
Deep Learning Lecture 1 - IMDB: Densily connected
NN

The IMDB dataset
Preparing the data

Turning sequence of integers back to english
Turning sequence of integers to tensor format

Model de�nition
Model compilation
Validating your approach
Predicting on new data
Fighting over�tting

Reducing the network’s size
Adding weight regularization
Adding dropout

The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Preparing the data

The data has already been preprocessed: the reviews (sequences of words) have been turned
into sequences of integers, where each integer stands for a speci�c word in a dictionary.

The argument num_words = 10000 keep only the top 10,000 most frequently
occurring words in the training data.

Each review is a list of word indices.
The labels are lists of 0s and 1s, where 0 stands for negative and 1 stands for positive.

MA8701 General Statistical Methods

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2019

imdb <- dataset_imdb(num_words = 10000)

train_data <- imdb$train$x
train_labels <- imdb$train$y
test_data <- imdb$test$x
test_labels <- imdb$test$y

The �rst review in the list:

int [1:218] 1 14 22 16 43 530 973 1622 1385 65 ...

[1] 1

Turning sequence of integers back to english

Below is the code to turn the reviews from sequence of integers back to english.

Turning sequence of integers to tensor format

The vectorize_sequences below will produce a tensor of rank 2 of the form
(samples, features)
Each sample is represented by a feature vector of the size of the dictionary being used
with values equal to 1 if a particular word is present and 0 if the particular word is
absent.

Model de�nition

str(train_data[[1]])

train_labels[[1]]

word_index <- dataset_imdb_word_index()
reverse_word_index <- names(word_index)
names(reverse_word_index) <- word_index
decoded_review <- sapply(train_data[[1]], function(index) {
 word <- if (index >= 3) reverse_word_index[[as.character(index - 3)]]
 if (!is.null(word)) word else "?"
})

vectorize_sequences <- function(sequences, dimension = 10000) {
 results <- matrix(0, nrow = length(sequences), ncol = dimension)
 for (i in 1:length(sequences))
 results[i, sequences[[i]]] <- 1
 results
}

x_train <- vectorize_sequences(train_data)
x_test <- vectorize_sequences(test_data)

y_train <- as.numeric(train_labels)
y_test <- as.numeric(test_labels)

model <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%

Model compilation

Validating your approach

Create a validation set by setting apart 10,000 samples from the original training data.

Note that the call to fit() returns a history object. Let’s take a look at it:

List of 2
$ params :List of 8
..$ metrics : chr [1:4] "loss" "acc" "val_loss" "val_acc"
..$ epochs : int 20
..$ steps : NULL
..$ do_validation : logi TRUE
..$ samples : int 15000
..$ batch_size : int 512
..$ verbose : int 1
..$ validation_samples: int 10000
$ metrics:List of 4
..$ acc : num [1:20] 0.789 0.9 0.927 0.945 0.956 ...
..$ loss : num [1:20] 0.5 0.302 0.221 0.171 0.139 ...
..$ val_acc : num [1:20] 0.859 0.889 0.887 0.889 0.876 ...
..$ val_loss: num [1:20] 0.383 0.3 0.287 0.274 0.32 ...
- attr(*, "class")= chr "keras_training_history"

 layer_dense(units = 16, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
 optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")
)

val_indices <- 1:10000

x_val <- x_train[val_indices,]
partial_x_train <- x_train[-val_indices,]
y_val <- y_train[val_indices]
partial_y_train <- y_train[-val_indices]

history <- model %>% fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val)
)

str(history)

The history object includes parameters used to �t the model (history$params) as well as
data for each of the metrics being monitored (history$metrics).

You can customize all of this behavior via various arguments to the plot() method.
We can create custom visualization by using as.data.frame() method on the history
to obtain a data frame with factors for each metric as well as training versus validation:

epoch value metric data
1 1 0.4997946 loss training
2 2 0.3020927 loss training
3 3 0.2211647 loss training
4 4 0.1707503 loss training
5 5 0.1389315 loss training
6 6 0.1142671 loss training

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art approaches, you
should be able to get close to 95%.

Predicting on new data

[,1]
[1,] 0.0058080279

plot(history)

history_df <- as.data.frame(history)
head(history_df)

model %>% predict(x_test[1:10,])

[2,] 1.0000000000
[3,] 0.7080981731
[4,] 0.9868260026
[5,] 0.9978235960
[6,] 0.9996370077
[7,] 0.6307815909
[8,] 0.0000171118
[9,] 0.9769185185
[10,] 1.0000000000

Fighting over�tting

Reducing the network’s size

Let’s try a smaller network:

history <- keras_model_sequential() %>%
 layer_dense(units = 4, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 4, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid") %>%
 compile(optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")) %>%
 fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val))

plot(history)

And a bigger network:

Adding weight regularization

Adding L2 weight regularization to the model:

history <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 512, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid") %>%
 compile(optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")) %>%
 fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val))

plot(history)

history <- keras_model_sequential() %>%
 layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001),
 activation = "relu", input_shape = c(10000)) %>%
 layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001),
 activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid") %>%
 compile(optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")) %>%
 fit(

Adding dropout

Let’s add two dropout layers in the IMDB network to see how well they do at reducing
over�tting.

 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val))

plot(history)

history <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 16, activation = "relu") %>%
 layer_dropout(rate = 0.5) %>%
 layer_dense(units = 1, activation = "sigmoid") %>%
 compile(optimizer = "rmsprop",
 loss = "binary_crossentropy",
 metrics = c("accuracy")) %>%
 fit(
 partial_x_train,
 partial_y_train,
 epochs = 20,
 batch_size = 512,
 validation_data = list(x_val, y_val))

plot(history)

