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Response surface methodology motivated from a 

random forest algorithm 

 

Random Forest 

 
 

Tuning machine learning hyperparameters  
 

Random Forest 

 
 

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,  

       mtry=if (!is.null(y) && !is.factor(y)) max(floor(ncol(x)/3), 1) else   

       floor(sqrt(ncol(x))), replace=TRUE, classwt=NULL, cutoff,  

       strata, sampsize = if (replace) nrow(x) else 

       ceiling(.632*nrow(x)), nodesize = if (!is.null(y) && !is.factor(y))  

       5 else 1, maxnodes = NULL, importance=FALSE,  

       localImp=FALSE, nPerm=1, proximity, oob.prox=proximity,  
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       norm.votes=TRUE, do.trace=FALSE, keep.forest=!is.null(y) &&  

       is.null(xtest), corr.bias=FALSE, keep.inbag=FALSE, ...) 

 

Hyperparameters  

mtree            Number of trees to grow 

mtry              Number of variables to use at each split 

replace          Sampling with or without replacement  

nodesize       Minimum number of instances in each terminal node 

classwt          Prior probabilities for each of the classes 

cutoff            Threshold for binary classification 

maxnodes     Maximum number of terminal nodes  

 

Factor Low level (-1) High level  (+1) 

A: mtree 100 500 

B: mtry 2 4 

C: replace FALSE TRUE 

D: nodesize 1 3250 

E: classwt 1 10 

F: cutoff 0.2 0.8 

G: maxnodes 5 NULL 
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A 7 22IV


 design. Generators: F = ABCD; G = ABDE 

I=ABCDF=ABDEG=CEFG 

 

Row A B C D E F G 

1 -1 -1 -1 -1 -1 1 1 

2 1 -1 -1 -1 -1 -1 -1 

3 -1 1 -1 -1 -1 -1 -1 

4 1 1 -1 -1 -1 1 1 

5 -1 -1 1 -1 -1 -1 1 

6 1 -1 1 -1 -1 1 -1 

7 -1 1 1 -1 -1 1 -1 

8 1 1 1 -1 -1 -1 1 

9 -1 -1 -1 1 -1 -1 -1 

10 1 -1 -1 1 -1 1 1 

11 -1 1 -1 1 -1 1 1 

12 1 1 -1 1 -1 -1 -1 

13 -1 -1 1 1 -1 1 -1 

14 1 -1 1 1 -1 -1 1 

15 -1 1 1 1 -1 -1 1 

16 1 1 1 1 -1 1 -1 

17 -1 -1 -1 -1 1 1 -1 

18 1 -1 -1 -1 1 -1 1 

19 -1 1 -1 -1 1 -1 1 

20 1 1 -1 -1 1 1 -1 
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21 -1 -1 1 -1 1 -1 -1 

22 1 -1 1 -1 1 1 1 

23 -1 1 1 -1 1 1 1 

24 1 1 1 -1 1 -1 -1 

25 -1 -1 -1 1 1 -1 1 

26 1 -1 -1 1 1 1 -1 

27 -1 1 -1 1 1 1 -1 

28 1 1 -1 1 1 -1 1 

29 -1 -1 1 1 1 1 1 

30 1 -1 1 1 1 -1 -1 

31 -1 1 1 1 1 -1 -1 

32 1 1 1 1 1 1 1 

 

The effects (2x coefficients) are obtained from a linear 

model based estimation procedure.  

Steepest ascent 

In case of of only main effects, new experimentations could be 

perfomed along the gradient from the center of the design until no 

improvement.  

For example  

0 1 1 2 2 3 3
ˆ ˆ ˆ ˆˆ ( )y x x x f x         
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So 32
1 2 3

1 1
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ˆ ˆ
x x x



 
    is a potential direction for 

improvement or a path of steepest ascent. For minimizing, the 

path of improvement is along the negative gradient (steepest 

descent). 

 

The usefulness of center runs  

Center runs may provide us with a model independent estimate 

of error (pure error) and a test for lack of fit. 

Suppose the design has 1,2,i m  distinct points, each 

replicated ir  times. 

At each of these points the residuals are given by  

   ˆ ˆ ,  =1, 2, , , 1,2, ,ik i ik i i i iy y y y y y i m k r      . 

 

Thereby the sum of squares for residuals is given by: 

     
2 2 2

1 1 1 1 1

ˆ ˆ
i ir rm m m

R ik i ik i i i i

i k i k i

SS y y y y r y y
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or  R PE LOFSS SS SS  . 

If p terms are fitted to the data, RSS  has n p  degrees of 

freedom where n is the total number of runs.  

Further PESS  has  
1

1
m

i

i

r n m


    degrees of freedom 

which leaves m p  degrees of freedom for LOFSS . 

Thereby a test for lack of fit can be performed using the 

F-observator: 
   

 

 ,

/

/
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. 

If the test leads to rejection, we conclude there is a 

significant lack of fit.   

Typically a lack of fit test is performed to check for 

curvature, or if there should be second order terms in 

the model. When a two-level screening design is 

performed and analysed, possibly with several iterations, 

it may happen that some interactions are active. Thereby 

a gradient based steepest ascent/descent may not give 

the best direction to improve the function value. In this 

situation, and whenever the F-test indicates lack of fit, 

we normally augment the design to be able to estimate 

second order terms. The most commonly used designs 
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are the Central Composite Designs (CCD) and the Box-

Behnken Designs (BBD). 

 

 Standard procedure 

Perform a screening experiment possibly with center 

runs added.  

If only main effects are active, proceed with 

experimentation along the gradient (steepest ascent) or 

along the opposite direction (steepest descent). 

