(A artininn)
Prop $P \longmapsto P /$ Rad P gives bisections
index proj $/ \cong \longrightarrow$ and dimples $/ \cong$ fig. proj $/ \cong \longrightarrow$ fig. semisimplas/a

Cor: P indec proj \Rightarrow Rad P is a maximal submodule
Cor: A_{A} indec \Longleftrightarrow Rad A is a maximal right ideal $\stackrel{\text { def }}{\rightleftarrows} A$ local.

Observation: A local $\Longrightarrow \forall$ nou-inmtible $a \in A: 1+a$ inwtible

$$
(\Leftrightarrow\{\text { non-invatibles }\}=\operatorname{Rad} A)
$$

Thu (Krull -Schmidt)
M a finite dimensional module on some h -algebras Then M has an essentially unique decomposition in to indecomposables.
\rightarrow unique up to isomorphism
Y cannot be vitim as dined sum (except self $\oplus 0$)

Morean these indecam posables all have local endomorphism rings.

Rem: existence of a decomposition into index is clear: M has finite dimension, for each decomp. step dimension goes down

Lemma 1: M a fid. module, then
M indec \Longleftrightarrow End (M) local
""二" (true in geneal) $M=M_{1} \oplus M_{2} \quad M_{1} \stackrel{t^{\pi /}}{\stackrel{\Delta c_{1}}{\leftrightarrows}} M \underset{c_{2}}{\stackrel{\pi_{2}}{\leftrightarrows}} M_{2}$

$$
i_{M}=l_{1} \pi_{1}+l_{2} \pi_{2} \quad \text { in } \quad \text { End }(M)
$$

one of these needs to be invisible by "local" \rightarrow corresponding summand is $=M$
" \Rightarrow " rote $E_{n d_{A}}(M)$ is a finite dimensional algebra

$$
\left(\subseteq E_{n d_{k}}(M) \cong M_{\operatorname{dim} M}(k)\right)
$$

\rightarrow artinian
If $\operatorname{End}_{A}(M)$ not local $\Rightarrow E_{n d}^{A}(M)=P \oplus \#^{\#^{+}} \mathbb{Q}^{+}$
as right $\operatorname{End}_{A}(M)$-modules
$M=\operatorname{End}_{A}(M) \otimes M$ (note: M is naturally an End (M) - A-bimodule)

$$
=P \underset{E_{n d_{A}}(M)}{\otimes} M \oplus Q_{E_{\text {End }}^{4}(M)} M
$$

since M is index: one of the is O, say $P \otimes M=0$.

$$
\varphi \in P, m \in M
$$

$$
\varphi \neq 0 \rightarrow \exists m \text { s.t. } \varphi(m) \neq 0
$$

$\checkmark \varphi \otimes m \neq 0$ as element in $P \otimes \underset{E n d}{ }(n)$ in Δ
$\varphi=0$ is only element of $P \& P \neq 0$
Rem: Statement is also true for M finite length (but needs a new proof)
Lemma 2: $M=\bigoplus_{i=1}^{m} M_{i} \quad M_{i}$ has locule endo-niny

$$
M={\underset{\bigoplus}{i=1}}_{\tilde{m}} N_{i} \quad N_{i} \quad \text { in dec }
$$

Then the M_{i} 's and N_{i} 's coincide up to iso and permutation.
$\sqrt{\text { Induction }}$ on m.

$$
\begin{aligned}
& \underset{\operatorname{End}_{A}(M)}{\otimes} M \xrightarrow{\text { isl } \otimes i d} \underset{\longrightarrow}{ } \underset{ }{ } \operatorname{End}_{A}(M) \otimes M \\
& \varphi \otimes m \longmapsto \varphi \not \longmapsto \varphi(m)
\end{aligned}
$$

$$
\begin{aligned}
& \text { End }\left(M_{1}\right) \text { local } \Rightarrow \text { Ji sit. } \\
& \beta_{i} \alpha_{i} \text { inntrible } \\
& w \log \beta_{1} \alpha_{1} \text { inwtible }
\end{aligned}
$$

$\rightarrow M_{1}$ is iso a dirac summand of N_{1}
$\underset{N_{1} \text { index }}{\sim} M_{1} \cong N_{1}, \beta_{1}, \alpha_{1}$ isos

$$
\begin{aligned}
& M_{1} \oplus M_{\text {rest }} \xrightarrow{\left[\begin{array}{ll}
\alpha_{1} & \gamma \\
\alpha_{1} & *
\end{array}\right]} N_{1} \oplus N_{\text {rest }} \\
& {\left[\begin{array}{cc}
1 & -\alpha_{1}^{-1} \gamma \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\alpha_{\text {risk }} & *
\end{array}\right] \cong\left[\begin{array}{cc}
1 & 0 \\
-\alpha_{\text {rot }} \alpha_{1}^{-1} & 1
\end{array}\right]} \\
& M_{1} \oplus M_{\text {rest }} \xrightarrow[\substack{\text { nom matrix } \\
\text { volt: }}]{ } N_{1} \oplus N_{\text {rest }} \\
& {\left[\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \text { 楼 }
\end{array}\right]}
\end{aligned}
$$

iso $\Leftrightarrow \alpha_{1}$ and \# isos
$\rightarrow M_{\text {rest }} \leqq N_{\text {rest }} \rightarrow$ induchicly: summand in Crest are same as in Nest up to 150 and outring
L
Now Krull-Schmidt theorem follows from Lemma 1 and Lemma?

General setup for this course:
A a finite dimensional algebra
want to understand $\bmod A \quad(\operatorname{modules}=$ representations)
Krull-Schmidt theorem: may focus on inge camposable modules (and morphisms between inbecomposable modules)

Exercises Find all indec. (contravaviunt) representations of

$$
Q=\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned} \quad Q=<_{1}^{0}
$$

$$
Q=\int_{1}^{0} \sum_{2}^{0}
$$

Show that $Q=\int_{1}^{0} \sum_{2}^{0} b_{3}{ }_{4}$ has ∞-many indec. representations.

Morita equivalence
Theorem: R, S rings
$\bmod R \approx \bmod S \quad \exists P \in \bmod R$ a progenerator C. projective

- $\forall M \in \bmod R$子ep: $p^{n} \rightarrow M$

$$
\text { s.t. } S=\operatorname{End}(P)
$$

$$
\Gamma n \Rightarrow n \quad \bmod R \approx \bmod s
$$

$$
P \longleftrightarrow S_{S}
$$

$$
\begin{aligned}
& \operatorname{End}_{S}(S)=S \\
& \Rightarrow \operatorname{End}_{R}(P)=S
\end{aligned}
$$

P also progenerator
$" E$ " note: P is an $S-R$-bimodule
$\bmod R \underset{\operatorname{Hom}_{R}(P,-)}{\frac{-Q}{S} P} \bmod S$
adjoint pair of functors
both are right exact (P is propichiv)

$$
\begin{array}{ll}
U 1 \\
\left\{P^{n}\right\} \rightleftarrows & U 1 \\
& \left.\approx S^{n}\right\}
\end{array}
$$

this equivalence propagates to cothervels of maps between P^{n} 's $/ S^{h}$ s - these are all of $\bmod R / \bmod S$

