy
computation shows that u,, = 7, and u,, = 74,/4, . For the interior sum
in (8.14),

f(u, v) = ul~2 log v4,

and so
fu=om, |Z| <o), |Z] -of)

Replacing u by #,, and v by v,,,

[ f1m = O(L), l 6ul LA] ) \ 67}\ a

2
Thus by Lemma 3.7,
UL A, | ULP\ o
J=O(L71+—T—+j4:+ﬁ2") = O(LT*?)

and
Y ji* log jA, = F + O(LT®), (8.17)
K

where

F = ﬂx ul~2s log v4, du dv.

Using polar coordinates,

F=| f r1~2(cos )12 log(r sin 04,)r dr do, (8.18)
K

where now K takes the form

____1_‘___<,2<___7;.—_t£__ 1 él_
27A,sinfcosf ~ T 2mA;sinfcosf’ 4, ’
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Let 72 = x so that

1 p L)
Py (costp-an [ a1 log(ssin? 0. 4.9 dr, (8.19)
4 % x)
where
_ T o THU
¥t = 504, sinOcos B’ " 2nA, sin § cos §
6, — tan-(1/4,), 8, — tan—Y(A,/Ay?).

For an f(x) of class C; , Taylor’s theorem with a remainder gives

f:zf (%) dx = (% — %) (1) + (3 — 21)* O S [m);

where |’ [y is max [ f' | on x; < & < &, . From this,

&
j /- log(x sin? 0 A,%) dx

o

—( T\ U o (TAz2 tan a)
= 271') (A, sin 0 cos 0@ 5\ " 274,
U3L
+0 (_TA1 sin 6 cos 6 )
Hence,
F—F, +F,),
where
AU (% (cot f)-a  (TA2tan 0
b= sﬂA§3/2l—aL snfcosd © ( 2 A, )de
and
UL b2 do
F,=0 ( TA, )J‘gl sin§ cos 6

If the change of variables tan § = v is made, then

and
A/ 4,2
r=o(z), %=0lm)=°lim)
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Hence,

U
F=F 40 1Ls). (8.21)

Using this, (8.14), (8.17), and Lemma 3.6,
Ly, = I3 3 + O(LT2y) + O(UIL?)

= L33 + O(U/LY), (8.22)

where
2l g, (8.23)

133"‘ L 2

Here, 3’ denotes k, < &k, since K is empty otherwise. From (8.16)

nd (8.22),
and (8.22) Ly = I35 + O(U/LY). (8.24)

F;, (8.20), is evaluated by integration by parts to give

l-2a]] .v—1/2+a1 T4 \ |42
h=- grd@®Mm e § —g 8 ( oA, ) 4
sl-2a]7 g-l/2+a A/ 42
— 8ﬂA{3/2)—a (%, —_ a)2 1745

_ 7_1—2aU A;—za
" 4n(l — 2a) A%
1 2aU k
t ol =204, 8 F,
Tl—2a U A;—2a + Tl—zaU _1__
T 2n(1 — 2a) A% T 2n(1 — 24 4, °

L

(8.25)

Used in (8.23) and with (8.24),

m-2U % by bick
T 20— 2a) & ki

AU o bbk | Thy
(1—2a)LZ Riak, 18 By

-2y 3 bklbkz -2y 3 birbrk
T U —2aPL % kR T (1= 2apLL Rk

+ O(U|LS). (8.26)

113 ==
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Since ky, <<k, , k; can be replaced by k&, and k, by &, . If b, b, is left
intact and ¥’ replaced by ¥, the sum doubles to give

U g bbyh
AT = 2a) &k, f20

-2y Z bklbk2 km
T U= 20L& ek,

I‘ZGU Z bk1bk2
T (0 —2apFL & kR

2Uyy = —

T2y by,br:k
T U= 2aPL X ma O( ) (8-27)

9. THe EVALUATION OF [,

From (2.27),
oo
w=—| et diflog?t/2m)
Proceeding much as for I,; instead of (8.16),
Iy = 123,2 -+ O(U/L7)»
where instead of (8.14)
123,2 — L2 Z bklbkz kl —2a 2]% —2a 10g]1 IOng