Otherwise, perfom a Central Composite design cube+ 

center + star runs or a Box-Behnken design to estimate 

quadratic effects.  

Find the stationary point. 

If that is far away from the center, use canonical analysis 

to find a new direction for improvement. 

Iterate. 
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Central Composite Designs 

 

 

 

In a CCD we add two extra runs on the axis. Two choices of   are 

common:  

k   where k is the number of factors or  
1

4
fn  . Here fn  is 

the number of factorial runs. 
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A CCD with three factors, 14+ Cn    runs 

Runs 
Factors 

A B C 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 1 -1 

4 1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 -1 1 1 

8 1 1 1 

9   0 0 

10   0 0 

11 0   0 

12 0   0 

13 0 0   

14 0 0   

 0 0 0 
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Box-Behnken Designs have all their runs on the cube 

 

Runs 
Factors 

A B C 

1 -1 -1 0 

2 -1 1 0 

3 1 -1 0 

4 1 1 0 

5 -1 0 -1 

6 -1 0 1 

7 1 0 -1 

8 1 0 1 

9 0 -1 -1 

10 0 -1 1 

11 0 1 -1 

12 0 1 1 

13 0 0 0 

14 0 0 0 

15 0 0 0 
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Box-Behnken Designs In three, four and five factors 

 

Three factors, 12+ Cn    runs 

1 1

1 1

1 1

  
  
 

  
 
 

0

0

0

0 0 0

 

 

Four factors, 24+ Cn  runs 

1 1

1 1

1 1

1 1

1 1

1 1

  
  
 
  
 

  
  
 

  
  

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0
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Five factors, 40+ Cn  runs 

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

  
  
 
  
 
  
  
 

  
  
 

  
  
 

  
 
 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0
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Analysis of response surfaces. Canonical analysis. 

A fitted second order model can be written on the form: 

0

1

k

j j ij i j

j i j

ŷ = b b x b x x
 

   . 

If we write  

 

 

1 1 11 12 1

2 2 12 22 2

1 2

0 5 0 5

0 5 0 5
   

0 5 0 5

k

k

k k k k kk

x b b . b . b

x b . b b . b
, , =

x b . b . b b

     
     
     
     
     
     

x b B= , 

 

we get  

t t

0ŷ b +  x b x Bx  . 

Let 1 2i ,i , , ,km  be the orthonormal eigenvectors. 

Then 1 2i i i , i , , ,k Bm m  and for the k equations we can 

write: 

BM M . Here   is a diagonal matrix with the eigenvalues on the 

diagonal.  

Since 
t M M I ,  we have  

t M BM   and  

t t t t t

0ŷ b +  x MM b x MM BMM x , 
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and writing tX M x , the vector of principal 

components, and t
b    we get  

 

t t

0ŷ b +  X X X   or  

2 2

0 1 1 1 1k k k kŷ b X X X X          . 

 

Equating the derivatives to zero we get the stationary 

points in the new coordinates as  

1

s

1

2

 X   . 

Introducing 
S X X X and 

t

0

1

2
S Sŷ b  X   we get  

t

S
ˆ ˆy y + X X  or 

2

1

k

S i i

i

ˆ ˆy y + X


  . 

If all eigenvalues are negative, 1

s

1

2

 X     is a 

maximum. 

If all eigenvalues are positive, it is a minimum. 

If some are positive and some negative, we have a saddle 

point. 
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Example  

At some part of an investigation the experimenter ended 

up with the following model in 1 2 3 and xx ,x  after a Box 

Behnken design had been carried out.  

 

1 2 3 1 2 1 3

2 2 2

2 3 1 2 3

0 75 0 0098 0 0035 0 025 0 0015 0 0021

0 0021 0 0007 0 0015 0 0007

ŷ . . x . x . x . x x . x x

. x x . x . x . x

     

   
 

This gives the following B  matrix: 

            

          

0 0007 0 0008 0 0011

0 0008 0 0015 0 0011

0 0011 0 0011 0 0007

, , ,

, , ,

, , ,

 
 
 
 



  



B        

with corresponding eigenvectors  

 

0 528460 0 373265 0 762498

0 741701 0 233992 0 628592

0 413050 0 897731 0 153195

, , ,

, , ,

, , ,

 
 
 
  

 



 

 

and eigenvalues  
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0 0026826

0 0014441

0 0002615

,

,

,

 
 
 
 





. 

With 
t
b   =

0 0077433

0 0252823

0 0058427

,

,

,





 
 
 
 

, 

we get the canonical form  

 

2 2 2

1 2 3 1 2 30 75 0 008 0 025 0 006 0 003 0 001 0 0003ŷ . . X . X . X . X . X . X      
. 

 

The stationary point is located in s

1.44

8.75

11.17

 
 
 
  

X  or 

1

4 48
1

10 14
2

8 97

S

.

.

.



 
  
 
  

x B b =  which is pretty far from the 

center of the design. 

Interactions and quadratic effects are involved. To get a 

direction for improvement, it is often useful to consider 
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the first order terms or the   vector.  This means we 

should try to decrease 1X , increase 2X  and decrease 3X . 

In the rotated coordinate system   is roughly pointing in 

the direction of the vector 

1

0

3

8.

 
 
 
  





   which gives a direction 

of improvement using the   

tX M x  vector. Thereby in the original variables we get   

a possible direction of improvement given by x MX =  

0 54

2 9

1 2

8

.

.

. 
 
 
  



. 

Using balanced accuracy, BACC= 1 TP TN

2 TP FN TN FP

    
         

, 

an improvement from 0.64 to 0.81 was obtained.   
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