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Figure 1: Overview of Part 2
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Selective inference

What is selective inference?
Selective inference is concerned with testing hypotheses suggested
by the data.
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Sample splitting

What if we just split the data in two?
Lasso - linear or logistic regression
Dataset with 𝑝 covariates and 𝑁 observations. Divided into a
training set of size 𝑎𝑁 and a test set of (1 − 𝑎)𝑁 , where 𝑎 ∈ [0, 1].▶ Training data used to decide on 𝜆 using CV - gives final

model where some coefficients is set to 0 and some are
shrunken. (The 6 steps.)▶ Test data:▶ Fit ordinary LS or GLM model with only the non-zero lasso

covariates▶ present CI and 𝑝-values.
Group discussion: Is this ok? What is gained and what is lost?
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Single hypothesis test𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0
Not reject 𝐻0 Reject 𝐻0𝐻0 true Correct Type I error𝐻0 false Type II error Correct
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▶ Raw 𝑝-value, 𝑝𝑗, the lowest nominal level to reject the null
hypothesis.▶ Adjusted 𝑝-value, ̃𝑝𝑗, is the nominal level of the multiple
(simultaneous) test procedure at which 𝐻0𝑗, 𝑗 = 1, … , 𝑚 is
just rejected, given the values of all test statistics involved.

The adjusted 𝑝-values can be defined as̃𝑝𝑗 = inf{𝛼 ∣ 𝐻0𝑗 is rejected at FWER level 𝛼}
In a multiple testing problem where all adjusted 𝑝-value below 𝛼
are rejected, the overall type I error rate (for example FWER) will
be controlled at level 𝛼.
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The Bonferroni method controls the FWER
Single-step methods controls for multiple testing by estimating one
local significance level, 𝛼loc, which is used as a cut-off to detect
significance for each individual test.
The Bonferroni method is valid for all types of dependence
structures between the test statistics.
The local significance level is𝛼l𝑜𝑐 = 𝛼𝑚
The adjusted 𝑝-value is ̃𝑝𝑗 = min(1, 𝑚𝑝𝑗)
Read more here if needed: Short note on multiple hypothesis
testing












































































https://www.math.ntnu.no/emner/TMA4267/2017v/multtest.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/multtest.pdf


High-dimensional inference
(Dezeure, Bühlmann, Meier, Meinshausen, 2.1.1 + 2.2)
I The article has focus on frequentist methods for

high-dimensional inference with confidence intervals and
p-values in linear and generalized linear models.

I We will focus on linear models.
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▶ The authors get more advanced and choose to search all 𝛾
within the interval (𝛾min, 1), where a common choice is𝛾min = 0.05, to get the smallest 𝑝-value. However there is a
price to pay: (1 − log(𝛾min))𝑃𝑗 = min((1 − log(𝛾min) ⋅ inf𝛾∈(𝛾min,1) 𝑄𝑗(𝛾)), 1)

for 𝑗 = 1, … , 𝑝.
Some assumptions are necessary to assure FWER control.
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Confidence intervals are found by “inversion”▶ from the adjusted 𝑝-values 𝑃𝑗▶ using the duality of 𝑝-values and two-sided confidence
intervals. That is, a (1 − 𝛼) 100% CI contains values 𝑐 where
the 𝑝-value is below 𝛼 for testing 𝐻0 ∶ 𝛽𝑗 = 𝑐.▶ A closed form solution involving 𝑃𝑗 is found.▶ Both single testing and multiple corrected testing CIs are
found. (Appendix A.2 in article)
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data(diabetes)
x=cbind(diabetes$x)#,diabetes$x2)
y=diabetes$y

hdires=multi.split(x=x,y=y,B=1000,fraction=0.5,
ci.level=0.95, model.selector=lasso.cv,
classical.fit=lm.pval, classical.ci=lm.ci,
return.nonaggr = FALSE, #if not adj for multiple testing
return.selmodels=FALSE, #just to have a look!
verbose=FALSE)

dput(hdires,"hdires.dd")
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hdires=dget("hdires.dd")
names(hdires)

