MA8701 Advanced methods in statistical inference and learning

Week 3 (L5-L6): Missing data
L5
Mette Langaas
$1 / 22 / 23 \quad 23.01 .2023$

Course homepage:
https://wiki.math.ntnu.no/ma8701/2023v/start
Reading list:

- Handbook of missing data methodology: Chapter 12.1.2, 12.2, 12.3.3. Available for download (60 pages pr day) from Oria at NTNU (Choose EBSCOweb, then PDF full text and then just download chapter 12). Stef ven Buwrer LS
\rightarrow Flexible imputation of missing data"): Chapters 1.1, 1.2, 1.3, 1.4, 2.2.4, 2.3.2 (similar to Handbook 12.2), 3.2.1, 3.2.2 (Algo 3.1), 3.4 (Algo 3.3), 4.5.1, 4.5.2.

Missing data

Many statistical analysis methods (for example regression) require the data (for analysis) to be complete. That is, for all data record (observations, rows) all the variable under study must be observed. But, in the real world this is not the case - some variables are missing for some observations (records, rows).

What are reasons for data to be missing?

Some reasons (not exhaustive):
\checkmark nonresponse,
$>$ measurement error,
$>$ data entry errors,
$>$ data collection limitations,
$>$ sensitive or private information,
$>$ data cleaning.
The missingness may be intentional (sampling) or unintentional (refusal, self-selection, skip questions, coding error).

What cen we do if we nave missing debra?

How will this affect the analysis?

- Complerecase: wrong conclusions loss of power
- Single impulsion too conWclert
- Multiple imputahon: complicaled analysis

Airquality

A data frame with 153 observations on 6 variables.

${f97bd6188-304d-49e7-8477-939da2183687}$	`Ozone`	numeric	Ozone (ppb)
${ffd6a969b-d039-4073-982e-3fc7f36304fd}$	`Solar.R`	numeric	Solar R (lang)
` \([3] \times\) & 'Wind`	numeric	Wind (mph)	
${ }^{[1,4]}$	`Temp \({ }^{\text {¢ }}\) & numeric & Temperature (degrees F) \\ \hline & `Month	numeric	Month (1-12)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30, 1973.

- `Ozone`: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
- `Solar. R`: Solar radiation in Langleys in the frequency band 4000--7700 Angstroms from 0800 to 1200 hours at Central Park
- ‘Wind`: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
- `Temp`: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

References

[1] 1536

Pima indians

(MASS R package)
We will use the classical data set of diabetes from a population of women of Pima Indian heritage in the US, available in the R MASS package. The following information is available for each woman:
diabetes: $0=$ not present, $1=$ present (variable called type)
npreg: number of pregnancies
\rightarrow glu: plasma glucose concentration in an oral glucose tolerance test
$>$ bp: diastolic blood pressure (mmHg)

- skin: triceps skin fold thickness (mm)
bmi: body mass index (weight in $\mathrm{kg} /(\text { height in } \mathrm{m})^{2}$)
ped: diabetes pedigree function.
- age: age in years

We will look at a data set (Pima.tr2) with a randomly selected set of 200 subjects (Pima.tr), plus 100 subjects with missing values in the explanatory variables.

［1］ 300 8

Group discussion

Make sure the three types of plots are understood!
pairs plot
number of missing values

- missing patterns

Yes-looks good!

Notation

We will use different letters for response and covariates, but often that is not done in other sources. (We will assume that missing values are only present in the covariates and not the response.)

