Deep Learning Lecture 1 - Reuters: Densily
connected NN

e The Reuters dataset
o Preparing the data
o Building the model
o Compiling the model
o Validating your approach
o Predictions on new data
o Recommended exercise 2

The Reuters dataset

The objective here is to classify short news stories into one of 46 topics available.

Preparing the data

Here, we use the multi-assignment operator (%<-%) from the zeallot package to unpack
the list into a set of distinct variables.

reuters <- dataset_reuters(num_words = 10000)
c(c(train_data, train_labels), c(test_data, test_labels)) %<-% reuters

length(train_data)
[1] 8982
length(test_data)

[1] 2246

As with the IMDB reviews, each example is a list of integers (word indices):

train_datal[[1]]

(1] 1 2 2 8 43 10 447 5 25 207 270 5 3095 111
[15] 16 369 186 90 67 7 89 5 19 102 6 19 124 15
[29] 90 67 84 22 482 26 7 48 4 49 8 864 39 209
[43] 154 6 151 6 83 11 15 22 155 11 15 7 48 9
[57] 4579 1005 504 6 258 6 272 11 15 22 134 44 11 15
[71] 16 8 197 1245 90 67 52 29 209 30 32 132 6 109
[85] 15 17 12

train_labels[[1]1]

[1] 3

You can vectorize the data with the exact same code as in the IMDB example

vectorize_sequences <— function(sequences, dimension = 10000) {
results <- matrix(0, nrow = length(sequences), ncol = dimension)
for (i in 1:length(sequences))
results[i, sequences[[il]] <- 1
results

x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)

Vectorize the labels:

one_hot_train_labels <- to_categorical(train_labels)
one_hot_test_labels <- to_categorical(test_labels)

Building the model
¢ The dimensionality of the output space (46 classes) is much larger.
Information bottleneck

e Each layer can only access information present in the output of the previous layer.

e Each layer can potentially become an information bottleneck.

¢ A 16-dimensional intermediate layer may be too limited to learn to separate 46 different
classes:

e Such small layers may act as information bottlenecks, permanently dropping relevant
information.

For this reason we will use larger layers. Let's go with 64 units.

model <- keras_model_sequential() %>%
layer_dense(units = 64, activation = "relu", input_shape = c(10000)) %>%

"relu") %>%
"softmax")

64, activation
46, activation

layer_dense(units
layer_dense(units

Compiling the model

The best loss function to use in this case is categorical_crossentropy.

model %>% compile(
optimizer = "rmsprop",
loss = "categorical_crossentropy",
metrics = c("accuracy")

Validating your approach

Let's set apart 1000 samples in the training data to use as a validation set.

val_indices <-— 1:1000

x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]

y_val <- one_hot_train_labels[val_indices,]
partial_y_train = one_hot_train_labels[-val_indices,]

Now, let's train the network for 20 epochs.

history <— model %>% fit(
partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val)

plot(history)

loss

data

0.0- =2~ {raining

o L o

=8= vyalidation
049-

0.6 -

acc

0.7 -

0.6-

0.5-

']
5 10 15 20
epoch

The network begins to overfit after nine epochs. Let's train a new network from scratch for
nine epochs and then evaluate it on the test set.

model <- keras_model_sequential() %>%
layer_dense(units = 64, activation
layer_dense(units 64, activation
layer_dense(units = 46, activation

"relu", input_shape = c(10000)) %>%
"relu") %>%
"softmax")

model %>% compile(
optimizer = "rmsprop",
loss = "categorical_crossentropy",
metrics = c("accuracy")

history <— model %>% fit(
partial_x_train,
partial_y_train,
epochs = 9,
batch_size = 512,
validation_data = list(x_val, y_val)

results <- model %>% evaluate(x_test, one_hot_test_labels)

results

$loss

[1] 1.021877
#it

$acc

[1] 0.777382

This approach reaches an accuracy of ~ 79%. With a balanced binary classification problem,
the accuracy reached by a purely random classifier would be 50%. But in this case it's closer to
18%, so the results seem pretty good, at least when compared to a random baseline:

test_labels_copy <- test_labels
test_labels_copy <- sample(test_labels_copy)
length(which(test_labels == test_labels_copy)) / length(test_labels)

[1] 0.1843277

Predictions on new data
predictions <- model %>% predict(x_test)
Each entry in predictions is a vector of length 46:

dim(predictions)

[1] 2246 46
The coefficients in this vector sum to 1:

sum(predictions[1,])

[1] 1
The largest entry is the predicted class—the class with the highest probability:

which.max(predictions([1,])

[1] 4

Recommended exercise 2

Use a vector of integers as labels instead of the one-hot encoding used above. Remember that
this choice will impact the loss function used to train the model.

