Torsday 31. Mars R Euclidean, fadditive function M?ndecomposable M preproj <=> Indim M = dim M + af 10 M regular <=> X=0 Mprein, <=> x >0

Propi Q connected Euclidean Then R= add (regular modules) is an abelian subcategory
Not a work of a second le
(Men L'Eadd (regular modules) IS an abelian Subcategory
$\int \mathcal{O} \mathcal{O} \mathcal{O}$
arbitrary Printesums
of mod ka Leit. the indusion & comod ka is exact)
Pto D
MNER, SOM ->N
Every indec summand of Inf has a non-zero map to
some indec, summand of N no this summand is not preinj.
dual argument: no summand of Imf is preproj
$=$ $h_{r}f \in \mathcal{X}$
=>hnfeR

Since summands of Kerf have maps to M, Kerf consists of preproj & regular summands For n as In the previous proposition: F dim Kerf = @ (elim M - dim Im f) = den H - den Im f = dim Kert Since no preinjective summande: this implies all summands of Kerf are regular Dally all summands of Cok & are regular 13

Notations When using concepts for abelian categories in R we use "grasi-"
quasi-simples = simples in R
(note: simple KQ-modules that lie in & are quasi-simples, but there will be more quasi-simples)
Notes
T is an auto-equivalence on & (since in & nothing factors through projectives or injectives) Notes
Avasi-Limple modules need to be at the lawer edge of the AR-components ZAco or ZAco/m
of the Alt-companents Zthas or Zhao/~

At is quasi-simple, then its enfire ~-orbit consists of quasi-simples. hemma: Il Mis quasi-simple then I n70 s.t. TM=M. Pto Know: 3 n 20 site Ø (dim M) = kim M din TM

Pick n mininal with this property Recall: (°, °) is positive semi-definite ► If (dim M dim M) >0 then $-\gamma lim 1$ at least one of Hom (and M) or Hom (M, TM) is none-zero. Both are quasi-simple, so any such non-zero map will be an iso, DIF (dim M dim M) = 0 then dim M is an additive function

r (o, o) pos. de on Z#vertices ~ D dim M = dim M so n=1 notes Ext (M, M) = 0 contains almost split sequences (dim M, dim 7M)=0 => at least one of How (M, TM) or Han (YM, M) is non-zero as before, this means that METM

M guasi-simple $\gamma \mathcal{M}^{(3)} \rightarrow \gamma \mathcal{M}^{(3)} \rightarrow \gamma^{-2} \mathcal{M}^{(3)}$ $-H^{D} - T \mathcal{H}^{(2)} +$ TMA MA TM herma Any maphism from an indec to M not starting in $M M^{(2)} 0.0, M^{(n-1)}$ factors through (n-1) mo - - - M

Af By induction on n	
$v=2: \qquad \forall M = M = M = M = M = M = M = M = M = M$	livest split
no every map except autos Pacto-s.	FM factors through
Assume ok for n-1	
Jenduct Pueby of M	· · · · · · · · · · · · · · · · · · ·
M ⁽ⁿ⁾ DTM ⁽ⁿ²⁾ DTM ⁽ⁿ⁻¹⁾	
(not iso by assumption	$(\times \neq M^{(n-1)})$
Note: $7M^{(n-2)} \subset M^{(n-1)} \longrightarrow M$	composes to zero
	· · · · · · · · · · · · · · · · · · ·

 $\int \mathcal{H}^{(n-1)} \longrightarrow \mathcal{H}^{(n-2)} \longrightarrow \mathcal{H}^{(n-3)} \longrightarrow$ J = M⁽²⁾ m M J = J D T M $TM^{(n-3)} \gamma M^{(n-3)} \gamma M^{(n-4)}$ ~ Can larget about component X ~ TM⁽ⁿ⁻²⁾ So our map X ~ M factures through M⁽ⁿ⁾ ~ M henna M⁽ⁿ⁾ is quasi-uniserial Is Enough to show that M' on M's the unique map from M' to a quasi-simple (Then unique maximal submodule reM⁽ⁿ⁻¹⁾ induction)

Notes M⁽ⁿ⁾ has quasi-length n It follows that TM⁽ⁿ⁻¹⁾ C= M⁽ⁿ⁾ _____M is exact Proof by induction on n n=1 OK $\mathcal{M}^{(n)} \longrightarrow \mathcal{N}$ quasi-simple if the composition & vanishes then M^(m) - Dr N is M 2-2- (N) otherwise, inductively: TM⁽ⁿ⁻¹⁾ m 7M

March 2 March $\frac{19}{2} + \frac{11}{2} + \frac{11}{2}$ Should split by factorization. 5 Proposition Any indec regular module over KQ, Q Ruclidean, is of the Sorn M⁽¹⁾ for M quasi-simple That X be regular indec n= quasi-length (X)

Let M be quest-simple soto How (XM) =0 Know: X is not iso to M, M(1), ..., M(n-1) Chas different quasi-lengths) M J X - M A (n) (n) if y is not apc, then of factors through $TM^{(n-1)} \subset M^{(n-1)}$ (this is the unique maximal subobject) 5 composition 5 M^{(n-1)} C M^{(n)} - M is zero 50 q is equ Since quesi-length (x) = quasi-length (M⁽ⁿ⁾) it follows that q is zero

		is uniserial (a fiver consists of	Then the category of regular ka- all indecs are uniserial and its comparents on the form ZA of (mi)
· · ·	for Ce	rtain n?	between different regular component.
	< Mere	are no maps b	between ditterent regular component,