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Recurrent Neural Networks (RNNs)

A RNN process sequences by iterating through the sequence elements and maintaining a
state containing information relative to what it has seen so far.

The state of the RNN is reset between processing two di�erent, independent sequences
(such as two di�erent IMDB reviews).

Transition equation for a simple RNN:

output_t <- tanh(as.numeric((W %*% input_t) + (U %*% state_t) + b))

Following is R pseudo-code for a simple RNN layer:

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

state_t <- 0 
for (input_t in input_sequence) { 
  output_t <- activation(dot(W, input_t) + dot(U, state_t) + b) 
  state_t <- output_t 
}



Embedding layer

Previously, we have encoded text data using integers.

The order of the words were not preserved
The representation did not captured any text semantics

Another approach to feed text to our models is to use an embedding layer:

low-dimensional �oating-point vectors learned from data.
geometric relationships between word vectors should re�ect the semantic relationships
between these words.
Take a 2D input tensor of integers of shape (samples, sequence_length)
Return a 3D �oating-point tensor of shape
(samples, sequence_length, embedding_dimensionality)
Such a 3D tensor can be processed by an RNN layer.
The vector are randomly initialized prior to training.

The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Recurring neural networks with an embedding layer

Data preparation parameters

Downloading the data

## 25000 train sequences

## 25000 test sequences

Padding the sequences

max_features <- 10000 # Number of most frequent words 
maxlen <- 500         # Padding the sequence of words to be of equal length 
batch_size <- 32      # Batch size used for training

imdb <- dataset_imdb(num_words = max_features) 
c(c(input_train, y_train), c(input_test, y_test)) %<-% imdb  
cat(length(input_train), "train sequences\n")

cat(length(input_test), "test sequences")

input_train <- pad_sequences(input_train, maxlen = maxlen) 
input_test <- pad_sequences(input_test, maxlen = maxlen) 
cat("input_train shape:", dim(input_train), "\n")



## input_train shape: 25000 500

## input_test shape: 25000 500

De�ning the model with embedding and simple RNN layers:

Compiling the model

Training and validation

## Model 
## ___________________________________________________________________________ 
## Layer (type)                     Output Shape                  Param #      
## =========================================================================== 
## embedding_1 (Embedding)          (None, None, 32)              320000       
## ___________________________________________________________________________ 
## simple_rnn_1 (SimpleRNN)         (None, 32)                    2080         
## ___________________________________________________________________________ 
## dense_1 (Dense)                  (None, 1)                     33           
## =========================================================================== 
## Total params: 322,113 
## Trainable params: 322,113 
## Non-trainable params: 0 
## ___________________________________________________________________________

cat("input_test shape:", dim(input_test), "\n")

model <- keras_model_sequential() %>% 
  layer_embedding(input_dim = max_features, output_dim = 32) %>% 
  layer_simple_rnn(units = 32) %>% 
  layer_dense(units = 1, activation = "sigmoid")

model

model %>% compile( 
  optimizer = "rmsprop", 
  loss = "binary_crossentropy", 
  metrics = c("acc") 
)

history <- model %>% fit( 
  input_train, y_train, 
  epochs = 10, 
  batch_size = 128, 
  validation_split = 0.2 
)

plot(history)



LSTM layer

The simple RNN layer should theoretically be able to retain at time t  information about
inputs seen many timesteps before.

But in practice, such long-term dependencies are very hard to learn.

The LSTM (long-short term memory) layer was designed to address this issue.

It allow past information to be reinjected at a later time.

Following is R pseudo-code for a LSTM layer:

Using the LSTM layer in Keras:

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi) 
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf) 
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk) 
 

c_t+1 = i_t * k_t + c_t * f_t 
 

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

model <- keras_model_sequential() %>% 
  layer_embedding(input_dim = max_features, output_dim = 32) %>% 
  layer_lstm(units = 32) %>% 
  layer_dense(units = 1, activation = "sigmoid") 
model %>% compile( 
  optimizer = "rmsprop", 
  loss = "binary_crossentropy", 
  metrics = c("acc") 



Stacking recurrent layers

We need to get all of the intermediate layers to return full sequences

)  
history <- model %>% fit( 
  input_train, y_train, 
  epochs = 10, 
  batch_size = 128, 
  validation_split = 0.2 
)

plot(history)

model <- keras_model_sequential() %>% 
  layer_embedding(input_dim = 10000, output_dim = 32) %>% 
  layer_simple_rnn(units = 32, return_sequences = TRUE) %>% 
  layer_simple_rnn(units = 32, return_sequences = TRUE) %>% 
  layer_simple_rnn(units = 32, return_sequences = TRUE) %>% 
  layer_simple_rnn(units = 32)                                 1