In place of (8.17), (8.19), (8.20), and (8.21),
27" g log 4,

92 2

= O(L*T7?) + % f (cos B)1-2 46 f x1/2-¢ Jog(x cos® 0) log(x sin® 04,2) dx

U
—_ 2
— F 1+ O(2T'2) + O (A L7)

where

Fl =

Aoty A TA0 dv
32—a f log log 3j2—a ’
1677141 1/4 27 A 27TA (%

and as in (8.23),
b brs 1100
I = — o 3 P osop, ©.1)
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As in (8.24),
Iy = Iy 4 + O(U/LS). 9.2)
By integration by parts,
1-2a] v-l/2+a T TAz2p (A/4e®
1. _T . 2
= 1674373 | " 12 —a log 5 75 8 5,4, A,
p-1/2+a i T |4/42 v—l/2+a TAz2v Ay/4p2
T2 = 0P B 2ndpw by, TR —aF 8 Tnd; |y,
5 g~1/2+a A/ Ag?
2R = by
gy 241 Thy
= Ter T (B_agarmlley,
2 rky 2412 vk
RV e N (V7 ey
1 437 2 7k,
(V7 R (1 B ol V7 M 3
P 2

(12—apdr=  (12—af 4,V
Used in (9.1) with (9.2), this gives the analogue of (8.26) for I,;, which
with &k, = k,, and k; = k, gives, as with (8.27),
U ¥ bribisk | _kLn_
(A2 —a) & ko

-2y bubik | k,,,
T A2 =a) ) kia - log Z;;

Ty brabisk |

2y = +

+ I — e & ke 18 E;
-2y Z bklbkzk -2y Z bklbkzk
TRL(E —aR L Kok, BI(I2 — ap Lk
A-2ayy bklbkgk thy 78U by bk
IR —ap L Kok, B Ry ATHIT — aF & K ks

AnY bk (U
= L ke, T o (z)
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10. EVALUATION OF THE SuM oF I’s

Combining the asymmetric terms (those involving &k, , k)
Iy + Iy + Iyg + 2(1,5 4 I3 + Iy3) results in zero as the following
tabulation shows. In this tabulation, the terms associated with each sum
are selected in sequence from the successive I’s. There are 24 of these
terms in all.
Al bk (2 2
(1__2‘1)32 k, k2 ( )

Lr L
A2l b bk 2 2
T 2ap & Rk (-7 + )
26U bbk 2 1 1
(1—2a)22kk2“( _L“ "“f‘z—L)

0l b, bk 1 1
(1—2a22 K2k ( T '27?)

-2y bk1bk2 km 1 1
(1 — 2a)? X k,, k“ (’ L2 )

k 2
TUU o bbk Tkm 1,1
(1 —2a) X Kok B R, (* “_)
-2l bk1blc2 1
FaT a1

-2y bk1blc2 km 1 1 1
+ T2 L g | %" (5r — T *3r)

lljazl'fl 5 bubuk 7k (- LI ,1_) =0.

k2k %6z, 72 L 2L
Let

by b,k

So =Y ’sz,;za , (10.1)
bbrk? .k

S, =y ’;2;;:2“ 1og¢1, (10.2)
b.b, k k k

Sy =Y ’;2;;:2& —k}log-ki, (10.3)

o bk
K, = Z —————klk2 . (10.4)
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bpbek® .k
K=Y k*::k log 2, (10.5)

K Z bklbk2

Next, combining the symmetric term in the I’s shows by (2.21) that

b 22
g2 log 2. (10.6)

1 rU :
- L | pH(a + it)? dt

S Em O mre T T T )
5 gy I 1)
+52(LT(1—_1—2@+%)
+72L—:a Ky ((1 —zza)s +6)

+ L_:aKl((l _Zza)2 +C°)+12L_:aK2(1_12a +C5)
1 o(1/L?). | (10.7)

