Deep Learning Lecture - Recurrent NN

Recurrent Neural Networks (RNNSs)

Embedding layer

The IMDB dataset
o Recurring neural networks with an embedding layer
o LSTM layer

Stacking recurrent layers

Recurrent Neural Networks (RNNSs)

A RNN process sequences by iterating through the sequence elements and maintaining a
state containing information relative to what it has seen so far.

output t-1 outputt output t+1

output_t =
activation(

i - Weinput_t +

State t U-state_t + State t+1

input t-1 input t input t+1

e The state of the RNN is reset between processing two different, independent sequences
(such as two different IMDB reviews).

Transition equation for a simple RNN:

output_t <— tanh(as.numeric((W %% input_t) + (U %% state_t) + b))

Following is R pseudo-code for a simple RNN layer:

state_t <- 0

for (input_t in input_sequence) {
output_t <- activation(dot(W, input_t) + dot(U, state_t) + b)
state_t <- output_t

¥

Embedding layer

Previously, we have encoded text data using integers.

e The order of the words were not preserved
e The representation did not captured any text semantics

Another approach to feed text to our models is to use an embedding layer:

¢ low-dimensional floating-point vectors learned from data.

e geometric relationships between word vectors should reflect the semantic relationships
between these words.

e Take a 2D input tensor of integers of shape (samples, sequence_length)

e Return a 3D floating-point tensor of shape
(samples, sequence_length, embedding_dimensionality)

e Such a 3D tensor can be processed by an RNN layer.

e The vector are randomly initialized prior to training.

The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Recurring neural networks with an embedding layer

e Data preparation parameters

max_features <— 10000 # Number of most frequent words
maxlen <- 500 # Padding the sequence of words to be of equal length
batch_size <- 32 # Batch size used for training

¢ Downloading the data

imdb <- dataset_imdb(num_words = max_features)
c(c(input_train, y_train), c(input_test, y_test)) %<-% imdb
cat(length(input_train), "train sequences\n")

25000 train sequences
cat(length(input_test), "test sequences")

25000 test sequences
e Padding the sequences

input_train <- pad_sequences(input_train, maxlen = maxlen)
input_test <- pad_sequences(input_test, maxlen = maxlen)
cat("input_train shape:", dim(input_train), "\n")

input_train shape: 25000 500

cat("input_test shape:", dim(input_test), "\n")

input_test shape: 25000 500

e Defining the model with embedding and simple RNN layers:

model <- keras_model_sequential() %>%

layer_embedding(input_dim = max_features, output_dim

layer_simple_rnn(units = 32) %>%

o°

layer_dense(units = 1, activation = "sigmoid")
model
Model
##
Layer (type) Output Shape Param
##
embedding_1 (Embedding) (None, None, 32) 320000
##
simple_rnn_1 (SimpleRNN) (None, 32) 2080
##
dense_1 (Dense) (None, 1) 33
##

Total params: 322,113

Trainable params: 322,113
Non-trainable params: @
##

e Compiling the mode

model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("acc")

e Training and validation

history <— model %>% fit(
input_train, y_train,
epochs = 10,
batch_size = 128,
validation_split = 0.2

plot(history)

0.6-

0.4-

loss

0.2-

data

0.0-

=2= fraining
1.0-

=8= vyalidation

0.8-

acc

0.6-

0.7 -

epoch

LSTM layer

The simple RNN layer should theoretically be able to retain at time t information about
inputs seen many timesteps before.

e Butin practice, such long-term dependencies are very hard to learn
The LSTM (long-short term memory) layer was designed to address this issue.
¢ |t allow past information to be reinjected at a later time.

Following is R pseudo-code for a LSTM layer:

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

c_t+l =i _t *x k_t + c_t x f_t

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

Using the LSTM layer in Keras:

model <— keras_model_sequential() %>%
layer_embedding(input_dim = max_features, output_dim = 32) %>
layer_lstm(units = 32) %%
layer_dense(units = 1, activation = "sigmoid")
model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("acc")

o°

)

history <— model %>% fit(
input_train, y_train,
epochs = 10,
batch_size = 128,
validation_split = 0.2

plot(history)

0.5- a

0.4-

loss

0.3-

0.2-

0.1-

0.85-

0.80 -

acc

0.85-

0.80 -

6 8
epoch

Stacking recurrent layers

data
=&= fraining

=== yalidation

¢ We need to get all of the intermediate layers to return full sequences

model <- keras_model_sequential() %>%

layer_embedding(input_dim
layer_simple_rnn(units =

layer_simple_rnn(units
layer_simple_rnn(units
layer_simple_rnn(units

= 10000, output_dim

32, return_sequences
32, return_sequences
32, return_sequences
32)

