Torsday 31 mars
Q Euclidean, f addifive function M indecomposable

$$
\begin{aligned}
& M \text { prepró } \Leftrightarrow \Phi^{\wedge} \operatorname{dim} M=\operatorname{dim} M+\underset{V_{L 0}}{f} \\
& M \text { regular } \Leftrightarrow \alpha=0 \\
& M \text { preiń } \Leftrightarrow \alpha>0
\end{aligned}
$$

Prop Q connected Euclidean Then A_{i} add (regular modules) is an abelian subcategory arbitrary finite sums
of $\bmod K Q$ (sit the inclusion $X \subset \bmod K Q$ is exact)
Pro

$$
M, N \in R, f: M \rightarrow N
$$

Every indec summand of Imf has a non-zero map to some indec, summand of $N \leadsto$ th's summand is not pere in j? 2 dual argument: no summand of lin f^{2} pecpró $\Rightarrow m \in R$

Since summands of Kerf have maps to M, Kerf consists of preproj \& regular summands
For n as in the previous proposition:

$$
\begin{aligned}
\Phi^{n} \operatorname{dim} \operatorname{Ker} f & =\Phi(\operatorname{dim} M-\operatorname{dim} \ln f) \\
& =\operatorname{dim} M-\operatorname{dim} \ln f \\
& =\operatorname{din} \operatorname{Ker} f
\end{aligned}
$$

Since no preinjective summands: this implies all summand of Kerf are regular.
Dually all summand of Coke f are regular is
$\frac{\text { Notation: When using concepts for abelian categories }}{2}$ in R we use "quasi""
quasi-simples $=$ simplos in P
(note: simple KQ-modules that $P_{\text {e }}{ }^{2}$ in B are quasinsimples, but there will be more quasi-simples.).
Notes
T is an auto-equicalence on R (since in R nothing factors through projective or Injectives)
Notes
Quasi-simple modules need to be at the laver edge of the $A R$-components $\mathbb{Z} A_{\infty}$ or $\mathbb{Z} A_{\infty} / \tau^{n}$

If M^{D} is quasi-simple, then its entire τ-orbit consists of quasi-simples.

Lemma: If M is quasi-simple then $\exists n>0$ s.t. $\tau^{n} M=M$. If: frow: $\mathcal{Z} n>0$ site $\underbrace{\alpha^{n}}_{\operatorname{din}_{T} T^{n}(\operatorname{dim} M)}=\operatorname{dim} M$

Pick in wining with this property
Recall: $(0,0)$ is positive semi-definite
\rightarrow H $(\underbrace{\operatorname{dim} M}_{-\sim^{M} \operatorname{dim} M} d \operatorname{din} M)>0$ then
at least one of $\operatorname{Hom}(\tau \sim M, M)$ or $\operatorname{Hom}\left(M, \tau^{n} M\right)$ is none-zero. Both are quasi-simple, so any such nonzero map w^{2} ll be an iso.
\triangleright If $\left(\operatorname{dim} \mu, \operatorname{dim}^{\rho} M\right)=0$ then $\operatorname{dim} M$ is an additive function

$$
r(0,0) \text { pos def on } Z^{\# \text { vertices }} /(f) \text {, }
$$

os $\Phi \operatorname{din} M=\operatorname{din} M$ so $n=1$
note: $E_{x t^{1}}(M, M M) \neq 0$ contains almost silt sequences $(\operatorname{dim} M, \operatorname{din} \tau, M)=0 \Rightarrow$ at least one of How $(M, \tau M)$ or $\operatorname{Han}(Y M, M)$ is nonzero as before, this means that $M \cong \tau M$

M quasi-simple

Lemma
Any maphism from an indec to M not starting in $M, M^{(2)}, \ldots 0, M^{(n-1)}$
factors through

$$
\begin{aligned}
& \text { through } \\
& M^{(n)} \rightarrow \infty
\end{aligned} M^{(n-1)} \longrightarrow \cdots \rightarrow M
$$

Po By induction on n
$n=2: \quad \tau M<M^{(2)} \longrightarrow M \quad e_{i}$ almost split
\sim every map except autos δM factors through factors.
Assume ok for $n-1$

note: $\tau M^{(n-2)} \hookrightarrow M^{(n-1)} \rightarrow M$ composes to zero

\sim can forget about component $X \rightarrow \tau M^{(n-2)}$
so our map $X \rightarrow M$ factors through $M^{(n)} \rightarrow M$ π
Lemma

$$
M^{(n)} \text { is quasi-uniserial }
$$

P8: Enough to show that $M^{(n)} \rightarrow M O$ os the unique map lion $M^{(n)}$ to a quasi-simple (Then unique maximal subnodule $\tau M^{(n-1)}$ induction)
$\frac{\text { Notes }}{n} M^{(n)}$ has quasilength n
It follows that $\tau M^{(n-1)} \longleftrightarrow M^{(n)} \longrightarrow M$ is exact Proof by induction on n.
$n=1$. Ok

If the composition $*$ vanishes then $M^{(n)} \rightarrow N$ is $M^{(n)} \rightarrow M$
otherwise, inductively: $\tau M^{(n-1)}$ m τM

should split by factorization.
Proposition
Any index regular module over $K Q, Q$ Euclidean, is of the loom $M^{(n)}$ for M quasi -simple
Ti j
Let X be regular indec $n=$ quasi-length (x)

Let M be quasi-simple soto How $(x, y) \neq 0$
Know, x is not iso to $M_{1} M^{(n)}, \cdots, M^{(n-1)}$ (has different quasi-lengths)
$\sim \sim$

it φ is not ep c, then φ factors through $\tau M^{(n-1)} \leftrightarrow M^{(n)}$
(this is the unique maxima subobject)
\sum composition
$\tau M^{(n-1)} \hookrightarrow M^{(n)} \longrightarrow M \quad$ of zero
so φ is ep l
Since quesi-length $(X)=$ quasilength $\left(M^{(N)}\right)$ It follows that φ^{p} is zero is

Theorem
Q connected Euclidean Then the category of regular $K Q$ modules is uniserial (all imdecs are uniserial) and its AR-quiver consists of components on the form $\mathbb{Z}^{A} \infty /\left(\pi^{n_{i}}\right)$ for certain n_{i}^{\prime} :
There are no maps between different regular components