11. EVALUATION OF S,

By Lemma 3.8,
k2 — 2."2GF(]" 2a),

ik
where
FGj,w) =1 (1 = 5)- (11.1)
4K} ?
Thus,
byb coa gy
SO = Z k;cak'gz Z J2eF (] ’ 2a)
2 §l(k,, k,,)
a T by, \2
= YR, 20) (T 42, (11.2)
ilky 1
where j <y and &, < y. Let
b (%) log y/%
S — I _ W 1
o1 ’?;1 kia J,‘Zkl kilzw logy
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If &, = nj, then n < y/j and

o _ a1
% jiEe logy

02>

where

_y (n) log y/(n)) (11.3)

n1/2+a
and Y is for n << y/j and (n, j) = 1. Clearly,

— 3 D22 (5, (1.4

Let x = y/j. Since ¥ << T, x'/2=¢ = O(1). Using the series for 1/({F),

Soz =

24icc w—1/2—a
1 J' x dw (11.5)

2mi i (@~} — @) (@) F(j, w)
The path of integration is now deformed so that

Sozzgo +Q1 "‘Qz +Qs +Q4 ‘f’Qs’ (11-6)

where Q, is the residue at w = § 4 a; Q, is the integral on w = 1 + v,
—o0 <o —L¥%Q,is theintegralon v =L1% 1 — b < u << 1;0; s
the integral on u = 1 — b, —L® < v < L% Q, is symmetric to Q, and
Qs to O, .
If
B 1
" MloglL’

where M is a sufficiently large constant, then [1, p. 53]

IC( )l M, logL, weQy, 05,0,

for some constant M, and

1
AT = OWEloh,  ©e0:,0;.

Let

B =11 (1+ Pw)
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Then recalling (2.1),

Q1,05 =0 ((F(}, 1))”00 5 o

LlO
_of-tosl \_ ;L1
=0 ( T 1)) — O(logLFy(j, 1) L).

Similarly,

0:,0,=0 (W%;gTLZT)) = O(logLF(j, 1 — b)L-%),

o
Qy = O(x*Fy(j, 1 — b) log L) j_m e
= O(j°Fy(j, 1 — b) log*L/3?).

IfQ¢ =01 + Q2 + Qy + U5, then
0, = O(log LFy(j, 1 — b)L) (11.7)

dv
i

and
-Soy =Qo +Qs +Qs- (11-8)

To compute (, , it is convenient to introduce

L
(w— 1) {w)’

where Z(1) = 1 and Z(w) is analytic for |w — 1| small so that
Z(% + a) = | + O(} — a). Clearly,

Z(w) =

Qo = o (x-1/12(w — 1) Z@)/F(j, )

1
S N O

o i o8 -0 5L

oli

w=1/2+a

where use was made of (11.1) for F’/F. Using Lemma 3.9 and
% —a = O(1/L),

Qo = [1 — (3 — o) log(¥[DV/F(j, } + a) + —}7 O(Fy(j, } + a) log L).
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This, with (11.8) and (11.7), gives

Soz = Qoo +Q3 + Q7 s (11'9)
where

Ogo = [1 ~ (3 — @) log(¥DI/F(j,  + @)
and
Q7 = O(log LF(j, 1 — b)/L).

Since Qg = O(Fy(j, 3 + a) = O(Fy(j, 1 — b),

Sta = 0% + O(F(j, 1 — 5))(Q5 + Q1) + O(Qs® + 07)-
Therefore, by (11.4),
Sylog?y = Py — (1 — 2a) P, + (3 — a)? P, + Py + Py, + Py + P, (11.10)

where
szggjiU’zg og™ ., m=0,1,2, (1L.11)
Pr:OUfL)ZMMF%LI—mfI
P, = 0 (“BL) 3 i) R 1 - by
Py = 0 (L) Sy R 1 — by,
Py = 0 (L) S () B, 1 — b))
Let

. 2p1/2—a — p1—2a —_ 1/p2a
Y@ =T1( G0 = 1y )