By response we mean the response in the intended analysis model and ditto for the covariates. (We will later also talk about an imputation model but this is not connected to our notation here.)

$$
\begin{aligned}
& Y=\text { response vectir } \\
& Z=\text { covonzte matix } N \times \rho \\
& z=(F, y) \\
& \text { (Kows, Zm:s) } \\
& Z_{\text {obs }}=\left(F_{o b s}, r\right) \\
& \uparrow \\
& R=\operatorname{malrx} \text { of } 0 / 1
\end{aligned}
$$

$$
\begin{aligned}
& 0=\text { missing } \\
& \tau=\text { obsued }
\end{aligned}
$$

U: some paramebe in the distibuzon of R notrekhed to the premeter of the analys is model

MCAR: missing completely at rendam

$$
P(R \mid Z, \Psi)=\underset{q}{P(R(\Psi)}
$$

all obs hare the same prob. of being missing

Not related to Kobs

\Rightarrow oh to do complete case enslys

Examples:
measure weight, and the scales run out of battery
$>$ similar mechanism to taking a random sample

- a tube containing a blood sample of study subject is broken by accident and then the blood sample could not be analysed (a set of covariates are then missing)

MAR: missing at vendor

$$
P(R \mid z, \varphi)=P\left(R \mid Z_{\text {obs }}, P\right)
$$

probebilly of massing may expend on observed data (NB also response) but not dependent on del that is missing!

Examples:

- measure weight, and the scales have different missing proportions when being on a hard or soft surface
- we have a group of healthy and sick individuals (this is the reponse), and for a proportion of the sick individuals the result of a diagnostic test is missing but for the healthy individuals there are no missing values

Most methods for handling missing data require the data to be MAR. If you know that the missingness is at least MAR, then there exists tests to check if the data also is MCAR.

MNAR $=$ missing not at tendon

$$
\begin{gathered}
P(R \mid 2, \varphi) \\
Q
\end{gathered}
$$

depend on Firs
"Only' solution: model the missing mechanism

$$
\uparrow
$$

need to behnowr

Examples:

the scales give more often missing values for heavier objects than for lighter objects

- a patient is too sick to perform some procedure that would show a high value of a measurement
- when asking a subject for his/her income missing data are more likely to occur when the income level is high

Group discussion

So far in your study/work/other - you might have analysed a data set (maybe on Kaggle or in a course). Think of one such data set.

- Did this data set have missing values?
- If yes, did you check if the observations were MCAR, MAR or MNAR?
What did you (or the teacher etc) do to handle the missing data?
If you have not analysed missing data, instead look at the synthetic generation of data with different missing mechanisms below!

Skipped ín class read for yourself

Synthetic example with missing mechanisms
Example from van Buuren (2018) Chapter 2.2.
A bivariate (0.5 correlation) normal response $\left(Y_{1}, Y_{2}\right)$ is generated $N=300$, and then data are removed from the second component
Y_{2}. This is done in three ways:

- MCAR: each observation Y_{2} is missing with probability 0.5
- MAR: each observation Y_{2} is missing with probability dependent on Y_{1}
- MNAR: each observation Y_{2} is missing with probability dependent on Y_{2}.
The boxplots of observed and missing values are shown.
- Code

```
#|echo: true
#|warnings: false
#|error: false
# code from https://github.com/stefvanbuuren/fimdbook/blob/master/R/fim
logistic <- function(x) exp(x) / (1 + exp(x))
set.seed(80122)
n <- 300
y <- MASS::mvrnorm(n = n, mu = c(0, 0),
    Sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2))
r2.mcar <- 1 - rbinom(n, 1, 0.5)
r2.mar <- 1 - rbinom(n, 1, logistic(y[, 1]))
r2.mnar <- 1 - rbinom(n, 1, logistic(y[, 2]))
```


Popular solutions to missing data

Use an analysis method that handles missing data
One such method is the CART classification and regression tree! How is it done? More in Part 3.

Complete case analysis

Discard all observations containing missing values. This is also called "listwise deletion".

- Wasteful, but will give valid inference for MCAR.
- If the missing is MAR a complete case analysis may lead to bias. In a regression setting if a missing covariate is dependent on the response, then parameter estimates may become biased.
Let each variable have a probability for missing values of 0.05 , then for 20 variables the probability of an observation to be complete is $(1-0.05)^{2} 0=0.36$, for 50 variables 0.08 . Not many observations left with complete case analysis. Of cause some variables may have more missing than others, and removing those variables first may of cause lead to less observations that are incomplete

Indicator variable method

Assume we have regression setting with missing values only in one of the covariates. The indicator method generates a new covariate as a missing indicator, and replaces the missing values in the original covariate with Os.
van Buuren (2018) (Chapter 1.3.7) says that it can be shown that biased estimates of regression parameters can occur also under MCAR. However the method works in particular situation. Which situations this is I (Mate) have not looked into. Would be interesting to know.
A version of this method is used in machine learning. If the covariate is a categorical covariate then an extra category is created for the missing data. Here more information would be of interest to include!

