Deep Learning Lecture - text processing and multi-
input model

Using Keras for word-level one-hot encoding

Loading pretrained word embeddings into the embedding layer
Keras functional API

Multi-input models

Using Keras for word-level one-hot encoding

e Create a tokenizer and build a word index

samples <— c("The cat sat on the mat.", "The dog ate my homework.")
tokenizer <- text_tokenizer(num_words = 1000) %>%
fit_text_tokenizer(samples)

e Turns strings into lists of integer indices
sequences <- texts_to_sequences(tokenizer, samples)

e You could also directly get the one-hot binary representations. Vectorization modes
other than one-hot encoding are supported by this tokenizer: “binary”, “count”, “tfidf”,
“freq”.

one_hot_results <- texts_to_matrix(tokenizer, samples, mode = "binary")

e We can recover the word index that was computed.

word_index <- tokenizer$word_index
cat("Found", length(word_index), "unique tokens.\n")

Loading pretrained word embeddings into the embedding
layer

model <— keras_model_sequential() %>%
layer_embedding(input_dim = max_words, output_dim = embedding_dim,
input_length = maxlen) %>%
layer_flatten() %>%

layer_dense(units = 32, activation = "relu") %%
layer_dense(units = 1, activation = "sigmoid")
summary (model)

¢ Load weights into embedding layer and freeze them

get_layer(model, index = 1) %>%
set_weights(list(embedding_matrix)) %>%
freeze_weights()

Keras functional API
e Example: multi-input models
Price prediction

Merging
module

[Dense module }[RNN module J[Convnet module]

T T T

Metadata Text description Picture

e Comparison between sequential and functional API

sequential API

seq_model <- keras_model_sequential() %>%
layer_dense(units 32, activation "relu", input_shape = c(64)) %>%
layer_dense(units 32, activation "relu") %>%
layer_dense(units 10, activation "softmax")

¢ Note that the output_tensor depends explicitly on the input_tensor, otherwise it would
have been impossible for keras to understand how they are connected.

functional API

input_tensor <- layer_input(shape = c(64))

output_tensor <- input_tensor %>%
layer_dense(units 32, activation "relu") %>%
layer_dense(units = 32, activation "relu") %>%
layer_dense(units = 10, activation = "softmax")

model <- keras_model(input_tensor, output_tensor)

¢ Nothing changes wrt compiling and training the model

model %>% compile(
optimizer = "rmsprop",
loss = "categorical_crossentropy"

)

x_train <- array(runif(1000 % 64), dim
y_train <- array(runif(1000 * 10), dim
model %>% fit(x_train, y_train, epochs
model %>% evaluate(x_train, y_train)

c(1000, 64))
c(1000, 10))
10, batch_size = 128)

Multi-input models

e A question-answering model example

Answer

Embedding Embedding

T T

Reference text Question

constants

text_vocabulary_size <- 10000
ques_vocabulary_size <- 10000
answer_vocabulary_size <- 500

text input
text_input <- layer_input(shape
dtype
encoded_text <- text_input %>%
layer_embedding(input_dim = 64, output_dim = text_vocabulary_size) %>%
layer_lstm(units = 32)

list(NULL),
"int32", name = "text")

question input
question_input <- layer_input(shape
dtype
encoded_question <- question_input %>%
layer_embedding(input_dim = 32, output_dim = ques_vocabulary_size) %>%
layer_lstm(units = 16)

list(NULL),
"int32", name = 'question")

e Multiple inputs are at some point concatenated via a merge operation such as add
(layer_add) or concatenate (layer_concatenate).

concatenate operation
concatenated <- layer_concatenate(list(encoded_text, encoded_question))
answer <— concatenated %>%

layer_dense(units = answer_vocabulary_size, activation = "softmax")

model
model <- keras_model(list(text_input, question_input), answer)

* You can feed the model:
o alist of arrays as inputs,
o adictionary that maps input names to arrays (if name was given to the inputs).

feed list of inputs
model %>% fit(
list(text, question), answers,
epochs = 10, batch_size = 128
)

feed named list of inputs

model %>% fit(
list(text = text, question = question), answers,
epochs = 10, batch_size = 128

)

