Exercise 34. Calculate the following derived functors:

- $\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z} /(a),-)(\mathbb{Z} /(b))$ and $\operatorname{Tor}_{n}^{\mathbb{Z}}(-, \mathbb{Z} /(b))(\mathbb{Z} /(a))$.
- $\operatorname{Tor}_{n}^{\mathbb{Z}[x] /\left(x^{2}\right)}(\mathbb{Z},-)(\mathbb{Z} /(2))$. (Here both \mathbb{Z} and $\mathbb{Z} /(2)$ are modules over the ring $\mathbb{Z}[x] /\left(x^{2}\right)$ by letting x act as 0 .)
- Consider the poset

$$
(X, \leq)=\left\{\begin{array}{c}
{ }^{\prime}{ }^{\prime} \backslash \\
a^{\prime} \backslash_{0}^{\prime} \\
{ }_{0}^{\prime}
\end{array}\right\} .
$$

For any $i \in X$ we denote by S_{i} the Ab-valued presheaf with

$$
S_{i}(j)=\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} .\right.
$$

For any pair i and j, calculate all $\operatorname{Ext}_{\operatorname{presh}_{\mathbf{A b}} X}^{n}\left(S_{i}, S_{j}\right)$.
Exercise 35. Let \mathcal{A} be an abelian category with enough injectives. Consider the poset $X=\{1 \leq 2\}$. Then presheaves on X are essentially morphisms, and we can consider Ker as a functor from $\operatorname{presh}_{\mathcal{A}} X$ to \mathcal{A}. Note that this functor is left exact.

Describe the right derived functors $\mathbb{R}^{n} \mathrm{Ker}: \operatorname{presh}_{\mathcal{A}} X \rightarrow \mathcal{A}$.
Exercise 36. Let $\mathrm{F}: \mathcal{A} \rightarrow \mathcal{B}$ be left exact, and \mathcal{A} have enough injectives.
Assume there is a full subcategory \mathcal{C} of \mathcal{A} with the following properties:

- for any morphism f in \mathcal{C}, which is a monomorphism in \mathcal{A}, also the cokernel (calculated in the category \mathcal{A}) lies in \mathcal{C};
- for any object A of \mathcal{A}, there is a monomorphism $A \rightarrow C$ to some object of \mathcal{C};
- for any short exact sequence in \mathcal{C} (that is a short exact sequence in \mathcal{A} which lies entirely in the subcategory \mathcal{C}), the image of this sequence under F is also short exact.

Show that one can calculate $\mathbb{R}^{n} \mathrm{~F}$ by using coresolutions with terms in \mathcal{C} (rather than with injective terms, as in the definition of $\mathbb{R}^{n} \mathrm{~F}$).

