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Tensor: Data representation for neural networks

Currently, most (if not all) current ML systems use tensors as their basic data structure.

Tensors are a generalisation of vectors and matrices to an arbitrary number of dimensions.

In the context of tensor, a dimension is often called an axis or rank

A tensor is de�ned by 3 key attributes:

Number of axis (rank or dimension)
Shape (how many dimensions along each axis)
Data type

Abstract examples

Scalars (0D tensors)
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R doesn’t have a data type to represent scalars. All numeric objects are vectors, matrices,
or arrays.

But an R vector that is always length 1 is conceptually similar to a scalar.

## [1] 1

## [1] 1

## [1] "double"

Vectors (1D tensors)

Don’t confuse a 5D vector with a 5D tensor!

## [1] 1

## [1] 5

# scalar 
tensor <- as.array(1)

# rank 
length(dim(tensor))

# shape 
dim(tensor)

# data type 
typeof(tensor)

# vector 
tensor <- as.array(c(12, 3, 6, 14, 10))

# rank 
length(dim(tensor))

# shape 
dim(tensor)

# data type 
typeof(tensor)



## [1] "double"

Matrices (2D tensors)

A matrix has two axes (often referred to as rows and columns)

## [1] 2

## [1] 3 5

## [1] "double"

3D tensors and higher-dimensional tensors

## [1] 3

## [1] 2 3 2

## [1] "double"

tensor <- matrix(rep(0, 3*5), nrow = 3, ncol = 5)

# rank 
length(dim(tensor))

# shape 
dim(tensor)

# data type 
typeof(tensor)

tensor <- array(rep(0, 2*3*2), dim = c(2,3,2))

# rank 
length(dim(tensor))

# shape 
dim(tensor)

# data type 
typeof(tensor)



Concrete data examples

Vector data

2D tensor of shape (samples, features)

Data structure most commonly used by statistical packages

Usually, this is the expected data structure when �tting fully connected neural networks

Example: The Boston housing price dataset

##  num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

More complex data types can be mapped to vector data format.
Image data: Usually represented in 3D tensors can be �atened into a 2D tensor

Timeseries or sequence data

3D tensor of shape (samples, timesteps, features)

Stock price dataset
Each minute we record the current price, last minute lowest price and highest price
A trading day has 390 minutes and a trading year has 250 days
One year of data can be store in a 3D tensor (250, 390, 3)

A statistician would usually store in a 2D tensor with a date column.

Image data

4D tensor of shape (samples, height, width, channels)

Grayscale images (like our MNIST digits) have only a single color channel, but are still
stored in 4D tensors by convention.

str(boston_train_data)



Note: Unlike TensorFlow, Theano uses the convention
(samples, channels, height, width)

Video data

5D tensor of shape (samples, frames, height, width, channels)

A video can be understood as a sequence of frames, each frame being a color image.

Tensor operations

All transformations learned by deep neural networks can be reduced to a handful of
tensor operations applied to tensors of numeric data

Example: Dense layer

output = relu(dot(W, input) + b)

Element-wise operation: relu(x) = max(x,0)

Addition between a 2D tensor and a 1D tensor

Dot product between W  and input

Element-wise operations

Operations that are applied independently to each entry in the tensors being considered

Massively parallel implementations available (vectorised implementations)

Operations involving tensors of di�erent dimensions

The R sweep()  function enables you to perform operations between higher-dimension
tensors and lower-dimension tensors

# Add vector y for each column of matrix x 
sweep(x, 2, y, `+`)

Tensor dot

Most common and useful tensor operation

An element-wise product is done with the *  operator in R, whereas dot products use the
%*%  operator

Mathematically, what does the dot operation do?

# dot product between two vector of the same length 
naive_vector_dot <- function(x, y) {           
  z <- 0 
  for (i in 1:length(x)) 



The dot product generalizes for higher dimensions, given the apropriate shape
compatibility observed before:

(a, b, c, d) . (d) -> (a, b, c)
(a, b, c, d) . (d, e) -> (a, b, c, e)
And so on.

Tensor reshaping

Always use the array_reshape()  function when reshaping R arrays that will be passed
to Keras.

Uses row-major semantics (as opposed to R’s default column-major semantics)
Compatible with the way the numerical libraries called by Keras (NumPy,
TensorFlow, and so on) interpret array dimensions.

    z <- z + x[[i]] * y[[i]] 
  z 
}

# dot product between a matrix x and a vector y 
naive_matrix_vector_dot <- function(x, y) { 
  z <- rep(0, nrow(x)) 
  for (i in 1:nrow(x)) 
    row_x <- x[i,]     
    z[[i]] <- naive_vector_dot(row_x, y) 
  z 
}

# dot product between a matrix x and a matrix y 
naive_matrix_dot <- function(x, y) {                   1 
  z <- matrix(0, nrow = nrow(x), ncol = ncol(y)) 
  for (i in 1:nrow(x)) 
    for (j in 1:ncol(y)) { 
      row_x <- x[i,] 
      column_y <- y[,j] 
      z[i, j] <- naive_vector_dot(row_x, column_y) 
    } 
  z 
}



##      [,1] [,2] 
## [1,]    0    1 
## [2,]    2    3 
## [3,]    4    5

##      [,1] 
## [1,]    0 
## [2,]    2 
## [3,]    4 
## [4,]    1 
## [5,]    3 
## [6,]    5

##      [,1] [,2] 
## [1,]    0    1 
## [2,]    2    3 
## [3,]    4    5

##      [,1] 
## [1,]    0 
## [2,]    1 
## [3,]    2 
## [4,]    3 
## [5,]    4 
## [6,]    5

Reference material

x <- matrix(c(0, 1, 
              2, 3, 
              4, 5), 
            nrow = 3, ncol = 2, byrow = TRUE) 
x

# R uses column-major semantics by default 
dim(x) <- c(6,1) 
x

x <- matrix(c(0, 1, 
              2, 3, 
              4, 5), 
            nrow = 3, ncol = 2, byrow = TRUE) 
x

# array_reshape uses row-major semantics 
x <- array_reshape(x, dim = c(6, 1)) 
x



This lecture note is based on (Chollet and Allaire 2018).
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