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Philip Didrik Jacobe
on Welcome

Remember: 

3 members to reference group! 
•
Office hours Monday and Friday at 9-10, 1236.•
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Model assessment and selection

(ESL Ch 7.1-7.6,7.10-7.12)

The generalization performance of ̂𝑓 can be evaluated from the
EPE (expected prediction error) on an independent test set.
We use this for▶ Model assessment: evaluate the performance of a selected

model▶ Model selection: select the best model for a specific task -
among a set of models
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Plan
1) Look at EPE(𝑥0) (now called Err(𝑥0)) and how model

complexity can be broken down into irreducible error, squared
bias and variance (should be known from before)

2) Study EPE (Err) unconditional and conditional on the training
set

3) Study optimism of the training error rate, and how in-sample
error may shed light

4) Cross-validation and .632 bootstrap estimates of EPE
5) How will we build on this in the rest of the course?

We finished 1) and 2) in L2, now we continue!

TODAY
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OPTIMISM OF THE TRAINING ERROR RATE

FCI predictor for Y Xie random variables frompoxy
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We saw last time that Er I LCyi faxis istypically lessthan
Erie Exercise 2.9

still hard to work with Ere but it turns out to beeasier if we fix
the new obserates Xo to be at thetrain setx's

Erin NtEY Eyo LCF Fai It
9

insample t
newobs Y at x

error

Howdoesthis compare to ert Optimismop

op Erin Er EYEyo Lai FAI T II Ligi fixD
Is op positive or negative Positive

Again hard to estimate but possible to estate w
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WE Ey op for squared loss w E EYCorgi y
to d loss9 2011

fixentropyloss ji EcoD
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Covariance result
For squared error, 0-1 loss, and “other loss functions” it can be
shown 𝜔 = 2𝑁 𝑁∑𝑖=1 Cov( ̂𝑦𝑖, 𝑦𝑖)
Group discussion

1) Give an interpretation of the result.
2) How do you think this result can be used?
3) Study the derivation of the covariance formula for squared

loss. This is Exercise 7.4 and solutions are available here and
in the ESL solutions to exercises.

https://github.com/mettelang/MA8701V2023/blob/main/Part1/ESLe74add.pdf
https://waxworksmath.com/Authors/G_M/Hastie/hastie.html
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Expected in-sample prediction error

Ey(Errin) = Ey(err) + 2𝑁 𝑁∑𝑖=1 Cov( ̂𝑦𝑖, 𝑦𝑖)
This is the starting point for several methods to “penalize” fitting
complex models!
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Look at co for MLR with minimizing squared error

Y fix it Éhk Ece Vorce o's

and in addition a linear ft in d inputs Esh Ex 7 7

Weknow that a line It has Y Ept B EET EY

Full vectorof predictions Y XB EYELITY
Hy
Axn Nxt

our hat matrix this is a

so called linear smoother

If we had

Caft
4 this is an wxw matrix and

Nxp he the trace of this matrix will

give EYCarly y

sum of thediagonal elements
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Could 4 E Y ECT Y ECU

CorC HY Y H Ca Y Y
tri traceTE
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Result for 𝜔
Additive error model and squared loss: 𝑌 = 𝑓(𝑋) + 𝜀, with ̂𝑦𝑖
obtained by a linear fit with 𝑑 inputs (or basis functions)𝜔 = 2 𝑑𝑁 𝜎2𝜀
Proof: ESL 7.1

https://github.com/mettelang/MA8701V2023/blob/main/Part1/ESLe71.pdf
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Group discussion▶ Comment on the derivation of 𝜔 - anything unclear?▶ How does 𝑑 and 𝑁 and 𝜎2𝜀 influence the average optimism?

W 2nd Oz

increase with d and a
decrease ith N
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Three ways to perform model selection▶ Estimate of expected in-sample prediction error (ESL Ch
7.5-7.6): We may develop the average optimism for a class of
models that are linear in the parameters (Mallows Cp, AIC,
BIC, …) - and compare models of different complexity using
Ey(Errin). Remark: in-sample error is not of interest, but used
to choose between models effectively.▶ Estimate Err (ESL Ch 7.10-7.11): We may instead use
resampling methods (cross-validation and bootstrapping) to
estimate Err directly (and use that for model selection and
assessment).▶ In the data rich approach: we have so much data that we use
a separate validation set for model selection (and a separate
test set for model assessment). That is not the focus of ESL
Ch 7.
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Estimates of (expected) in-sample prediction error
We have the following result:

Ey(Errin) = Ey(err) + 2𝑁 𝑁∑𝑖=1 Cov( ̂𝑦𝑖, 𝑦𝑖)
where now 𝜔 = 2𝑁 𝑁∑𝑖=1 Cov( ̂𝑦𝑖, 𝑦𝑖)
We now want to get an estimate of the average optimism, to get
an estimate of the in-sample prediction error:

Êrrin = err + 𝜔̂
Comment: observe that err is now an estimate of Ey(err) and even
though we write Êrrin we are aiming to estimate Ey(Errin). Focus
now is on 𝜔̂!
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𝐶𝑝 statistics
for squared error loss (follows directly from the 𝜔-result for additive
error model) 𝐶𝑝 = err + 2 𝑑𝑁 𝜎̂2𝜀
where 𝜎̂2𝜀 is estimated from a “low-bias model” (in MLR we use a
“full model”).
(This method is presented both in TMA4267 and TMA4268, see
also exam question Problem 3 in TMA4267 in 2015 and solutions.)

