
Deep Learning Lecture - Convolution NN

Convolutional Neural Networks (Convnets or CNNs)
Convnet layers

2D convolutional layer
2D max pooling layer

MNIST dataset
Convnet model

Dealing with JPEG images

Convolutional Neural Networks (Convnets or CNNs)

A typical CNN sketch:

Source: Mathworks page about CNN

Feature Learning part of the CNN de�ned in Keras:

Classi�cation part of the CNN de�ned in Keras:

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

model <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu")

model <- model %>%
 layer_flatten() %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

https://fr.mathworks.com/discovery/convolutional-neural-network.html

Convnet layers

Dense layers learn global patterns in their input space
Convolutional layers learn local patterns

The patterns they learn are translation invariant
If they learn a pattern in the lower-right of an image, they would also recognise the
pattern on the upper-left
Dense layers would have to learn the pattern anew in a di�erent position
This makes convnets data e�cient, needing less data to learn

They can learn spatial hierarchies of patterns
The �rst layers learn small patterns such as edges
Later layers learn larger patterns based on the small patterns

A CNN model alternate between convolutional and max-pooling layers.

2D convolutional layer

A 2D convolutional layer is de�ned by layer_conv_2d in Keras. The two main arguments for
the layer are filters and kernel_size .

On the GIF below, we see one �lter being produced by kernel size (3, 3) from an image
with dimension (5,5,1) . This particular �lter has dimension (3,3) .

The following layer will create 32 �lters such as the one above by applying a convolution with
kernel size (3, 3) into a image with dimension (28, 28, 1) . Each of the 32 �lters would
have dimension (26, 26)

The dimension of the resulting �lter is (26, 26) and not (28, 28) due to border e�ects.

Each �lter will go through the following transformation:

filter = convolution(input)
output = activation(filter + bias)

The total number of parameters de�ned in layer_conv_2d is given by
kernel_height * kernel_width * input_channel * filters (convolution
operation) + filters (one bias per �lter).

Averaging adjacent pixels blur the image:

layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_s

Adjacent pixels are very di�erent in the direction perpendicular to the edge:

2D max pooling layer

The max pooling layer is conceptually similar to the convolutional layer, with two main
di�erences.

Instead of transforming local patchs via a learned linear transformation, they are
transformed via a hard-coded max operation.
The window size is usually (2,2) and the stride is equal to 2 (instead of 1 for the
convolutional layer), downsampling the �lters.

The reasons to downsample are:

to reduce the number of coe�cients to process
to induce spatial-�lter hierarchies by making successive convolution layers look at
increasingly large windows (in terms of the fraction of the original input they cover).

MNIST dataset

The objective here is to classify the digit contained in a image using a convnet model.

Convnet model

Convolutional Neural Network in Keras:

model <- keras_model_sequential() %>%
 layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%

Adding a classi�er on top of the convnet:

Inspect the model:

Training the convnet on MNIST images:

Model

Layer (type) Output Shape Param #
===
conv2d_4 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_3 (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_5 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_4 (MaxPooling2D) (None, 5, 5, 64) 0

conv2d_6 (Conv2D) (None, 3, 3, 64) 36928

flatten_2 (Flatten) (None, 576) 0

dense_3 (Dense) (None, 64) 36928

dense_4 (Dense) (None, 10) 650
===
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu")

model <- model %>%
 layer_flatten() %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

model

mnist <- dataset_mnist()
c(c(train_images, train_labels), c(test_images, test_labels)) %<-% mnist
train_images <- array_reshape(train_images, c(60000, 28, 28, 1))
train_images <- train_images / 255
test_images <- array_reshape(test_images, c(10000, 28, 28, 1))
test_images <- test_images / 255
train_labels <- to_categorical(train_labels)
test_labels <- to_categorical(test_labels)

model %>% compile(
 optimizer = "rmsprop",

Evaluate the model on the test data:

$loss
[1] 0.03167136

$acc
[1] 0.9902

Dealing with JPEG images

Create image data generators

Example of a sample from the generator

Training the model using a generator

 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)
model %>% fit(
 train_images, train_labels,
 epochs = 5, batch_size=64
)

results <- model %>% evaluate(test_images, test_labels)
results

train_datagen <- image_data_generator(rescale = 1/255)
validation_datagen <- image_data_generator(rescale = 1/255)

train_generator <- flow_images_from_directory(
 train_dir,
 train_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

validation_generator <- flow_images_from_directory(
 validation_dir,
 validation_datagen,
 target_size = c(150, 150),
 batch_size = 20,
 class_mode = "binary"
)

> batch <- generator_next(train_generator)
> str(batch)
List of 2
 $: num [1:20, 1:150, 1:150, 1:3] 37 48 153 53 114 194 158 141 255 167 ...
 $: num [1:20(1d)] 1 1 1 1 0 1 1 0 1 1 ...

history <- model %>% fit_generator(
 train_generator,
 steps_per_epoch = 100,
 epochs = 30,
 validation_data = validation_generator,
 validation_steps = 50
)

