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MA8701 Advanced methods in statistical
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What can Rubin’s rules be used on?
For inference (see above for CI and 𝑝-value using t- and Fisher
distribution) the assumption is that 𝑄 is approximately
multivariate normal.▶ Regression parameters in multiple linear regression▶ Regression parameters in logistic regression▶ Correlations: but use Fishers z-transform to become more

normally distributed▶ ROC-AUC▶ Recently also predictions from the analysis model
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Confidence interval
Common assumption: Q is multivariate normal with mean Q and
estimated covariance matrix T.
We look at one component of Q, denoted 𝑄 (maybe regression
parameter for a specific covariate), antd 𝑇 is the appropriate
component of the total variance estimate.(1 − 𝛼)100% confidence interval for 𝑄:𝑄 ± 𝑡𝜈,1−𝛼/2√𝑇
where 𝑡𝜈,1−𝛼/2 is the value in the 𝑡-distribution with 𝜈 degrees of
freedom with area 1 − 𝛼/2 to the left.
What is 𝜈?
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Hypothesis test
We want to test 𝐻0 ∶ 𝑄 = 𝑄0 vs 𝐻1 ∶ 𝑄 ≠ 𝑄0. The 𝑝-value of
the test can be calculated as𝑃(𝐹1,𝜈 > (𝑄 − 𝑄0)𝑇 )
where 𝐹1,𝜈 is a random variable following a Fisher distribution with1 and 𝜈 degrees of freedom.
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Variance ratios
for scalar 𝑄 (for example one of the regression coefficients)
Proportion of variation “attributable” to the missing data𝜆 = 𝐵 + 𝐵/𝑚𝑇
Relative increase in variance due to missingness𝑟 = 𝐵 + 𝐵/𝑚𝑈
Relation: 𝑟 = 𝜆1 − 𝜆

Readforyourself
usedfor df i n t and

F test
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Degrees of freedom
van Buuren (2018) Chapter 2.3.6 attributed this first solution to
Rubind in 1987. 𝜈old = (𝑚 − 1)(1 + 1𝑟2 ) = 𝑚 − 1𝜆2
If 𝜆 = 1 then all variability is due to the missingness and then𝜈old = 𝑚 − 1.
If 𝜆 → 0 then 𝜈old → ∞ (normal distribution instead of t, chisq
instead of F).
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van Buuren (2018) Chapter 2.3.6: A newer solution is due to
Barnard and Rubin in 1999.𝜈com = 𝑛 − 𝑘

𝜈obs = 𝜈com + 1𝜈com + 3𝜈com(1 − 𝜆)𝜈 = 𝜈old𝜈obs𝜈old + 𝜈obs
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Schematic for multiple imputation from Marthe Bøe Ludvigsen
project thesis.
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Summary: if the imputation model is a multiple linear regression
model, and all covariates in the model are known (only missing
values in the covariate that we make our target response), we know
how to draw new observations to impute the missing values - and
we may construct many imputed data sets.
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Algorithm 3.3 in van Buuren (2018) Section 3.4.2, copied from
github Rmd file:

1. Calculate ̇𝜙 and ̂𝜙 by Steps 1-8 of Algorithm 3.1.
2. Calculate ̇𝜂(𝑖, 𝑗) = |𝑋obs𝑖 ̂𝜙 − 𝑋mis𝑗 ̇𝜙| with 𝑖 = 1, … , 𝑛1 and𝑗 = 1, … , 𝑛0.
3. Construct 𝑛0 sets 𝑍𝑗, each containing 𝑑 candidate donors,

from 𝑌obs such that ∑𝑑 ̇𝜂(𝑖, 𝑗) is minimum for all𝑗 = 1, … , 𝑛0. Break ties randomly.
4. Draw one donor 𝑖𝑗 from 𝑍𝑗 randomly for 𝑗 = 1, … , 𝑛0.
5. Calculate imputations ̇𝑦𝑗 = 𝑦𝑖𝑗 for 𝑗 = 1, … , 𝑛0.

This is the mostpopular imputation method

https://github.com/stefvanbuuren/fimdbook/blob/master/Rmd/04-multivariate-missing.Rmd
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Missing patterns
Univariate Monotone General
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Fully conditional specification
(also called chained equations, sequantial regression multivariate
imputation)
van Buuren (2018) Sections 4.5.1 and 4.5.2 and Molenberghs et al.
(2014) Chapter 13.
Also this type of solution is for general missing patterns, and when
missing data are MAR.

