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Cross-validation (CV)

(ESL Ch 7.10, 7.12 - most should be known from TMA4268)

The aim is to estimate Errp, but from simulation analyses (ESL Ch
7.12) it turns out that cross-validation estimates Err “the best”.

The starting point for the method is that we only have one training
set - and try to use that for either model selection or model
assessment (not both).

What to do when both is needed, is not covered in this chapter.
Nested cross-validations aka two-layers of cross-validation is one
possibility. Another is to set aside data for a test set for model
assessment, but use the training set in cross-validation for model
selection.
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Formal set-up for model assessment

P The allocation of observation {1,..., N} to folds {1,..., K} is
done using an indexing function x: {1,..., N} — {1,..., K},
that for each observation allocate the observation to one of K
folds.

» Further, f~%(x) is the fitted function, computed on the
observations except the kth fold (the observations from the
kth fold is removed).

» The CV estimate of the expected prediction error
Err = E;Exo yo [L(Y?, f(X°)) | T] is then

A 1 N
— N; yz? z))

Efron and Hastie (2016) page 218: “CV(f) is estimating the
average prediction error of the algorithm producing f, not f itself”.



Pima indian example

We will use the classical data set of diabetes from a population of
women of Pima Indian heritage in the US, available in the R MASS
package. This version of the data has no missing values. The
following information is available for each woman:

P diabetes: 0= not present, 1= present

P npreg: number of pregnancies

P glu: plasma glucose concentration in an oral glucose tolerance

test

P bp: diastolic blood pressure (mmHg)

P skin: triceps skin fold thickness (mm)

» bmi: body mass index (weight in kg/(height in m)?)

P ped: diabetes pedigree function.

P age: age in years
We will use the default division into training and test in the MASS
library, with 200 observations for training and 332 for testing.

Only training set used here.
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Group discussion

The lasso logistic regression (to be studied in Part 2) was used to
fit the data, and some loss function is plotted on the vertical axis
(more in Part 2) and on the horisontal axis the loss for different fits
for different choices of a complexity parameter is given. 10-fold
crossvalidation is used. (Just assume that a generic prediction is
used, this is not meant to be specific for the lasso.)
» What are the red dots and how have they been calculated?
» What are the the vertical bars sticking out of each red dot,
and how have they been calculated? What do they picture?
» What (your choice) is the optimal choice of the complexity
parameter?
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Choice of K

» Popular choices are 5 and 10 based on observations in
simulation studies- and arguments similar to a bias-variance

trace off.
» K = N is called leave-one-out cross-validation LOOCV, and

gives the lowest bias for estimating the Err.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.8. Hypothetical learning curve for a clas-
sifier on a given task: a plot of 1 —Err versus the size of
the training set N. With a dataset of 200 observations,
5-fold cross-validation would use training sets of size
160, which would behave much like the full set. How-
ever, with a dataset of 50 observations fivefold cross—
validation would use training sets of size 40, and this

would result in a considerable overestimate of predic-
tion error.



Generalized cross-validation (GCV)

For LOOCV with squared loss and linear fitting. Remember
5 — Sy

For many fitting methods (including MLR)

2= PP = Y

where S, is the ith diagonal element of S. This leads to the GCV
approximation:

1 O f
GCV = —
¥ 2 o)
where we recognise the effective number of parameters trace(S).

In some settings the trace(S) is computed more easily than the
individual elements S, .



The wrong and the right way to do cross-validation

In short: make sure that all part of the model fit process is “inside”
the CV.

See learning material from TMA4268: Module 5: Resampling, and
| also recommend to work on Problem 3 with solutions

Group discussion

Can you give one example of a right way to do cross-valiation and
also a wrong way? If you want you may used the Pima-indians as
an example, but other examples may also be used.
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https://www.math.ntnu.no/emner/TMA4268/2019v/5Resample/5Resample.html#the_right_and_the_wrong_way_to_do_cross-validation
https://www.math.ntnu.no/emner/TMA4268/2019v/5Resample/5Resample.html#problem_3:_selection_bias_and_the_%E2%80%9Cwrong_way_to_do_cv%E2%80%9D

Selection bias in gene extraction on the basis of microarray gene-
expression data

Article by Christophe Ambroise and Geoffrey J. McLachlan, PNAS 2002: Direct quotation from the abstract of the article follows.

In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on
the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many
(possibly thousands) genes.

Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only
a few genes such that it has a negligible prediction error rate.

However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the
selection bias.

There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the
genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is,
gene selection is not performed in training the rule at each stage of the crossvalidation process.

We describe how in practice the selection bias can be assessed and corrected for by either performing a crossvalidation or
applying the bootstrap external to the selection process.

We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using
the so-called .632 bootstrap error estimate designed to handle overfitted prediction rules.

Using two publisijed data sets, we demonstrate that when correction is made for the selection bias, the cross-validated
error is no longer kero for a subset of only a few genes.
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However - Er\rbOot Is not a good estimator: bootstrap datasets are
acting as training data and the original data as a test sample - and
the two samples have observations in common.

