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The IMDB dataset

The objective here is to classify a movie review as either positive or negative.

Preparing the data

The data has already been preprocessed: the reviews (sequences of words) have been turned
into sequences of integers, where each integer stands for a speci�c word in a dictionary.

The argument num_words = 10000  keep only the top 10,000 most frequently
occurring words in the training data.

Each review is a list of word indices.
The labels are lists of 0s and 1s, where 0 stands for negative and 1 stands for positive.
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imdb <- dataset_imdb(num_words = 10000) 
 

train_data <- imdb$train$x 
train_labels <- imdb$train$y 
test_data <- imdb$test$x 
test_labels <- imdb$test$y



The �rst review in the list:

##  int [1:218] 1 14 22 16 43 530 973 1622 1385 65 ...

## [1] 1

Turning sequence of integers back to english

Below is the code to turn the reviews from sequence of integers back to english.

Turning sequence of integers to tensor format

The vectorize_sequences  below will produce a tensor of rank 2 of the form
(samples, features)
Each sample is represented by a feature vector of the size of the dictionary being used
with values equal to 1 if a particular word is present and 0 if the particular word is
absent.

Model de�nition

str(train_data[[1]])

train_labels[[1]]

word_index <- dataset_imdb_word_index()   
reverse_word_index <- names(word_index)                                     
names(reverse_word_index) <- word_index 
decoded_review <- sapply(train_data[[1]], function(index) {                 
  word <- if (index >= 3) reverse_word_index[[as.character(index - 3)]] 
  if (!is.null(word)) word else "?" 
})

vectorize_sequences <- function(sequences, dimension = 10000) { 
  results <- matrix(0, nrow = length(sequences), ncol = dimension) 
  for (i in 1:length(sequences)) 
    results[i, sequences[[i]]] <- 1                                      
  results 
}  
 

x_train <- vectorize_sequences(train_data) 
x_test <- vectorize_sequences(test_data)

y_train <- as.numeric(train_labels) 
y_test <- as.numeric(test_labels)

model <- keras_model_sequential() %>% 
  layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>% 



Model compilation

Validating your approach

Create a validation set by setting apart 10,000 samples from the original training data.

Note that the call to fit()  returns a history object. Let’s take a look at it:

## List of 2 
##  $ params :List of 8 
##   ..$ metrics           : chr [1:4] "loss" "acc" "val_loss" "val_acc" 
##   ..$ epochs            : int 20 
##   ..$ steps             : NULL 
##   ..$ do_validation     : logi TRUE 
##   ..$ samples           : int 15000 
##   ..$ batch_size        : int 512 
##   ..$ verbose           : int 1 
##   ..$ validation_samples: int 10000 
##  $ metrics:List of 4 
##   ..$ acc     : num [1:20] 0.789 0.9 0.927 0.945 0.956 ... 
##   ..$ loss    : num [1:20] 0.5 0.302 0.221 0.171 0.139 ... 
##   ..$ val_acc : num [1:20] 0.859 0.889 0.887 0.889 0.876 ... 
##   ..$ val_loss: num [1:20] 0.383 0.3 0.287 0.274 0.32 ... 
##  - attr(*, "class")= chr "keras_training_history"

  layer_dense(units = 16, activation = "relu") %>% 
  layer_dense(units = 1, activation = "sigmoid")

model %>% compile( 
  optimizer = "rmsprop", 
  loss = "binary_crossentropy", 
  metrics = c("accuracy") 
)

val_indices <- 1:10000 
 

x_val <- x_train[val_indices,] 
partial_x_train <- x_train[-val_indices,] 
y_val <- y_train[val_indices] 
partial_y_train <- y_train[-val_indices]

history <- model %>% fit( 
  partial_x_train, 
  partial_y_train, 
  epochs = 20, 
  batch_size = 512, 
  validation_data = list(x_val, y_val) 
)

str(history)



The history object includes parameters used to �t the model ( history$params ) as well as
data for each of the metrics being monitored ( history$metrics ).

You can customize all of this behavior via various arguments to the plot()  method.
We can create custom visualization by using as.data.frame()  method on the history
to obtain a data frame with factors for each metric as well as training versus validation:

##   epoch     value metric     data 
## 1     1 0.4997946   loss training 
## 2     2 0.3020927   loss training 
## 3     3 0.2211647   loss training 
## 4     4 0.1707503   loss training 
## 5     5 0.1389315   loss training 
## 6     6 0.1142671   loss training

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art approaches, you
should be able to get close to 95%.

Predicting on new data

##               [,1] 
##  [1,] 0.0058080279 

plot(history)

history_df <- as.data.frame(history) 
head(history_df)

model %>% predict(x_test[1:10,])



##  [2,] 1.0000000000 
##  [3,] 0.7080981731 
##  [4,] 0.9868260026 
##  [5,] 0.9978235960 
##  [6,] 0.9996370077 
##  [7,] 0.6307815909 
##  [8,] 0.0000171118 
##  [9,] 0.9769185185 
## [10,] 1.0000000000

Fighting over�tting

Reducing the network’s size

Let’s try a smaller network:

history <- keras_model_sequential() %>% 
  layer_dense(units = 4, activation = "relu", input_shape = c(10000)) %>% 
  layer_dense(units = 4, activation = "relu") %>% 
  layer_dense(units = 1, activation = "sigmoid") %>% 
  compile(optimizer = "rmsprop", 
    loss = "binary_crossentropy", 
    metrics = c("accuracy")) %>% 
  fit( 
    partial_x_train, 
    partial_y_train, 
    epochs = 20, 
    batch_size = 512, 
  validation_data = list(x_val, y_val))

plot(history)



And a bigger network:

Adding weight regularization

Adding L2 weight regularization to the model:

history <- keras_model_sequential() %>% 
  layer_dense(units = 512, activation = "relu", input_shape = c(10000)) %>% 
  layer_dense(units = 512, activation = "relu") %>% 
  layer_dense(units = 1, activation = "sigmoid") %>% 
  compile(optimizer = "rmsprop", 
    loss = "binary_crossentropy", 
    metrics = c("accuracy")) %>% 
  fit( 
    partial_x_train, 
    partial_y_train, 
    epochs = 20, 
    batch_size = 512, 
  validation_data = list(x_val, y_val))

plot(history)

history <- keras_model_sequential() %>% 
  layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001), 
              activation = "relu", input_shape = c(10000)) %>% 
  layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.001), 
              activation = "relu") %>% 
  layer_dense(units = 1, activation = "sigmoid") %>% 
  compile(optimizer = "rmsprop", 
    loss = "binary_crossentropy", 
    metrics = c("accuracy")) %>% 
  fit( 



Adding dropout

Let’s add two dropout layers in the IMDB network to see how well they do at reducing
over�tting.

    partial_x_train, 
    partial_y_train, 
    epochs = 20, 
    batch_size = 512, 
  validation_data = list(x_val, y_val))

plot(history)

history <- keras_model_sequential() %>% 
  layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>% 
  layer_dropout(rate = 0.5) %>% 
  layer_dense(units = 16, activation = "relu") %>% 
  layer_dropout(rate = 0.5) %>% 
  layer_dense(units = 1, activation = "sigmoid") %>% 
  compile(optimizer = "rmsprop", 
    loss = "binary_crossentropy", 
    metrics = c("accuracy")) %>% 
  fit( 
    partial_x_train, 
    partial_y_train, 
    epochs = 20, 
    batch_size = 512, 
  validation_data = list(x_val, y_val))

plot(history)