https://www.math.ntnu.no/emner/TMA4267/2017v/Exam/eV2015.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/Exam/lV2015.pdf
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Akaike information criterion (AIC)
Based on different asymptotic (𝑁 → ∞) relationship for
log-likelihood loss functions−2E[log 𝑃 ̂𝜃(𝑌 )] ≈ − 2𝑁 E[loglik] + 2 𝑑𝑁▶ 𝑃 ̂𝜃(𝑌 ): family of density for 𝑌 where the true density is

included▶ ̂𝜃: MLE of 𝜃▶ loglik: maximized log-likelihood ∑𝑁𝑖=1 log 𝑃 ̂𝜃(𝑦𝑖)
Logistic regression with binomial loglikelihood

AIC = − 2𝑁 loglik + 2 𝑑𝑁
Multiple linear regression if variance 𝜎2𝜀 = 𝜎̂2𝜀 assumed known
then AIC is equivalent to 𝐶𝑝.
For nonlinear or similar models then 𝑑 is replaced by some measure
of model complexity.
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AIC as function of tuning parameter (back to squared error
loss)
We have a set of models 𝑓𝛼(𝑥) indexed by some tuning parameter𝛼.

AIC(𝛼) = err(𝛼) + 2𝑑(𝛼)𝑁 𝜎̂2𝜀▶ err(𝛼): training error▶ 𝑑(𝛼) number of parameters▶ 𝜎̂2𝜀 estimated variance of large model
The model complexity 𝛼 is chosen to minimize AIC(𝛼).
This is not true if the models are chosen adaptively (for example
basis functions) this formula underestimates the optimism - and we
may regard this as the effective number of parameters is larger
than 𝑑.
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Expected in-sample prediction error for binary classification
(Efron and Hastie (2016) page 225)
Misclassification loss function: 𝐿( ̂𝐺(𝑋), 𝐺) = 1 for incorrect
classification and 0 for correct.
The training error is then err = (#( ̂𝐺𝑖 ≠ 𝐺𝑖))/𝑁 .
The insample error is then 1𝑁 ∑𝑁𝑖=1 𝑃(𝐺0𝑖(𝑋𝑖) ≠ ̂𝐺(𝑋𝑖)).
The estimate of (expected) in-sample prediction error is then

Êrri𝑛 = #( ̂𝐺𝑖 ≠ 𝐺𝑖)𝑁 + 2𝑁 𝑁∑𝑖=1 Cov( ̂𝐺(𝑋𝑖), 𝐺(𝑋𝑖))
where

Cov( ̂𝐺(𝑋𝑖), 𝐺(𝑋𝑖)) = E( ̂𝐺(𝑋𝑖) ⋅ 𝐺(𝑋𝑖)) − E( ̂𝐺(𝑋𝑖)) ⋅ E(𝐺(𝑋𝑖))= 𝜇𝑖(1−𝜇𝑖)[𝑃 ( ̂𝐺(𝑋𝑖) = 1 ∣ 𝐺(𝑋𝑖) = 1)−𝑃( ̂𝐺(𝑋𝑖) = 1 ∣ 𝐺(𝑋𝑖) = 0)]
where 𝜇𝑖 = 𝑃 (𝐺(𝑋𝑖) = 1).

T Here it is not
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Group discussion
What is the take home message from this part on “Estimates of
(expected) in-sample prediction error”?

We can do model selection with only the training data de

When is the Cov result valid squared loss o l loss and
some other lossfunctions
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THE EFFECTIVE NUMBER OF PARAMETERS ESL7.6

Mar byquadraticloss gives TY response

We saw that w I ÉCarly T 2 Get in other words

EICali yi tr H of

which leads to

try Ig t.caCii y

motivating a new definitionof degreesof freedom as a

generalization ofthenumberof parameles in a model
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For a lineaffnethod Y Spy the effective rank of

paramchs is df s trace s Ex 7.6 on hun
7.5 on Sgeneral

In Mallowsop we just replace d with trace s

And the more general def of df yl is

dfly TIÉ more in pas 2

forother j Kidd
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Exercises

Expected training and test MSE for linear regression
Do exercise 2.9.
Important take home message: We have proven (for MLR) that
the expected test MSE is always at least as large as the expected
training MSE.

Establish the average optimism in the training error

𝜔 = 2𝑁 𝑁∑𝑖=1 Cov( ̂𝑦𝑖, 𝑦𝑖)
Exercise 7.4
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Plan
1) Look at EPE(𝑥0) (now called Err(𝑥0)) and how model

complexity can be broken down into irreducible error, squared
bias and variance (should be known from before)

2) Study EPE (Err) unconditional and conditional on the training
set

3) Study optimism of the training error rate, and how in-sample
error may shed light

4) Cross-validation and .632 bootstrap estimates of EPE
5) How will we build on this in the rest of the course?

We finished 1) and 2) in L2, now we continue!
maybe
start
on

missing
data
analysis


