Exercise 37. Show that taking pushouts and pullbacks in Yoneda-Ext commutes:

If $0 \to B \to E \to A \to 0$ is an extension in YExt¹(A, B), and $f: A' \to A$ and $g: B \to B'$ are morphisms, then pullback along f of the pushout along g of the extension is the same as the pushout along g of the pullback along f.

Exercise 38. In an abelian category, assume we are given two short exact sequences $0 \to A \to B \to C \to 0$ and $0 \to C \to D \to E \to 0$ as in the first row and last column of the following diagram. Assume that $\text{Ext}^2(E, A) = 0$.

Show that we can complete the diagram as indicated by the dashed arrows, such that also the middle row and column are short exact sequences.

Exercise 39. For a complex X^{\bullet} , we can make a new complex out of its homologies

$$\mathrm{H}^{\bullet}(X^{\bullet}) = \cdots \xrightarrow{0} \mathrm{H}^{-1}(X^{\bullet}) \xrightarrow{0} \mathrm{H}^{0}(X^{\bullet}) \xrightarrow{0} \mathrm{H}^{1}(X^{\bullet}) \xrightarrow{0} \cdots,$$

that is by setting all the maps to zero.

Let \mathcal{A} be an abelian category. Show that the following two statements are equivalent.

- A is hereditary;
- for any complex P^{\bullet} of projectives, there is a quasi-isomorphism $P^{\bullet} \to H^{\bullet}(P^{\bullet})$.