
Deep Learning Lecture 1 - Basic components

Tensor: Data representation for neural networks
Abstract examples

Scalars (0D tensors)
Vectors (1D tensors)
Matrices (2D tensors)
3D tensors and higher-dimensional tensors

Concrete data examples
Vector data
Timeseries or sequence data
Image data
Video data

Tensor operations
Element-wise operations
Operations involving tensors of di�erent dimensions
Tensor dot
Tensor reshaping

Reference material
References

Tensor: Data representation for neural networks

Currently, most (if not all) current ML systems use tensors as their basic data structure.

Tensors are a generalisation of vectors and matrices to an arbitrary number of dimensions.

In the context of tensor, a dimension is often called an axis or rank

A tensor is de�ned by 3 key attributes:

Number of axis (rank or dimension)
Shape (how many dimensions along each axis)
Data type

Abstract examples

Scalars (0D tensors)

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

R doesn’t have a data type to represent scalars. All numeric objects are vectors, matrices,
or arrays.

But an R vector that is always length 1 is conceptually similar to a scalar.

[1] 1

[1] 1

[1] "double"

Vectors (1D tensors)

Don’t confuse a 5D vector with a 5D tensor!

[1] 1

[1] 5

scalar
tensor <- as.array(1)

rank
length(dim(tensor))

shape
dim(tensor)

data type
typeof(tensor)

vector
tensor <- as.array(c(12, 3, 6, 14, 10))

rank
length(dim(tensor))

shape
dim(tensor)

data type
typeof(tensor)

[1] "double"

Matrices (2D tensors)

A matrix has two axes (often referred to as rows and columns)

[1] 2

[1] 3 5

[1] "double"

3D tensors and higher-dimensional tensors

[1] 3

[1] 2 3 2

[1] "double"

tensor <- matrix(rep(0, 3*5), nrow = 3, ncol = 5)

rank
length(dim(tensor))

shape
dim(tensor)

data type
typeof(tensor)

tensor <- array(rep(0, 2*3*2), dim = c(2,3,2))

rank
length(dim(tensor))

shape
dim(tensor)

data type
typeof(tensor)

Concrete data examples

Vector data

2D tensor of shape (samples, features)

Data structure most commonly used by statistical packages

Usually, this is the expected data structure when �tting fully connected neural networks

Example: The Boston housing price dataset

num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

More complex data types can be mapped to vector data format.
Image data: Usually represented in 3D tensors can be �atened into a 2D tensor

Timeseries or sequence data

3D tensor of shape (samples, timesteps, features)

Stock price dataset
Each minute we record the current price, last minute lowest price and highest price
A trading day has 390 minutes and a trading year has 250 days
One year of data can be store in a 3D tensor (250, 390, 3)

A statistician would usually store in a 2D tensor with a date column.

Image data

4D tensor of shape (samples, height, width, channels)

Grayscale images (like our MNIST digits) have only a single color channel, but are still
stored in 4D tensors by convention.

str(boston_train_data)

Note: Unlike TensorFlow, Theano uses the convention
(samples, channels, height, width)

Video data

5D tensor of shape (samples, frames, height, width, channels)

A video can be understood as a sequence of frames, each frame being a color image.

Tensor operations

All transformations learned by deep neural networks can be reduced to a handful of
tensor operations applied to tensors of numeric data

Example: Dense layer

output = relu(dot(W, input) + b)

Element-wise operation: relu(x) = max(x,0)

Addition between a 2D tensor and a 1D tensor

Dot product between W and input

Element-wise operations

Operations that are applied independently to each entry in the tensors being considered

Massively parallel implementations available (vectorised implementations)

Operations involving tensors of di�erent dimensions

The R sweep() function enables you to perform operations between higher-dimension
tensors and lower-dimension tensors

Add vector y for each column of matrix x
sweep(x, 2, y, `+`)

Tensor dot

Most common and useful tensor operation

An element-wise product is done with the * operator in R, whereas dot products use the
%*% operator

Mathematically, what does the dot operation do?

dot product between two vector of the same length
naive_vector_dot <- function(x, y) {
 z <- 0
 for (i in 1:length(x))

The dot product generalizes for higher dimensions, given the apropriate shape
compatibility observed before:

(a, b, c, d) . (d) -> (a, b, c)
(a, b, c, d) . (d, e) -> (a, b, c, e)
And so on.

Tensor reshaping

Always use the array_reshape() function when reshaping R arrays that will be passed
to Keras.

Uses row-major semantics (as opposed to R’s default column-major semantics)
Compatible with the way the numerical libraries called by Keras (NumPy,
TensorFlow, and so on) interpret array dimensions.

 z <- z + x[[i]] * y[[i]]
 z
}

dot product between a matrix x and a vector y
naive_matrix_vector_dot <- function(x, y) {
 z <- rep(0, nrow(x))
 for (i in 1:nrow(x))
 row_x <- x[i,]
 z[[i]] <- naive_vector_dot(row_x, y)
 z
}

dot product between a matrix x and a matrix y
naive_matrix_dot <- function(x, y) { 1
 z <- matrix(0, nrow = nrow(x), ncol = ncol(y))
 for (i in 1:nrow(x))
 for (j in 1:ncol(y)) {
 row_x <- x[i,]
 column_y <- y[,j]
 z[i, j] <- naive_vector_dot(row_x, column_y)
 }
 z
}

[,1] [,2]
[1,] 0 1
[2,] 2 3
[3,] 4 5

[,1]
[1,] 0
[2,] 2
[3,] 4
[4,] 1
[5,] 3
[6,] 5

[,1] [,2]
[1,] 0 1
[2,] 2 3
[3,] 4 5

[,1]
[1,] 0
[2,] 1
[3,] 2
[4,] 3
[5,] 4
[6,] 5

Reference material

x <- matrix(c(0, 1,
 2, 3,
 4, 5),
 nrow = 3, ncol = 2, byrow = TRUE)
x

R uses column-major semantics by default
dim(x) <- c(6,1)
x

x <- matrix(c(0, 1,
 2, 3,
 4, 5),
 nrow = 3, ncol = 2, byrow = TRUE)
x

array_reshape uses row-major semantics
x <- array_reshape(x, dim = c(6, 1))
x

This lecture note is based on (Chollet and Allaire 2018).

References

Chollet, F., and J. Allaire. 2018. Deep Learning with R. Manning Publications.
https://books.google.no/books?id=xnIRtAEACAAJ.

https://books.google.no/books?id=xnIRtAEACAAJ

