Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

MA3202 Galoisteori Mid term problems spring 2004

Problem 1

- a) In the Euclidean domain $\mathbb{Z}[i]$, prove that gcd(2+iy,2-iy)=1, when y is an odd integer.
- **b)** Prove that the Diophantine equation

$$y^2 + 4 = z^3$$

has only the integer solutions $y = \pm 11, z = 5$, if y is an odd integer.

(Hint: Factor $y^2 + 4$ in $\mathbb{Z}[i]$.)

Problem 2

- a) Prove that if D is a domain that is not a field, then D[x] is not a Euclidean domain.
- **b)** Show that 3 is irreducible, but not prime, in the integral domain $\mathbb{Z}[\sqrt{-5}]$.

Problem 3

- a) Find a suitable number $a \in \mathbb{C}$ such that $\mathbb{Q}(\sqrt{3}, i) = \mathbb{Q}(a)$, and find the minimal polynomial of a over \mathbb{Q} .
- **b)** Let α be a root of $x^4 2 \in \mathbb{Q}[x]$. Write $\frac{1}{\alpha^2 \alpha + 1}$ as $p(\alpha)$, where $p(x) \in \mathbb{Q}[x]$ is a polynomial of degree ≤ 3 .

MA3202 Galoisteori Page 2 of 2

Problem 4

a) Let $x^n - a \in F[x]$ be an irreducible polynomial over F, and let $b \in K$ be a root, where K is an extension field of F. If m is a positive integer such that m|n, find the degree of the minimal polynomial of b^m over F.

b) Let D be an integral domain and let F be a subfield of D, such that $[D:F]<\infty$. Prove that D is a field.