Exercise 5. Consider the poset

$$(X,\leq) = \left\{ \begin{array}{cc} a & b \\ & \swarrow \\ & 0 \end{array} \right\}$$

and the two Ab-valued presheaves

$$F = \begin{bmatrix} \mathbb{Z}/(2) & \mathbb{Z}/(2) \\ \searrow^0 & \swarrow \\ \mathbb{Z}/(2) \end{bmatrix} \text{ and } G = \begin{bmatrix} \mathbb{Z}/(2) & 0 \\ \searrow^1 & \swarrow \\ \mathbb{Z}/(2) \end{bmatrix}.$$

Calculate $\operatorname{Hom}_{\operatorname{presh}_{\operatorname{\mathbf{Ab}}}(X,\leq)}(F,G)$ and $\operatorname{Hom}_{\operatorname{presh}_{\operatorname{\mathbf{Ab}}}(X,\leq)}(G,F)$.

Exercise 6. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor which is full, faithful, and dense. For $D \in \mathcal{D}$ choose an object $GD \in \mathcal{C}$ and an isomorphism $\alpha_D: FGD \to D$. (This is possible since F is dense.) For a morphism $f: D_1 \to D_2$ let Gf be the unique morphism such that $FGf = \alpha_{D_2}^{-1} f \alpha_{D_1}$.

- 1. Show that G defines a functor from $\mathcal D$ to $\mathcal C.$
- 2. Show that α defines a natural isomorphism from FG to $id_{\mathcal{D}}$.
- 3. Show that GF is naturally isomorphic to $id_{\mathcal{C}}$.

Exercise 7. Consider the forgetful functor forget: $Ab \rightarrow Set$.

- 1. Show that it has a left adjoint, given by sending a set S to the free abelian group $\mathbb{Z}^{(S)}$.
- 2. Show that this forget functor does not have any right adjoint functor.

Exercise 8. Consider the forgetful functor $\text{Top} \rightarrow \text{Set}$. Construct a right and a left adjoint to this forget-functor.