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Tensor: Data representation for neural networks

Currently, most (if not all) current ML systems use tensors as their basic data structure.

Tensors are a generalisation of vectors and matrices to an arbitrary number of dimensions.
¢ |n the context of tensor, a dimension is often called an axis or rank

A tensor is defined by 3 key attributes:

e Number of axis (rank or dimension)
¢ Shape (how many dimensions along each axis)
e Data type

Abstract examples

Scalars (0D tensors)



e Rdoesn't have a data type to represent scalars. All numeric objects are vectors, matrices,
or arrays.

e But an R vector that is always length 1 is conceptually similar to a scalar.

# scalar
tensor <- as.array(1)

# rank
length(dim(tensor))

# (1] 1

# shape
dim(tensor)

# (1] 1

# data type
typeof(tensor)

## [1] "double"

Vectors (1D tensors)

e Don't confuse a 5D vector with a 5D tensor!

# vector
tensor <- as.array(c(12, 3, 6, 14, 10))

# rank
length(dim(tensor))

# (1] 1

# shape
dim(tensor)

## [1] 5

# data type
typeof(tensor)



## [1] "double"

Matrices (2D tensors)

e A matrix has two axes (often referred to as rows and columns)

tensor <- matrix(rep(0, 3%5), nrow = 3, ncol = 5)

# rank
length(dim(tensor))

## [1] 2

# shape
dim(tensor)

## [11 3 5

# data type
typeof(tensor)

## [1] "double"

3D tensors and higher-dimensional tensors

tensor <- array(rep(0, 2x3%2), dim = c(2,3,2))

# rank
length(dim(tensor))

## [1] 3

# shape
dim(tensor)

## [1]1 2 3 2

# data type
typeof(tensor)

## [1] "double"



Concrete data examples

Vector data
e 2D tensor of shape (samples, features)
e Data structure most commonly used by statistical packages
e Usually, this is the expected data structure when fitting fully connected neural networks

e Example: The Boston housing price dataset

str(boston_train_data)

## num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

e More complex data types can be mapped to vector data format.
o Image data: Usually represented in 3D tensors can be flatened into a 2D tensor

Timeseries or sequence data

e 3D tensor of shape (samples, timesteps, features)

Features { /
r Samples

Timesteps

e Stock price dataset
o Each minute we record the current price, last minute lowest price and highest price
o Atrading day has 390 minutes and a trading year has 250 days
o One year of data can be store in a 3D tensor (250, 390, 3)

e A statistician would usually store in a 2D tensor with a date column.

Image data

e 4D tensor of shape (samples, height, width, channels)
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e Grayscale images (like our MNIST digits) have only a single color channel, but are still
stored in 4D tensors by convention.



Note: Unlike TensorFlow, Theano uses the convention
(samples, channels, height, width)

Video data
e 5D tensor of shape (samples, frames, height, width, channels)

e Avideo can be understood as a sequence of frames, each frame being a color image.

Tensor operations

¢ All transformations learned by deep neural networks can be reduced to a handful of
tensor operations applied to tensors of numeric data

e Example: Dense layer
output = relu(dot(W, input) + b)

e Element-wise operation: relu(x) = max(x,0)
e Addition between a 2D tensor and a 1D tensor

e Dot product between W and input

Element-wise operations
e Operations that are applied independently to each entry in the tensors being considered

e Massively parallel implementations available (vectorised implementations)

Operations involving tensors of different dimensions

e The R sweep() function enables you to perform operations between higher-dimension
tensors and lower-dimension tensors

# Add vector y for each column of matrix x
sweep(x, 2, y, “+)

Tensor dot
e Most common and useful tensor operation

e An element-wise product is done with the % operator in R, whereas dot products use the
%*% operator

e Mathematically, what does the dot operation do?

# dot product between two vector of the same length
naive_vector_dot <— function(x, y) {

z <-0

for (i in 1:length(x))



z <= z + x[[i]] * y[[i]]

# dot product between a matrix x and a vector y
naive_matrix_vector_dot <- function(x, y) {
z <— rep(0, nrow(x))
for (i in 1:nrow(x))
row_x <— x[i,]
z[[il] <- naive_vector_dot(row_x, y)

# dot product between a matrix x and a matrix y
naive_matrix_dot <-— function(x, y) { 1
z <- matrix(0, nrow = nrow(x), ncol = ncol(y))
for (i in 1:nrow(x))
for (j in 1:ncol(y)) {
row_x <— xI[i,]
column_y <- yI[,jl
z[i, j] <- naive_vector_dot(row_x, column_y)

b
z
¥
Cc
A
s N
('
y.shape:
(b, c)
X.y=2z
b< Column of y
b
A
p
x.shape: z.shape:
(a, b) ‘o (a,c)
a L
Row of x z[i ]

e The dot product generalizes for higher dimensions, given the apropriate shape
compatibility observed before:
o (a,b,c,d).(d)->(a, b, )
°© (a,b,cd).(de)->(a b, ce)
o And so on.

Tensor reshaping

e Always use the array_reshape() function when reshaping R arrays that will be passed
to Keras.
o Uses row-major semantics (as opposed to R's default column-major semantics)
o Compatible with the way the numerical libraries called by Keras (NumPy,
TensorFlow, and so on) interpret array dimensions.



x <— matrix(c(0, 1,
2, 3,
4, 5),

nrow = 3, ncol = 2, byrow = TRUE)

#t [,11 [,2]
# [1,] 0 1
## [2,] 2 3
# [3,] 4 5

# R uses column-major semantics by default
dim(x) <- c(6,1)
X

## [,1]
## (1,1
## (2,1
## [3,]
## [4,]
## [5,]
## [6,]
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X <— matrix(c(0, 1,
2, 3,
4, 5),

nrow = 3, ncol = 2, byrow = TRUE)

#t [,11 [,2]
# [1,] 0 1
## [2,] 2 3
# [3,] 4 5

# array_reshape uses row-major semantics
X <- array_reshape(x, dim = c(6, 1))
X

## [,1]
## (1,1
## (2,1
## [3,]
## [4,]
## [5,]
## [6,]
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Reference material



This lecture note is based on (Chollet and Allaire 2018).
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