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The Boston housing price dataset

The objective here is to predict the median price of homes in a given Boston suburb in the
mid-1970s, given data points about the suburb at the time, such as the crime rate, the local
property tax rate, and so on.

Preparing the data

Few data points: only 506, split between 404 training samples and 102 test samples.

Each feature in the input data (for example, the crime rate) has a di�erent scale.

For instance, some values are proportions, which take values between 0 and 1; others
take values between 1 and 12, others between 0 and 100, and so on.

##  num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

##  num [1:102, 1:13] 18.0846 0.1233 0.055 1.2735 0.0715 ...
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dataset <- dataset_boston_housing() 
c(c(train_data, train_targets), c(test_data, test_targets)) %<-% dataset

str(train_data)

str(test_data)



The targets are the median values of owner-occupied homes, in thousands of dollars:

##  num [1:404(1d)] 15.2 42.3 50 21.1 17.7 18.5 11.3 15.6 15.6 14.4 ...

A widespread best practice to deal with such data is to do feature-wise normalization.

Note that the quantities used for normalizing the test data are computed using the training
data. You should never use in your work�ow any quantity computed on the test data, even for
something as simple as data normalization.

Model building

Because so few samples are available, you’ll use a very small network with two hidden layers,
each with 64 units.

Because you’ll need to instantiate the same model multiple times, you use a function to
construct it.

The network ends with a single unit and no activation (it will be a linear layer).

You’re also monitoring a new metric during training: mean absolute error (MAE). It’s the
absolute value of the di�erence between the predictions and the targets. For instance, an
MAE of 0.5 on this problem would mean your predictions are o� by $500 on average.

Model validation

K-fold CV: Small dataset

str(train_targets)

mean <- apply(train_data, 2, mean)                                 
std <- apply(train_data, 2, sd) 
train_data <- scale(train_data, center = mean, scale = std)        
test_data <- scale(test_data, center = mean, scale = std)

build_model <- function() {                                
  model <- keras_model_sequential() %>% 
    layer_dense(units = 64, activation = "relu", 
                input_shape = dim(train_data)[[2]]) %>% 
    layer_dense(units = 64, activation = "relu") %>% 
    layer_dense(units = 1) 
  model %>% compile( 
    optimizer = "rmsprop", 
    loss = "mse", 
    metrics = c("mae") 
  ) 
}

# randomly allocate each sample to a particular fold 
k <- 4 



## processing fold # 1  
## processing fold # 2  
## processing fold # 3  
## processing fold # 4

Running this with num_epochs = 100 yields the following results:

## [1] 2.923744 2.444761 2.376462 2.208323

## [1] 2.488323

Let’s try training the network a bit longer: 500 epochs. To keep a record of how well the model
does at each epoch, you’ll modify the training loop to save the per-epoch validation score log.

indices <- sample(1:nrow(train_data)) 
folds <- cut(indices, breaks = k, labels = FALSE)

# Run CV and keep the MAE scores 
num_epochs <- 100 
all_scores <- c() 
for (i in 1:k) { 
  cat("processing fold #", i, "\n") 
 

  val_indices <- which(folds == i, arr.ind = TRUE)                      
  val_data <- train_data[val_indices,] 
  val_targets <- train_targets[val_indices] 
  partial_train_data <- train_data[-val_indices,]                       
  partial_train_targets <- train_targets[-val_indices] 
 

  model <- build_model()                                                
 

  model %>% fit(partial_train_data, partial_train_targets,              
                epochs = num_epochs, batch_size = 1, verbose = 0) 
 

  results <- model %>% evaluate(val_data, val_targets, verbose = 0)     
  all_scores <- c(all_scores, results$mean_absolute_error) 
}

all_scores

mean(all_scores)

num_epochs <- 500 
all_mae_histories <- NULL 
for (i in 1:k) { 
  cat("processing fold #", i, "\n") 
 

  val_indices <- which(folds == i, arr.ind = TRUE)               
  val_data <- train_data[val_indices,] 



## processing fold # 1  
## processing fold # 2  
## processing fold # 3  
## processing fold # 4

You can then compute the average of the per-epoch MAE scores for all folds.

Let’s plot this:

  val_targets <- train_targets[val_indices] 
 

  partial_train_data <- train_data[-val_indices,]                
  partial_train_targets <- train_targets[-val_indices] 
 

  model <- build_model()                                         
 

  history <- model %>% fit(                                      
    partial_train_data, partial_train_targets, 
    validation_data = list(val_data, val_targets), 
    epochs = num_epochs, batch_size = 1, verbose = 0 
  ) 
  mae_history <- history$metrics$val_mean_absolute_error 
  all_mae_histories <- rbind(all_mae_histories, mae_history) 
}

average_mae_history <- data.frame( 
  epoch = seq(1:ncol(all_mae_histories)), 
  validation_mae = apply(all_mae_histories, 2, mean) 
)

library(ggplot2) 
ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_line()



Let’s use geom_smooth()  to try to get a clearer picture:

According to this plot, validation MAE stops improving signi�cantly after 125 epochs. Past that
point, you start over�tting.

Once you’re �nished tuning other parameters of the model (in addition to the number of
epochs, you could also adjust the size of the hidden layers), you can train a �nal production
model on all of the training data, with the best parameters, and then look at its performance
on the test data.

ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_smooth()



## $loss 
## [1] 18.14386 
##  
## $mean_absolute_error 
## [1] 2.689312

You’re still o� by about $2,540.

Recommended exercise 3

Try to improve the MAE on the test data by changing model parameters such as number of
layers and number of hidden units in each layer.

model <- build_model() 
model %>% fit(train_data, train_targets,                   
          epochs = 80, batch_size = 16, verbose = 0) 
result <- model %>% evaluate(test_data, test_targets) 
 

result