This is an analytic function of a for | @ — §| < 1/4. Therefore, since
1 _ P
0= ) =112,
Y(a) =] (pf =) + 06 — a). (11.12)
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By Lemmas 3.11-3.13,
P, = Y(@[[(1 — 1/p*)log 5)™+1f(m + 1) + O(log™y), ~m =0,1,2,
and so by (11.12), :

Py, = (logy)y™*t/(m + 1) + Olog™y), m=0,1,2.  (11.13)
Let dy(n) be the coefficient of #n~ in {3(s). Since

(t+ ) <@ +3pm0,
2 ENFEG, L= 8 < Y p2() o1 Y, dy(m)nt=
nj
dy(n) o . d.
<TEArM<IEl L
nli ry/n
YNy &M _ ()
<o(5)2%8 =0 (%)
Therefore,
P, — O(log3L). (11.14)
Similarly,

P, = O(logS L),
P, = O(logL),
P, = O(log?L/L).
Hence, by (11.10),

1 1—22 1 logs L
o= Togy — 73— arley +0(REE). (1)
12. EVALUATION OF S,
By (10.2), ,
b
Sy = L g og (t2.)

To use Lemma 3.8, it is necessary to evaluate

j2a Z I‘L( log

mlJ

== j2 Jog 1F(], 24) + j2 2’:;(1 m) Y logp (12.2)

mj p|m
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for square-free j. Clearly,

ZH'( Zlgp ZF«( Zlogp

mli pim m|i bpr=m
_ vy M)
2, "
logp « plr) _
== o =—F(,20) ), =
pzlj p2w r“z/p 7’2 ;“pz
This and (12.2) in (12.1) yields
p(ky) pks) 20 Jog X1 p(i
log? Sy = . yimsapzace log - i log g W}; Rt G, 20) + 57 (123)
where
o k) k) jea logP
2 ragita K i 18 g g k, m% ) #029) Z P —
DTy log p u(k ¥ \?
= L2 T (z kl(/;)a log -}

F(j,2 1
Z #3(7) ](] a) Z p2:gpl (Sps)?,
Fab]

where Sy, is as in (11.3). Here the evaluation of S§; as above (11.10) can
be more crude than before. It suffices to note that

Qoo = O(F\(j, 112 + a)).
By Lemma 3.9,

Y log_:ﬁl = O(log L).

o p2a
All this leads much as in the computation of P; in S to
St = O(L log L). (12.4)

Inverting the order of summation in (12.3),

o
log?yS, = ¥ ‘i(i)f’(f—zf‘—) SpySiz + O(L log L), (12.5)
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where, with Y’ as for S, and log n = log y/j — log y/jn,

, uln
Sy =3 ;":—Ez-%alognlog%
= Spz log y/j — Sis, (12.6)

where

, _u(n) y
Sls = Z W IOg2 -E

2 2+i0 xw—1/2—a dop

T 2o (@ — 12— af () F(j, w)’

with » = y/j as before. This is evaluated very much like S, by residue-
theory and leads in the same way as (11.8) to

Sy = Q1o + Qs log L + Qs (12.7)

where Q,, is due to the residue at w = 1/2 4 g and is

On = d%; (w12 — 1) Z(w)[F(j, w))

w=1/2+a

(2log x — (1/2 — a) log? x) Z(1/2 + a)

1
F(j,1)2 + a)

+2(1 — (12 — @) log %) (Z(1/2 + a) — 2012+ @) ¥ 5282—)

P

—2-a) (202 +a—2202+a) Y ﬁff“_l‘)gi)

1/24+a __
p”p/+a 1

— (12— a) Z(1)2 + a) ( ;-ﬁ%ﬁ

pUFa Jog? p

—_ (1/2— a)Z(1/2 +a) zm .

pli
Using Lemmas 3.9 and 3.10,

- 1 Y _ — B ;
On = 35T T (2 log = — (1/2 — @) log? j) + O(Fy(j, 12 + a) log L).
Hence, using this and (12.7) in (12.6) along with (11.9),

