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Loading pretrained word embeddings into the embedding layer
Keras functional API
Multi-input models

Using Keras for word-level one-hot encoding

Create a tokenizer and build a word index

Turns strings into lists of integer indices

You could also directly get the one-hot binary representations. Vectorization modes
other than one-hot encoding are supported by this tokenizer: “binary”, “count”, “t�df”,
“freq”.

We can recover the word index that was computed.

Loading pretrained word embeddings into the embedding
layer
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samples <- c("The cat sat on the mat.", "The dog ate my homework.") 
tokenizer <- text_tokenizer(num_words = 1000) %>%                          
  fit_text_tokenizer(samples)                                        

sequences <- texts_to_sequences(tokenizer, samples)

one_hot_results <- texts_to_matrix(tokenizer, samples, mode = "binary")

word_index <- tokenizer$word_index                                   
cat("Found", length(word_index), "unique tokens.\n")



Load weights into embedding layer and freeze them

Keras functional API

Example: multi-input models

Comparison between sequential and functional API

Note that the output_tensor depends explicitly on the input_tensor, otherwise it would
have been impossible for keras to understand how they are connected.

Nothing changes wrt compiling and training the model

model <- keras_model_sequential() %>% 
  layer_embedding(input_dim = max_words, output_dim = embedding_dim, 
                  input_length = maxlen) %>% 
  layer_flatten() %>% 
  layer_dense(units = 32, activation = "relu") %>% 
  layer_dense(units = 1, activation = "sigmoid") 
summary(model)

get_layer(model, index = 1) %>% 
  set_weights(list(embedding_matrix)) %>% 
  freeze_weights()

# sequential API 
seq_model <- keras_model_sequential() %>%                           
  layer_dense(units = 32, activation = "relu", input_shape = c(64)) %>% 
  layer_dense(units = 32, activation = "relu") %>% 
  layer_dense(units = 10, activation = "softmax")

# functional API 
input_tensor <- layer_input(shape = c(64))                            
output_tensor <- input_tensor %>% 
  layer_dense(units = 32, activation = "relu") %>% 
  layer_dense(units = 32, activation = "relu") %>% 
  layer_dense(units = 10, activation = "softmax") 
model <- keras_model(input_tensor, output_tensor)                             

model %>% compile(                                                     
  optimizer = "rmsprop", 
  loss = "categorical_crossentropy" 



Multi-input models

A question-answering model example

Multiple inputs are at some point concatenated via a merge operation such as add
( layer_add ) or concatenate ( layer_concatenate ).

)  
x_train <- array(runif(1000 * 64), dim = c(1000, 64))                  
y_train <- array(runif(1000 * 10), dim = c(1000, 10)) 
model %>% fit(x_train, y_train, epochs = 10, batch_size = 128)         
model %>% evaluate(x_train, y_train)                                  

# constants 
text_vocabulary_size <- 10000 
ques_vocabulary_size <- 10000 
answer_vocabulary_size <- 500 
 

# text input 
text_input <- layer_input(shape = list(NULL),                             
                          dtype = "int32", name = "text") 
encoded_text <- text_input %>% 
  layer_embedding(input_dim = 64, output_dim = text_vocabulary_size) %>% 
  layer_lstm(units = 32)                                                 
 

# question input 
question_input <- layer_input(shape = list(NULL),                        
                              dtype = "int32", name = "question") 
encoded_question <- question_input %>% 
  layer_embedding(input_dim = 32, output_dim = ques_vocabulary_size) %>% 
  layer_lstm(units = 16)

# concatenate operation 
concatenated <- layer_concatenate(list(encoded_text, encoded_question))  
answer <- concatenated %>%                                               
  layer_dense(units = answer_vocabulary_size, activation = "softmax") 
 

# model 
model <- keras_model(list(text_input, question_input), answer)          



You can feed the model:
a list of arrays as inputs,
a dictionary that maps input names to arrays (if name was given to the inputs).

# feed list of inputs 
model %>% fit(                                                         
  list(text, question), answers,                                       
  epochs = 10, batch_size = 128                                        
)  
 

# feed named list of inputs                                                    
model %>% fit(                                                         
  list(text = text, question = question), answers,                     
  epochs = 10, batch_size = 128                                        
)                                                                     


