
Deep Learning Lecture 1 - Deep Learning Models in Keras

Layers
Examples

Fully connected model for MNIST
Fully connected model for IMDB
Fully connected model for Boston House dataset

Explaining the code
The pipe operator
Linear Stack of Layers
Dense layer

Some observations
Reference material
References

A deep-learning model is a directed, acyclic graph of layers.

Layers

Layer is a data-processing component:

takes one or more tensors as input and outputs one or more tensors.

Stateless or stateful layers:

Some layers are stateless, but more frequently layers have a state.
Stateful layers contain parameters that are learned from the data

Types of layers:

Di�erent layers are appropriate for di�erent tensor formats and di�erent types of data processing.
For example:

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

Tensor
Type

Data
Type

Data Shape Layer Type
Layer
Description

Tensor
Type

Data
Type

Data Shape Layer Type
Layer
Description

2D
tensor

Vector
data

(samples, features) layer_dense
densely
connected
layer

3D
tensor

Sequence
data

(samples, timesteps, features) layer_lstm recurrent
layers

4D
tensor

Image
data

(samples, height, width, channels) layer_conv_2d
2D
convolution
layers

Building deep-learning models in Keras:

It is done by clipping together compatible layers to form useful data-transformation pipelines.

Layer compatibility:

Every layer will only accept input tensors of a certain shape and will return output tensors of a
certain shape.

When using Keras, you don’t have to worry about compatibility, because the layers you add to your
models are dynamically built to match the shape of the incoming layer.

Examples

Fully connected model for MNIST

Fully connected model for IMDB

Fully connected model for Boston House dataset

Explaining the code

The pipe operator

%>%

model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = "relu", input_shape = c(28*28)) %>%
 layer_dense(units = 10, activation = "softmax")

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model <- keras_model_sequential() %>%
 layer_dense(units = 64, activation = "relu", input_shape = c(13)) %>%
 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 1)

The pipe operator comes from the magrittr package.
Shorthand for passing the value on its left as the �rst argument to the function on its right.

Besides compactness, the %>% reminds that Keras models are modi�ed in-place.
You don’t operate on model and then return a new model object.
Rather, you do something to the model object.

Linear Stack of Layers

keras_model_sequential
De�nes a Keral model composed of a linear stack of layers.

Not to be confused with it being a model for sequential data

Dense layer

layer_dense

Dense or fully connected layer

Implements the operation: output = activation(dot(input, weight) + bias)

input : 2D input tensor. Gets �attened if rank > 2 .
weight : 2D weight tensor created by the layer.
bias : 1D bias tensor created by the layer (use_bias=TRUE).
dot(input, weight) : Dot product between two tensors.
activation(.) : Element-wise activation function.

Most important inputs:

input_shape : Dimensionality of the input, not including the samples axis.
Required only for the �rst layer in a model.

units : Dimensionality of the output space.
activation : The name of the activation function. Default to linear .

relu(x) = max(x,0) is the most commonly used non-linear activation function.

Some observations

model <- keras_model_sequential()
layer_dense(model, units = 512, activation = "relu", input_shape = c(28*28))
layer_dense(model, units = 10, activation = "softmax")

With Neural Networks, we are able to build models able to capture complex patterns in the data
from simple, di�erentiable operations.
The importance of the non-linear activation function

Without them each layer would only be able to learn linear transformations of the input data and a
deep stack of linear layers would still implement a linear operation. The activation function relu add
non-linearity to the model.

Reference material

This lecture note is based on (Chollet and Allaire 2018).

References

Chollet, F., and J. Allaire. 2018. Deep Learning with R. Manning Publications.
https://books.google.no/books?id=xnIRtAEACAAJ.

https://books.google.no/books?id=xnIRtAEACAAJ

