
Deep Learning Lecture 1 - Compiling Deep Learning
Models in Keras

Compiling Keras models
Fully connected model for MNIST
Fully connected model for IMDB
Fully connected model for Boston House dataset

Gradient-based optimization
Loss functions
Metrics
Reference material
References

Compiling Keras models

Now that we have a Keras model de�ned. We need to con�gure how this model will be
trained.

Fully connected model for MNIST

Fully connected model for IMDB

Fully connected model for Boston House dataset

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

model %>% compile(
 optimizer = "rmsprop",
 loss = "categorical_crossentropy",
 metrics = c("accuracy")
)

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

Gradient-based optimization

Gradient descent

�rst-order iterative optimization algorithm for �nding the minimum of a function f(x) .
x = x - step * gradient

Mini-batch stochastic gradient descent (SGD) applied to a Deep Learning model:

1. Draw a batch of training samples x and corresponding targets y .
2. Run the model on x to obtain predictions y' (forward pass).
3. Compute the loss of the model on the batch, a measure of the mismatch between y'

and y .
4. Compute the gradient of the loss with regard to the model’s parameters (backward pass).
5. W = W - (step * gradient)
6. Repeat 1-5 until convergence.

The algorithm de�ned above is called mini-batch SGD. The Stochastic part comes from
the fact that we are randomly sampling batches x from the training data.

Stochastic gradient descent happens when the batch size equals to 1.

Mini-batch SGD is a compromise between SGD (one sample per iteration) and full GD (full
dataset per iteration)

Backpropagation algorithm:

DL models take advantage of the fact that all operations used in the model are
di�erentiable.
Combining the information above with the chain rule of di�erentiation leads to the
Backpropagation algorithm.

model %>% compile(
 optimizer = "rmsprop",
 loss = "mse",
 metrics = c("mae")
)

Backpropagation starts with the �nal loss value and works backward from the top layers
to the bottom layers, applying the chain rule to compute the contribution that each
parameter had in the loss value.

Variations of SGD

There exists many variations of SGD.
All our examples use rmsprop , which is claimed to be a good default choice.

RMSprop

Divide the gradient by a running average of its recent magnitude
W = W - (step * gradient/rms)
rms = 0.9 * rms + 0.1 * gradient^2
Intuition will be give in the lecture.

Further reading:

Keras documentation for Optimizers
An overview of gradient descent optimization algorithms
Overview of mini-batch gradient descent
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and
Optimization

Loss functions

Loss function or objective function:

The quantity that will be minimized during training.
It represents a measure of success for the task at hand.

Common problem types and loss functions:

Problem Type Last-layer activation Loss function

Binary classi�cation sigmoid binary_crossentropy

Multiclass classi�cation softmax categorical_crossentropy

Regression None mse

Binary cross-entropy

Categorical cross-entropy

Some observations:

It is not always possible to directly optimize for the metric that measures success on a
problem.

− log() − (1 −) log(1 −)yi pi1 yi pi1

− log()∑
j=1

C

yi pij

https://keras.io/optimizers/
http://ruder.io/optimizing-gradient-descent/index.html
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.coursera.org/learn/deep-neural-network/lecture/BhJlm/rmsprop

Loss functions, after all, need to be:
computable given only a mini-batch of data or ideally given only a single data point.
must be di�erentiable.

Metrics

Provides di�erent forms to measure how well the predictions are compared with the true
values.

accuracy : Average of correct classi�cations
mae : Mean absolute error.

Reference material

This lecture note is based on (Chollet and Allaire 2018) and the following material:

Keras documentation for Optimizers
An overview of gradient descent optimization algorithms
Overview of mini-batch gradient descent
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and
Optimization

References

Chollet, F., and J. Allaire. 2018. Deep Learning with R. Manning Publications.
https://books.google.no/books?id=xnIRtAEACAAJ.

https://keras.io/optimizers/
http://ruder.io/optimizing-gradient-descent/index.html
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.coursera.org/learn/deep-neural-network/lecture/BhJlm/rmsprop
https://books.google.no/books?id=xnIRtAEACAAJ

