Deep Learning Lecture 1 - IMDB: Densily connected NN

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

- The IMDB dataset
 - Preparing the data
 - Turning sequence of integers back to english
 - Turning sequence of integers to tensor format
 - Model definition
 - Model compilation
 - Validating your approach
 - Predicting on new data
 - Fighting overfitting
 - Reducing the network's size
 - Adding weight regularization
 - Adding dropout

The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Preparing the data

The data has already been preprocessed: the reviews (sequences of words) have been turned into sequences of integers, where each integer stands for a specific word in a dictionary.

• The argument **num_words** = **10000** keep only the top 10,000 most frequently occurring words in the training data.

```
imdb <- dataset_imdb(num_words = 10000)
train_data <- imdb$train$x
train_labels <- imdb$train$y
test_data <- imdb$test$x
test_labels <- imdb$test$y</pre>
```

- Each review is a list of word indices.
- The labels are lists of 0s and 1s, where 0 stands for negative and 1 stands for positive.

• The first review in the list:

str(train_data[[1]])

int [1:218] 1 14 22 16 43 530 973 1622 1385 65 ...

train_labels[[1]]

[1] 1

Turning sequence of integers back to english

Below is the code to turn the reviews from sequence of integers back to english.

```
word_index <- dataset_imdb_word_index()
reverse_word_index <- names(word_index)
names(reverse_word_index) <- word_index
decoded_review <- sapply(train_data[[1]], function(index) {
   word <- if (index >= 3) reverse_word_index[[as.character(index - 3)]]
   if (!is.null(word)) word else "?"
})
```

Turning sequence of integers to tensor format

- The vectorize_sequences below will produce a tensor of rank 2 of the form (samples, features)
- Each sample is represented by a feature vector of the size of the dictionary being used with values equal to 1 if a particular word is present and 0 if the particular word is absent.

```
vectorize_sequences <- function(sequences, dimension = 10000) {
  results <- matrix(0, nrow = length(sequences), ncol = dimension)
  for (i in 1:length(sequences))
    results[i, sequences[[i]]] <- 1
  results
}
x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)</pre>
```

y_train <- as.numeric(train_labels)
y_test <- as.numeric(test_labels)</pre>

Model definition

```
model <- keras_model_sequential() %>%
layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
```

```
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")
```

Model compilation

```
model %>% compile(
    optimizer = "rmsprop",
    loss = "binary_crossentropy",
    metrics = c("accuracy")
)
```

Validating your approach

Create a validation set by setting apart 10,000 samples from the original training data.

```
val_indices <- 1:10000
x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]
y_val <- y_train[val_indices]
partial_y_train <- y_train[-val_indices]</pre>
```

```
history <- model %>% fit(
   partial_x_train,
   partial_y_train,
   epochs = 20,
   batch_size = 512,
   validation_data = list(x_val, y_val)
)
```

Note that the call to fit() returns a history object. Let's take a look at it:

```
str(history)
```

```
## List of 2
## $ params :List of 8
   ..$ metrics : chr [1:4] "loss" "acc" "val_loss" "val_acc"
##
                        : int 20
## ..$ epochs
## ..$ steps
                        : NULL
## ..$ do_validation : logi TRUE
    ..$ samples
##
                        : int 15000
## ..$ batch_size : int 5
## ..$ verbose : int 1
                       : int 512
## ..$ validation_samples: int 10000
## $ metrics:List of 4
   ...$ acc : num [1:20] 0.789 0.9 0.927 0.945 0.956 ...
##
## ..$ loss : num [1:20] 0.5 0.302 0.221 0.171 0.139 ...
##
   ...$ val_acc : num [1:20] 0.859 0.889 0.887 0.889 0.876 ...
## ..$ val_loss: num [1:20] 0.383 0.3 0.287 0.274 0.32 ...
## - attr(*, "class")= chr "keras_training_history"
```


The history object includes parameters used to fit the model (history\$params) as well as data for each of the metrics being monitored (history\$metrics).

• You can customize all of this behavior via various arguments to the **plot()** method.

10

epoch

• We can create custom visualization by using **as.data.frame()** method on the history to obtain a data frame with factors for each metric as well as training versus validation:

15

20

```
history_df <- as.data.frame(history)
head(history_df)</pre>
```

5

##		epoch	value	metric	data
##	1	1	0.4997946	loss	training
##	2	2	0.3020927	loss	training
##	3	3	0.2211647	loss	training
##	4	4	0.1707503	loss	training
##	5	5	0.1389315	loss	training
##	6	6	0.1142671	loss	training

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art approaches, you should be able to get close to 95%.

Predicting on new data

g 0.90

0.85

0.80

```
model %>% predict(x_test[1:10,])
```

```
## [,1]
## [1,] 0.0058080279
```

##	[2,]	1.0000000000
##	[3,]	0.7080981731
##	[4,]	0.9868260026
##	[5 ,]	0.9978235960
##	[6,]	0.9996370077
##	[7,]	0.6307815909
##	[8,]	0.0000171118
##	[9,]	0.9769185185
##	[10,]	1.0000000000

Fighting overfitting

Reducing the network's size

Let's try a smaller network:

```
history <- keras_model_sequential() %>%
layer_dense(units = 4, activation = "relu", input_shape = c(10000)) %>%
layer_dense(units = 4, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",
    loss = "binary_crossentropy",
    metrics = c("accuracy")) %>%
fit(
    partial_x_train,
    partial_y_train,
    epochs = 20,
    batch_size = 512,
validation_data = list(x_val, y_val))
```


And a bigger network:

```
history <- keras_model_sequential() %>%
layer_dense(units = 512, activation = "relu", input_shape = c(10000)) %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",
    loss = "binary_crossentropy",
    metrics = c("accuracy")) %>%
fit(
    partial_x_train,
    partial_y_train,
    epochs = 20,
    batch_size = 512,
validation_data = list(x_val, y_val))
```


Adding weight regularization

Adding L2 weight regularization to the model:

```
partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val))
```


Adding dropout

Let's add two dropout layers in the IMDB network to see how well they do at reducing overfitting.

```
history <- keras_model_sequential() %>%
layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",
   loss = "binary_crossentropy",
   metrics = c("accuracy")) %>%
fit(
   partial_x_train,
   partial_y_train,
   epochs = 20,
   batch_size = 512,
   validation_data = list(x_val, y_val))
```

plot(history)