Single imputation

here each missing value is imputed (filled in) once by some "estimate" or "prediction" and the data set is then assumed to be complete and standard statistical methods are used.

MEAN impubron : fill in averge ser all observations

Not A 6000 SQUTION

Solar Radiation (lang)
blue: observed
red: imputed

Quality of mean imputation: mean unbiased under MCAR, and regression weights or correlations not. Standard errors too small.

REGRESSION Impulehon
-estirate regress.an line oncomplete absersahens

- predict ozone from soler and impure

Quality of regression imputation: mean and regression weights are unbiased under MAR. Correlation is not. The imputed red dots have correlation 1 (linear relationship). Standard errors too small.

Stoctastic regrossion impublen: n

- int regresson complete dbe - aod rendom oraw tron

Quality of stochastic regression imputation: mean, regression weights and correlations are unbiased under MAR. Standard errors too small.

Group discussion

Of the single imputation methods the stochastic regression imputation method appears to be the best. Do you see why? Would you think of possible improvements to this method?

- nonhreer regrosions
- multiple regression- not only simple
- draw from distmbuton of $\hat{\beta}$ at x, not residuals
- not one imputed
daterset-but many

Likelihood approaches
(Not included in 2023)
For example

- Bjørnland et al. Extreme phenotype sampling
- EM-algorithm from TMA4300

Fully Bayesian approaches
Sadly, not covered here.

Powerful extreme phenotype sampling designs and score tests for genetic association studies

Thea Bjørnland ${ }^{1}$ © | Anja Bye ${ }^{2}$ | Dinar Ryeng ${ }^{3}$ | Ulrik Wisløff ${ }^{2}$ | Mate Langaas ${ }^{1}$

100

2.3 | Extreme phenotype sampling

We define a general extreme phenotype sampling design where the classification rule (extreme or not extreme) Can be tailored to each individual in the sample.

Definition 5. (Extreme phenotype sampling)

Individual i has an extreme phenotype if $Y_{i}<l_{i}$ or $Y_{i}>u_{i}$, where l_{i} and u_{i} are known thresholds. All individuals who are classified as extreme are selected for genotyping.

3.1 | Complete case analysis

Using the conditional phenotype distribution $Y_{i} \mid\left(Y_{i}<l_{i} \cup Y_{i}>u_{i}\right)$, where classification rules l_{i} and u_{i} are determined before seeing the data, the likelihood for the complete cases (Definition 3) is

$$
L_{C}=\prod_{i \in \mathcal{C}} \frac{\frac{1}{\sigma} \phi\left(\frac{Y_{i}-\mu_{i}}{\sigma}\right)}{1-\Phi\left(\frac{u_{i}-\mu_{i}}{\sigma}\right)+\Phi\left(\frac{l_{i}-\mu_{i}}{\sigma}\right)}
$$

Multiple imputation

Short historical overview

Historically multiple imputation dates back to Donald B. Rubin in the 1970 's. The idea is that multiple data set (multiple imputations) will reflect the uncertainty in the missing data. To construct the m data sets theory from Bayesian statistics is used, but executed within the frequentist framework. Originally $m=5$ imputed data sets was the rule of thumb.
The method did not become a standard tool until 2005 (according to van Buuren (2018), 2.1.2), but now in 2023 it is widely used in statistics and has replaced version of single imputation. However, multiple imputation is not main stream in machine learning.

