
Deep Learning Lecture - text processing and multi-
input model

Using Keras for word-level one-hot encoding
Loading pretrained word embeddings into the embedding layer
Keras functional API
Multi-input models

Using Keras for word-level one-hot encoding

Create a tokenizer and build a word index

Turns strings into lists of integer indices

You could also directly get the one-hot binary representations. Vectorization modes
other than one-hot encoding are supported by this tokenizer: “binary”, “count”, “t�df”,
“freq”.

We can recover the word index that was computed.

Loading pretrained word embeddings into the embedding
layer

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

samples <- c("The cat sat on the mat.", "The dog ate my homework.")
tokenizer <- text_tokenizer(num_words = 1000) %>%
 fit_text_tokenizer(samples)

sequences <- texts_to_sequences(tokenizer, samples)

one_hot_results <- texts_to_matrix(tokenizer, samples, mode = "binary")

word_index <- tokenizer$word_index
cat("Found", length(word_index), "unique tokens.\n")

Load weights into embedding layer and freeze them

Keras functional API

Example: multi-input models

Comparison between sequential and functional API

Note that the output_tensor depends explicitly on the input_tensor, otherwise it would
have been impossible for keras to understand how they are connected.

Nothing changes wrt compiling and training the model

model <- keras_model_sequential() %>%
 layer_embedding(input_dim = max_words, output_dim = embedding_dim,
 input_length = maxlen) %>%
 layer_flatten() %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")
summary(model)

get_layer(model, index = 1) %>%
 set_weights(list(embedding_matrix)) %>%
 freeze_weights()

sequential API
seq_model <- keras_model_sequential() %>%
 layer_dense(units = 32, activation = "relu", input_shape = c(64)) %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")

functional API
input_tensor <- layer_input(shape = c(64))
output_tensor <- input_tensor %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 32, activation = "relu") %>%
 layer_dense(units = 10, activation = "softmax")
model <- keras_model(input_tensor, output_tensor)

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy"

Multi-input models

A question-answering model example

Multiple inputs are at some point concatenated via a merge operation such as add
(layer_add) or concatenate (layer_concatenate).

)
x_train <- array(runif(1000 * 64), dim = c(1000, 64))
y_train <- array(runif(1000 * 10), dim = c(1000, 10))
model %>% fit(x_train, y_train, epochs = 10, batch_size = 128)
model %>% evaluate(x_train, y_train)

constants
text_vocabulary_size <- 10000
ques_vocabulary_size <- 10000
answer_vocabulary_size <- 500

text input
text_input <- layer_input(shape = list(NULL),
 dtype = "int32", name = "text")
encoded_text <- text_input %>%
 layer_embedding(input_dim = 64, output_dim = text_vocabulary_size) %>%
 layer_lstm(units = 32)

question input
question_input <- layer_input(shape = list(NULL),
 dtype = "int32", name = "question")
encoded_question <- question_input %>%
 layer_embedding(input_dim = 32, output_dim = ques_vocabulary_size) %>%
 layer_lstm(units = 16)

concatenate operation
concatenated <- layer_concatenate(list(encoded_text, encoded_question))
answer <- concatenated %>%
 layer_dense(units = answer_vocabulary_size, activation = "softmax")

model
model <- keras_model(list(text_input, question_input), answer)

You can feed the model:
a list of arrays as inputs,
a dictionary that maps input names to arrays (if name was given to the inputs).

feed list of inputs
model %>% fit(
 list(text, question), answers,
 epochs = 10, batch_size = 128
)

feed named list of inputs
model %>% fit(
 list(text = text, question = question), answers,
 epochs = 10, batch_size = 128
)

