Exercise 34. Calculate the following derived functors:

- $\operatorname{Tor}_n^{\mathbb{Z}}(\mathbb{Z}/(a), -)(\mathbb{Z}/(b))$ and $\operatorname{Tor}_n^{\mathbb{Z}}(-, \mathbb{Z}/(b))(\mathbb{Z}/(a)).$
- $\operatorname{Tor}_{n}^{\mathbb{Z}[x]/(x^{2})}(\mathbb{Z},-)(\mathbb{Z}/(2))$. (Here both \mathbb{Z} and $\mathbb{Z}/(2)$ are modules over the ring $\mathbb{Z}[x]/(x^{2})$ by letting x act as 0.)
- Consider the poset

$$(X,\leq) = \left\{ \begin{matrix} \omega \\ \swarrow & \searrow \\ a & \swarrow \\ & 0 \end{matrix} \right\}.$$

For any $i \in X$ we denote by S_i the Ab-valued presheaf with

$$S_i(j) = \begin{cases} \mathbb{Z} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

For any pair *i* and *j*, calculate all $\operatorname{Ext}^n_{\operatorname{presh}_{Ab}X}(S_i, S_j)$.

Exercise 35. Let \mathcal{A} be an abelian category with enough injectives. Consider the poset $X = \{1 \leq 2\}$. Then presheaves on X are essentially morphisms, and we can consider Ker as a functor from $\operatorname{presh}_{\mathcal{A}} X$ to \mathcal{A} . Note that this functor is left exact.

Describe the right derived functors $\mathbb{R}^n \text{Ker}$: $\text{presh}_{\mathcal{A}} X \to \mathcal{A}$.

- **Exercise 36.** Let $F: \mathcal{A} \to \mathcal{B}$ be left exact, and \mathcal{A} have enough injectives. Assume there is a full subcategory \mathcal{C} of \mathcal{A} with the following properties:
 - for any morphism f in C, which is a monomorphism in A, also the cokernel (calculated in the category A) lies in C;
 - for any object A of A, there is a monomorphism $A \to C$ to some object of \mathcal{C} ;
 - for any short exact sequence in \mathcal{C} (that is a short exact sequence in \mathcal{A} which lies entirely in the subcategory \mathcal{C}), the image of this sequence under F is also short exact.

Show that one can calculate $\mathbb{R}^n F$ by using coresolutions with terms in C (rather than with injective terms, as in the definition of $\mathbb{R}^n F$).