Deep Learning Lecture 1 - Examples overview

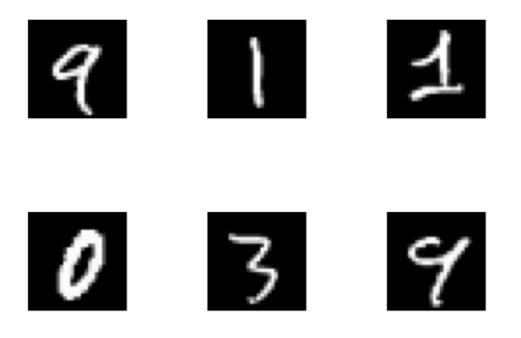
MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

- MNIST dataset
 - Objective
 - Data type
 - Problem type
- IMDB dataset
 - Objective
 - Data type
 - Problem type
- Reuters dataset
 - Objective
 - Data type
 - Problem type
- The Boston housing price dataset
 - Objective
 - Data type
 - Problem type
- References

This page provides a simple overview of the examples covered in the lectures. This lecture note is based on (Chollet and Allaire 2018).


MNIST dataset

Objective

• classify the digit contained in a image.

Data type

• We have images such as

• with annotated labels

```
## train_labels
## 0 1 2 3 4 5 6 7 8 9
## 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949
```

Problem type

• Multiclass classification based on image data.

IMDB dataset

Objective

• classify a movie review as either positive or negative.

Data type

• We have text data

[1] "? this film was just brilliant casting location scenery story directior

• with annotated labels where 0 stands for negative and 1 stands for positive.

```
## train_labels
## 0 1
## 12500 12500
```

Problem type

• binary classification based on text data.

Reuters dataset

Objective

• classify short news stories into one of 46 topics available.

Data type

• We have text data

```
## [1] "? ? ? said as a result of its december acquisition of space co it expect
```

• with annotated labels going from 0 to 45

## train_labels															
##	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
##	55	432	74	3159	1949	17	48	16	139	101	124	390	49	172	26
##	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
##	20	444	39	66	549	269	100	15	41	62	92	24	15	48	19
##	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
##	45	39	32	11	50	10	49	19	19	24	36	30	13	21	12
##	45														
##	18														

Problem type

• multiclass classification based on text data.

The Boston housing price dataset

Objective

• Predict the median price of homes in a given Boston suburb in the mid-1970s, given data points about the suburb at the time, such as the crime rate, the local property tax rate, and so on.

Data type

• We have a small dataset and 13 numerical features

num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

• The targets are the median values of owner-occupied homes, in thousands of dollars:

num [1:404(1d)] 15.2 42.3 50 21.1 17.7 18.5 11.3 15.6 15.6 14.4 ...

Problem type

• regression based on numerical features.

References

Chollet, F., and J. Allaire. 2018. *Deep Learning with R*. Manning Publications. https://books.google.no/books?id=xnIRtAEACAAJ.