9



IMPUTATION MODEL

yet anotherALL DATA Y new notation
Nxp

Yj column jobs
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MICE algorithm
The following algorithm is presented in Molenberghs et al. (2014)
Figure 13.3 and van Buuren (2018) Algorithm 4.3 (Section 4.5.2),
and copied from github Rmd file.

1. Specify an imputation model 𝑃(𝑌 m𝑗 |𝑌 obs𝑗 , 𝑌−𝑗, 𝑅) for variable𝑌𝑗 with 𝑗 = 1, … , 𝑝.
2. For each 𝑗, fill in starting imputations ̇𝑌 0𝑗 by random draws

from 𝑌 obs𝑗 .

É t
the ro del

IS

https://github.com/stefvanbuuren/fimdbook/blob/master/Rmd/04-multivariate-missing.Rmd
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3. Repeat for 𝑡 = 1, … , 𝑀 .
4. Repeat for 𝑗 = 1, … , 𝑝.
5. Define ̇𝑌 𝑡−𝑗 = ( ̇𝑌 𝑡1 , … , ̇𝑌 𝑡𝑗−1, ̇𝑌 𝑡−1𝑗+1 , … , ̇𝑌 𝑡−1𝑝 ) as the currently

complete data except 𝑌𝑗.
6. Draw ̇𝜙𝑡𝑗 ∼ 𝑃(𝜙𝑡𝑗|𝑌 obs𝑗 , ̇𝑌 𝑡−𝑗, 𝑅).
7. Draw imputations ̇𝑌 𝑡𝑗 ∼ 𝑃(𝑌 mis𝑗 |𝑌 obs𝑗 , ̇𝑌 𝑡−𝑗, 𝑅, ̇𝜙𝑡𝑗).
8. End repeat 𝑗.
9. End repeat 𝑡.

y
iterations cycles

columnswith missing values
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The number of iterations 𝑡 is recommended to be 5 to 10.
However, convergence of the algorithm can only be seen when it
has been achieved, so more iterations may be needed.
Maybe this is not very clear from the algoritm, but this is a Markov
Chain Monte Carlo method, and in particular it is a Gibbs sampler
(if the conditional distribution together form a joint distribution).
The algorithm must then be able to converge to a stationary
distribution for us to use the results. Please refer to TMA4300
Computation statistics for detail on MCMC.
In the R mice package the 𝑚 multiple imputation data sets
(streams) are run in parallell - that is the MICE algorithm listed
above is run 𝑚 times simultaneously and convergence can be
monitored for each and all streams together. In convergece plots
then the 𝑚 streams are plotted together for each of the 𝑡
iterations.
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The algorithm can run into problems if the variables in the
imputation model are highly correlated, when the missing rate is
high and when there are constraints on the imputation model.
See slides pages 85+86 of MICE course for difference between
convergence and non-convergence of the MICE algorithm.

https://amices.org/Winnipeg/Lectures/Winnipeg.pdf
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Predictors in imputation models▶ Include “all” variables to be used in the main analysis (the
analysis model)▶ Better with too many predictors than too few (rich model is
best)▶ Include the data analysis model response as covariate in the
imputation models, see for example Moons KG (2006)▶ Include variables that are predictors of missingness, or
associated with the varible to be inputed (none of these may
be part of the analysis model)▶ Limit the number of predictors for stability, and many MI
methods does not handle correlated predictors very well▶ Nonlinear effects and interactions - should that be included?
Note: passive imputation!
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Model selection and assessment when using multiple
imputation

Will address this to some extent in Part 2 and 3. Here are some
elements to consider.▶ Model selection can be done in the statistical analysis in the

MI-loop, and there is a count method combined with Wald
test that can be used to make a consensus model from the
potentially 𝑚 different MI-models. This is of cause dependent
on that we have a parametric model as an analysis model.
Done in case study presented in class (not in notes).▶ If the analysis model is not a parametric model, maybe a tree
or neural net or ensemble, what do we then do with Rubin’s
rules? It is possible to use them on the predictions or on the
ROC-AUC. But, is that useful to do on a “training set”?