This overlap can make predictions too good. Remember, in CV we
have no overlap.

Q: What is the probability that observation 7 is included in
bootstrap sample b7
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According to ESL (page 251): the derivation of the .632 estimator
is complex, and the estimator is expected to work well in situation

where the data is not overfitted, but may break down in overfit
situations.

According to CASI (page 323) the .632 rule is less variable than
the leave-one-out CV.

Example of this on page 251-252: two equal size classes where

predictors independent of class, classification with 1NN gives
(1 _(.632
err =0 and Err( | = 0.5 and thus Err< ) = 0.632 - 0.5 = 0.316,

where here the true error rate is 0.5.
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There is an improved version of the estimator - taking into account
the amount of overfitting, leading to an adjustment to the weight
w = 0.632 (and 1 — w = 0.368) dependent on a socalled
no-information error rate=<y=the error rate of the prediction rule
when predictors and class labels are independent.
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Finally, the “.6324"-estimator is

Err = (1 — w)err + wErr
~ 0.632
W = <
here w = =0 3687

For details on this approach consult ESL page 252-253.



The 0.632+ bootstrap estimator is a method for estimating the performance . 3
. . . openai ChatGPT:

of a machine learning model on unseen data, based on its performance on a i .

sample of data. It is an extension of the 0.632 bootstrap estimator, which EXp|a|n the O632+ bOOtStrap estimator

was proposed by Efron in 1983.

The 0.632 bootstrap estimator is based on the idea that the performance of
a model on the training set is likely to be better than its performance on

unseen data. To estimate the performance on unseen data, the 0.632

bootstrap estimator takes the average of the performance on the training set Can we thln k Of the bootstrap Sample as
and the performance on a validation set, with a weight of 0.632 given to the . . ) N
- a validation set? maybe*

performance on the training set. N 0.Wh <rc

The 0.632+ bootstrap estimator extends this idea by taking into account the

variability of the performance on the validation set. Instead of taking a fixed

weight of 0.632 for the performance on the training set, the 0.632+
bootstrap estimator estimates the weight dynamically, by taking into account

oY GCS

the variability of the performance on the validation set.

The 0.632+ bootstrap estimator is calculated as follows:

The OOB data is more of a traning set

) . .. than a test set in this setting? The sum in
Train the model on the bootstrap sample and test it on the remaining . . .
data. e &' the OOB bootstrap estimator is not this

* Repeat this process B times. A

* Take a sample of the dataset with replacement, called bootstrap sample.

@)

* Calculate the average performance of the model across all B runs. Exe
* Let the performance of the model on the bootstrap sample be denoted by

T and the performance on the remaining data be denoted by V. A ‘
. . . 4
* The 0.632+ bootstrap estimatoris given by: T+ (V-T) * (1 1/2)) e

The 0.632+ bootstrap estimator is a more robust method for estimating the
performance of a model on unseen data, as it takes into account the
variability of the performance on the validation set. It is particularly useful

W
when the sample size is small or the performance of the model is highly

variable. _—— QQA.-D'(’; 6/‘?'(7
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Conclusions

Group discussion:

Construct a “mind map” or “overview sheet” or “concept map”
(mind map with verbs on arrows between entities) for the “Model
assessment and selection” topics, and write down important take
home messages!

Some concept that could be in the map: )

Err,Errp,Err, Err, & ,w,Cov(§,, y;) trace(S),df,CV(f), bootstrap,

(1
Err( ), 0.632, 0.368, model assessment, model selection.
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Final remarks
P In a perfect world we would be rich on data and can divide

>

available data into sets for training, validation and testing
We have derived cool covariance-result on expected optimism
for training error related to in-sample prediction error (the
covariance) - that is used for finding model selection criteria
(but not for model assessment). If we can’t calculate a
formula for the covariance, bootstrapping can be used to do
this (Efron and Hastie (2016) Equation 12.64 on dage 224).
Estimating expected prediction (test) error for a particular
training set is not easy in general (if we only have this one
training set), but cross-validation and bootstrapping may
provide reasonable estimates of the expected test error Err.

If resampling needed for model assessment: take average of
many 10-fold CV Err estimates?



Week 3: How to handle missing data (new this year)

Reading list: online-book of van Buuren - given chapters
and Handbook of missing data (oria) parts of chapter 12 on multiple imputation.

Monday 23.01: Motivation, missing types, different solutions, starting on multiple
imputation
Friday 27.01: Mainly multiple imputation

Friday 27.01 after class: meeting with reference group.

Usual agenda for such meetings:

We go through the learning outcome and compare with the learning plan/
resources and evaluation - and see if they are in alignment (samstemt
undervisning)

Comment on lectures, exercises, text book, plan for the course in general.

For Part 4: should we be full digital the two times that Kjersti presents from Oslo,
or hybrid (then difficult for Kjersti to help in break-out rooms). The third time
Kjersti is in Trondheim (3 hrs physical).

Data analysis project 1: based on Part 2. Which deadlines should we have?
Article presentation: During Part 3 and also possibly Part 5 (after Easter).