1 ¥
Sy = — FG 12 Fa) log 7 + QsL + Q.L. (12.8)

607/13/4-4
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Thus

Se2S12 = —Qoln + OF(j, 1 — ) L(Q5 + 07)) + (C&* + 07°) O(L),
where Qy, is as below (11.9) and

- _ 1 A
S AR R

In (12.5) proceeding much as with the later terms of (11.10), this leads
to

tog2 55, = ¥ 202D (_1og 24 (112 — gy logt %) + O g L)

Using the evaluations of P; and P2 as in (11.11) and (11.13), this gives
S, = =172 + (112~ a)log »)/3 + O((logL)IL). (12.9)

13. EvaLuaTioN OF S,

By (10.3),
v (103) bobi™ Rk
Sz :Z kiakz“ logflog?.

2

To make use of Lemma 3.8, it is necessary to calculate

" p(m) kym
ey pcr log j log 7

m|i
= j2eF(7, 2a) logk—.llogk—.2
Y20 e g H( )
+7 (log + log 7 )Z T log m

m|F

Y wlm )log m

mlj

", . 1
:]2aF(]7 2(1) ;IOg—]—lIOg ] ( g_ +l ) Z P2l§)g_pl
i

log p log ¢ log? p
- 2a _ 1(° 13.1
+ %,- (P — D(g>*—1) wZI; 2% — ; (13.1)

where ¢ like p is a prime. Note that

logplog g _ logp \2 log? p
RGN (% 1) - Lo
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As was the case with §;, all but the first term in (13.1) make minor
contributions. Thus

£) uk o kK
S, log?y =Z~l%(/§%%;—/§f:);logk logk Y g 2"F(],241)log71-10g7.2’

2 Y
+ O(L?log?L)
.
_ Zf‘_(f)_Fj(J_’zi) S2, + O(L2 log2L), (13.2)

where Sy, is defined in (12.6). But S, is given by (12.8), and much as in
the computation of S, this leads in (13.2) to

S, = (log y)/3 + O(log®L) (13.2)

14. THE EVALUATION OF THE K;

The evaluation of K, K, , and K, is very similar to S,, S,, S,.
The only significant difference is that the residues are different. As for

S,(11.2), L
I{'0 _ ij—%F(j,z — 2a) (Z —kkll-) ,

i|ky

o :
logt 5K, = ¥ (2 — 20) K,
where, in analogy with Sy, , (11.3),

—y #(n) log y/nj

T -
and as for (11.5),

X 1 r2+io Xx-3/246 Jop
%7 2miJy e (w0 — 32 + @R L) F(j, )’

The residue for K, , in contrast to Oy, has as its significant term

[1 4+ (1/2 — a) log y[j]/F(j, 3]2 — a). (14.1)
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This leads ultimately to
Ky = —— (12— a) + }(1/2 — P o +o(l°gL) (14.2)
(1} logy gy . .

For K, in place of (12.5),

SN
log?yK, = 3 £ DF (1]12 28) KoKy + O(LlogL),  (14.3)
where K, is as above and

K, _Z p 7 alognlognlj

= Ky logy[j — Ky3,

where
p(n) Y
Z ndiz—a log? nj
. 2 24400 xW—3/2+e dop
- ﬁfz_im (w—3/2 + af {w) F(j, w)

The significant term for K, is
[2logy)j + (1/2 — a) log? y/j]/F(j, 3/2 — a),
and so for K, it is
—(log ¥[)/F(j, 32 — a). (14.4)
Combining this with (14.1) in (14.3) gives
K, = —1/2 — (1)2 — a)(log ¥)/3 + O(logL)/L). (14.5)

Finally, for K, in place of (13.2),

YNT
log?yK, = ¥ (1112 2%) g2 4 OL2logt L),
and with (14.4), the significant term for K, , this leads to

K, = (log y)/3 + O(log® L). (14.6)



RIEMANN’S ZETA-FUNCTION

15. PROOF OF THE THEOREM

433

Using S, S;, Sy, Ky, K,, K, as just evaluated in (10.7) gives

1 T+v .
o fr | $H(a + it)}? dt

~ [y — G — 9 + it — 9 1og5]

[ 1 2 2
*\T1T=2 T Ig—2ep I —2a)3]

log y

2 2
+ 12+ 40112 = @) og3) [ + pr =] — ST 2

~4a

+ [y + 12— @) + 40172 ~ 0 log 3] 37—

— [1/2 + ¥(1/2 — a) log ¥] Lz(f#j;a)z + 3},02g(1y 1—2—;‘;)

+ O((log> L)/L).

