Deep Learning Lecture 1 - IMDB: Densily connected
NN

e The IMDB dataset
o Preparing the data
= Turning sequence of integers back to english
= Turning sequence of integers to tensor format
Model definition
Model compilation
Validating your approach
Predicting on new data
Fighting overfitting
= Reducing the network’s size
= Adding weight regularization
= Adding dropout

o

o

o

o

o

The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Preparing the data

The data has already been preprocessed: the reviews (sequences of words) have been turned
into sequences of integers, where each integer stands for a specific word in a dictionary.

e The argument num_words = 10000 keep only the top 10,000 most frequently
occurring words in the training data.

imdb <- dataset_imdb(num_words = 10000)

train_data <- imdb$train$x
train_labels <- imdb$trainsy
test_data <—- imdb$test$x
test_labels <- imdb$testsy

e Each review is a list of word indices.
e The labels are lists of 0Os and 1s, where 0 stands for negative and 1 stands for positive.

e The first review in the list:

str(train_datal[1]1])

int [1:218] 1 14 22 16 43 530 973 1622 1385 65 ...

train_labels[[1]1]

(1] 1

Turning sequence of integers back to english

Below is the code to turn the reviews from sequence of integers back to english

word_index <- dataset_imdb_word_index()

reverse_word_index <— names(word_index)

names (reverse_word_index) <- word_index

decoded_review <- sapply(train_datal[[1]], function(index) {
word <— if (index >= 3) reverse_word_index[[as.character(index - 3)1]
if (!is.null(word)) word else "?"

})

Turning sequence of integers to tensor format

e The vectorize_sequences below will produce a tensor of rank 2 of the form
(samples, features)

e Each sample is represented by a feature vector of the size of the dictionary being used
with values equal to 1 if a particular word is present and O if the particular word is
absent.

vectorize_sequences <— function(sequences, dimension = 10000) {
results <- matrix(0, nrow = length(sequences), ncol = dimension)
for (i in 1:length(sequences))
results[i, sequences[[il]] <- 1
results

x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)

y_train <- as.numeric(train_labels)
y_test <- as.numeric(test_labels)

Model definition

model <- keras_model_sequential() %>%
layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%

layer_dense(units = 16, activation = "relu") %%
layer_dense(units = 1, activation = "sigmoid")
Model compilation
model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",

metrics = c("accuracy")

)

Validating your approach

Create a validation set by setting apart 10,000 samples from the original training data.

val_indices <— 1:10000

x_val <- x_train[val_indices,

]

partial_x_train <- x_train[-val_indices,]

y_val <- y_train[val_indices]

partial_y_train <- y_train[-val_indices]

history <— model %>% fit(
partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,

validation_data = list(x_val, y_val)

Note that the call to fit() returns a history object. Let's take a look at it:

str(history)

List of 2

$ params :List of 8

..$ metrics

..$ epochs

..$ steps

..$ do_validation

..$ samples

..$ batch_size

..$ verbose

..$ validation_samples:
$ metrics:List of 4

..$ acc : num [1:20]
..$ loss : num [1:20]
..%$ val_acc : num [1:20]
..$ val_loss: num [1:20]

:int 1

int 10000

0.789 0.
0.5 0.30
0.859

3

0.38 .

0
3
0
0
r

9
2
8
3

0.

0.
89

0.

: chr [1:4] "loss" "acc
: int 20

: NULL

: logi TRUE
: int 15000
: int 512

9
2
0
2

val_loss

27
21
8

945 0.956 ...

0.
0.171 0.139 ...

87 0.274 0.32 ...

- attr(x, "class")= chr "keras_training_history"

87 0.889 0.876 ...

val_acc"

The history object includes parameters used to fit the model (history$params) as well as
data for each of the metrics being monitored (history$metrics).

plot(history)

048~

06-

loss

0.2-

data

0.0~ .
=&= fraining
1.00- =]

=8= vyalidation

0.85-

acc
o
o
(=]
L]

epoch

e You can customize all of this behavior via various arguments to the plot() method.
e We can create custom visualization by using as.data.frame() method on the history
to obtain a data frame with factors for each metric as well as training versus validation:

history_df <- as.data.frame(history)
head(history_df)

epoch value metric data
1 1 0.4997946 loss training
2 2 0.3020927 loss training
3 3 0.2211647 loss training
4 4 0.1707503 loss training
5 5 0.1389315 loss training
6 6 0.1142671 loss training

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art approaches, you
should be able to get close to 95%.

Predicting on new data

model %>% predict(x_test[1:10,])

[,1]
[1,] 0.0058080279

[2,] 1.0000000000
[3,] 0.7080981731
[4,] 0.9868260026
[5,] 0.9978235960
[6,] 0.9996370077
[7,] 0.6307815909
[8,] 0.0000171118
[9,] 0.9769185185
[10,] 1.0000000000

Fighting overfitting

Reducing the network’s size

Let's try a smaller network:

o°

>%
"relu", input_shape = c(10000)) %>%
"relu") %>%
"sigmoid") %>%

history <- keras_model_sequential()

layer_dense(units = 4, activation
layer_dense(units = 4, activation
layer_dense(units 1, activation
compile(optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("accuracy")) %>%
fit(

partial_x_train,

partial_y_train,

epochs = 20,

batch_size = 512,
validation_data = list(x_val, y_val))

plot(history)

0g6- @
[+]

0.4-

o =]

oy

=4 °
0.2-

data
=2= fraining
=8= vyalidation

0.85-

0.80 -

acc

0.85-

0.80 -

epoch

And a bigger network:

history <- keras_model_sequential() %>%
layer_dense(units = 512, activation

"relu", input_shape = c(10000)) %>%

layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("accuracy")) %%
fit(

partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val))

plot(history)

1.00-

0.75-

0.50-

loss

0.25-

data

0.00 -
=2= fraining

100 =&~ yalidation

0.85-

0.80 -

acc

0.85-

0.80 -

epoch

Adding weight regularization

Adding L2 weight regularization to the model:

history <- keras_model_sequential() %>%
layer_dense(units = 16, kernel_regularizer = regularizer_12(0.001),

activation = "relu", input_shape = c(10000)) %>%
layer_dense(units = 16, kernel_regularizer = regularizer_12(0.001),
activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",
loss = "binary_crossentropy",

metrics = c("accuracy")) %%
fit(

partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val))

plot(history)

05-

0.4-

loss

0.3-

0.2~
data

=&= fraining

=== yalidation
095-

0.80 -

acc

0.85-

0.80 -

epoch

Adding dropout

Let's add two dropout layers in the IMDB network to see how well they do at reducing
overfitting.

history <- keras_model_sequential() %>%

layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
layer_dropout(rate = 0.5) %%
layer_dense(units = 16, activation = "relu") %%

layer_dropout(rate = 0.5) %%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")) %>%
fit(
partial_x_train,
partial_y_train,
epochs = 20,
batch_size = 512,
validation_data = list(x_val, y_val))

plot(history)