STEPS of multiple imputation
$Z=\left\{X_{\text {obs }}, X_{\text {snis }}, Y\right\}$ our data
In the analysis model wee ain to relate Y to X
ozone: $Y=X_{\beta+\varepsilon}$
diabetes: $\begin{gathered}Y_{i} \sim b_{n}\left(1, p_{i}\right) \quad \log 1 p_{i}=X_{i}^{\top} \beta \\ 0_{1} / 1\end{gathered}$ wind ozone

1) Devise an imputation model (often of regression type) where each missing covenate is modelled as a function of other covenates and the analysis method response and possibly ot he vanzbles. \rightarrow Make on full data sets Of interest is Q (or guat β) in the analyoiscnodel, but in the imp. no del we have other perenctis (γ 's?)
2) Analyse the m complete delta ceto (Know how to do that)

$$
\hat{\beta}, \quad \hat{\operatorname{cov}}(\hat{\beta})
$$

$\hat{Q} \operatorname{Cov}(\hat{Q}) \Rightarrow m$ routs
3) Combe the results vary a set of ovules: Rubin's arlen
4) Use the results diechly or indirectly

MPORTANT: the n dele set are not to be used as complete datasets perse \rightarrow they are only used to eohsshe Q ar β, eth uncertanty!

Schematic for multiple imputation from Marthe Bøe Ludvigsen project thesis.

Rubin's rules

Algorithmic view
Fist we look at formulas for our quantities of interest, and next the Bayesian motivation for the formulas.

Quantity of interest

We denote our quantity (parameter) of interest by \mathbf{Q}, and assume this to be a $k \times 1$ column vector.
Example 1: Multiple linear regression

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X} \beta+\varepsilon \tag{1}
\end{equation*}
$$

where $\varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
Here $\mathbf{Q}=\beta$.
Example 2: Logistic regression
Again $\mathbf{Q}=\beta$.
\mathbf{Q} can also be a vector of population means or population variances. It may not depend on a particular sample, so it cannot be a sample mean or a p-value.

Estimeto 12: for each of the m dera sels $l=1, \ldots$, n wind sozovet
\hat{Q}_{l} is this estimotor. $E_{x l}^{\prime}: \hat{\beta}_{l}=\left(x_{l}^{T} x_{l}\right)^{-1} x_{l}^{T} l_{l}$
Ex2: \hat{B}_{l} egzin - norclozed forr

POOLED ESTIMATOR:

$$
\bar{Q}=\frac{1}{m} \sum_{l=1}^{m} \hat{Q}_{l}
$$

Rubins rale for Q
Intuitive end simple!

VARIANCE ESTIMATOR
het \bar{U}_{l} be the $\hat{\operatorname{Cav}}\left(\hat{Q}_{e}\right)$
Ex1: $\left(X_{l}{ }^{\top} X_{l}\right)^{-1} \hat{\sigma}_{l}^{2}$
Ex2: Invese fishernfo

1) Within imputation verience

$$
\bar{U}=\frac{1}{m} \sum_{i=1}^{m} \bar{U}_{l}
$$

2) Behoeen impultronverance

$$
B=\frac{1}{m-1} \sum_{l=1}^{n}\left(\hat{Q}_{l}-\bar{Q}\right)\left(\hat{Q}_{l}-\bar{Q}\right)^{\top}
$$

3) Toral variance of \bar{Q} : T

$$
T=\bar{u}+B+\frac{B}{m}=\bar{u}+\left(1+\frac{1}{m}\right) B
$$

3) Total variance of $\overline{\mathbf{Q}}$

$$
\mathbf{T}=\overline{\mathbf{U}}+\mathbf{B}+\frac{\mathbf{B}}{m}=\overline{\mathbf{U}}+\left(1+\frac{1}{m}\right) \mathbf{B}
$$

\rightarrow First term: variance due to taking a sample and not examining the entire population (our conventional variance of estimator.
\rightarrow Second term: extra variance due to missing values in the samples
The last term is the simulation error: added because $\overline{\mathbf{Q}}$ is based on finite m

Friday: Bayesian interpretelon

$$
\begin{aligned}
& E(E(X \mid Y))+\text { totter } \\
& \rightarrow \text { W Ex } \in \text { loouat }
\end{aligned}
$$

Horreware:

+ Hendbooh 12.2