Let R = (1/2 — a)L. Note that log y = L2 4+ O(log L). Hence,

1T+U .
77 L | pH(a + it)2 dt
1 1 R 1 .1 1
STRTITR T REITR R
1 1 1
~ 2% T IR T R
1 1 1 1 1
“2RTe I TR T TR
2 (1 1 Ry 2R R ¢2R
+ie m Tt awh ) Yo
+ O((log* LY/L) = F(R) + O((log* L)L),

where

1 1 1 25
F(R) = &* (52w + 53x) — 250 — B¢ — 7R

(15.1)
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Since F(R) is bounded for any given R = 0
T+U
[ 1yH(@ + iz dt = o(U)
T
for any finite R and so by (2.20),
+U
[ 146 + ity dt = UFR) + O(U log* LIL). (15.2)
T

From (2.5) and (2.6),
(12 — a) 2aN(D) < 3U log F(R) -+ O(U log® L/L). (15.3)

If R = 1.3, an elementary computation shows that F(1.3) <C 2.3502, and
so for large U, (1/2 — a) 2nNg(D) < .4275U. Since (1/2 — a)L = 1.3,

2aNg(D) < 3290UL. (15.4)

For large t,, if 1/2 + it, is a zero of G(s), then by (1.7) it is a zero of
{'(s) with the same multiplicity, and so by (1.5) it is also a zero of {(s).
In D, let N, zeros of G be on the left side, ¢ = 1/2, and let N, be the
number of zeros in D with ¢ > 1/2. The zeros are counted according
to multiplicity.

Indent the rectangle D with small semicircles with centers at the zeros
on the left side of D and lying in o > 1/2. Let the number of these zeros,
not counting multiplicity, be N,’. Apply the principle of the argument
to the indented D. Let the variation in arg G on the jth interval between
the successive semicircles as their radii approach zero be V; . Recalling
that the change in arg G on the right and upper and lower sides of D is
dominated by O(L), as shown above (1.12), there results

YV, — 7N, = 2aN, + O(L), (15.5)

where Y is over the intervals separated by the N,’ zeros.
Let W; be the variation in

R () + (1 — 9] G(s) (15.6)

on the jth interval (in which V; occurs). W, is taken for increasing ¢ while
V; is for decreasing 7. Recalling (1.2) and (15.5),
U2

T W, = L2]L +0 (<) — @nN, + =y, (15.7)
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The number of times (1.8) holds on the open jth interval must be at least
(W;jm) — 2.

Hence, by (15.7), the number of zeros of {(1/2 + if) on the open intervals
must be at least

UL g ,
5+ 0 () — N, + Ny) — 2N,
UL , U
= 22— 2Ng(D) + N, — 2Ny’ + O (_T“) (15.8)

Now by the remark below (15.4), each zero of G(s) on o = 1/2 gives rise

to a zero of {(s) with multiplicity one greater. Thus there are N; + N’

such zero of {(s). Adding these to (15.8) gives
UL

5= — 2No(D) + 2N, — Ny + 0 (

)

zeros for {(s) on ¢ = 1/2. Recall that N, > N,’. By (15.4), the above
exceeds

34UL|2x

and proves the Theorem since

N(T + U)— N(T) =-2U£+o (TlfT)

As regards the Corollary to the Theorem, if {(s) has a zero of multipli-
city m on ¢ = 1/2, then {'(s) has one of multiplicity m — 1 and hence so

does G(s) by (1.9). The first result of the Corollary now follows from
(15.4).
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