[1] "pval" "pval.corr" "pvals.nonaggr" "ci.level"
[5] "lci" "uci" "gamma.min" "sel.models"
[9] "method" "call" "clusterGroupTest"

#summary(hdires$pvals.nonaggr) # if return.nonaggr=TRUE
hdires$gamma.min

[1] 0.999 0.999 0.050 0.062 0.999 0.999 0.076 0.999 0.053 0.999
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adjusted pvalue lowerCI upperCI
age 1.000000e+00 -Inf Inf
sex 1.000000e+00 -435.36819 106.48904
bmi 3.537003e-10 370.71236 777.71218
map 1.525473e-02 63.76631 472.25384
tc 1.000000e+00 -Inf Inf
ldl 1.000000e+00 -Inf Inf
hdl 5.416138e-01 -411.95903 20.84983
tch 1.000000e+00 -764.83148 204.03679
ltg 5.982750e-08 312.01305 717.79228
glu 1.000000e+00 -332.40694 242.89069
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Summing up
What is the take home message from this “Sample splitting” story?
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Inference after selection
(Taylor and Tibshirani, 2015 and HTW 6.3)
The plot
Let us leave the lasso for a while.
1980: small data sets, planned hypothesis to test ready before data
collected, no model selection. Only fit model and look at CI and
p-values.
After 1980: larger data sets and looking at data to give best model.
New challenge: how to do inference after selection.
This is an important topic that is not a part of ANY statistical
courses at IMF.
The main question is:▶ we have used a selection method (forward selection, lasso) to

find potential association between covariates and response,▶ with focus on interpreting the selected model: how can we
assess the strength (read: CI and 𝑝-value) of these findings?
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The answer includes:▶ we have “cherry picked” the strongest associations, and we
can thus not just report CI and 𝑝-values based on the final
model - when all is done on the same data set.

In this story we now focus on understanding how our model
selection influences the inference on the final model.
The technical solutions are of less importance, and is not presented
with enough mathematical detail so that we understand the
method in detail.
Remark: the single and multiple sample splitting strategy is valid.
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ECDF of 𝑝-values under the null for first step of forward
selection
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Moving on to 𝑘 > 1▶ We would like to obtain valid (“correct”) 𝑝-values for all steps,
not only for 𝑘 = 1.▶ Monte Carlo solution would be elaborate.

The method used in the article is to calculate a 𝑝-value for the
covariate at step 𝑘 by conditioning on the fact that the strongest𝑘 − 1 predictors in this sequential set-up has already been chosen.
The 𝑝-value to be calculated at step 𝑘 would be dependent on the
number of covariates 𝑝.
We now change focus and look at the distribution of the estimated
regression coefficient for the covariate added at step 𝑘, because
that can be used to construct both a CI for the coefficient and a𝑝-value for testing if the coefficient is different from zero.
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The polyhedral result
(for details consult HTW 6.3 or articles references to in the Taylor
and Tibshirani article)
Distribution for regression coefficient:▶ Assume that we are at some step 𝑘, and that 𝑘 − 1 covariates

are in the model.▶ We have found the new covariate to include, and fitted the
model with the 𝑘 covariates.▶ Standard theory tells us that the estimator ̂𝛽 for covariate 𝑘 is
unbiased and follows a normal distribution with some variance𝜏2. ̂𝛽 ∼ 𝑁(𝛽, 𝜏2)
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But, this is given that we only had these 𝑘 covariates available at
the start. We will instead condition on selection event.
It turns out that the selection event can be written in a polyhedral
form 𝐴𝑦 ≤ 𝑏 for some matrix 𝐴 and some vector 𝑏.
At each step of the forward selection we have a competition among
all 𝑝 variables, and the 𝐴 and 𝑏 is used to construct the
competition.
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Xg largestpossible
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The correct distribution of the estimator ̂𝛽 for covariate now has a
truncated normal distribution̂𝛽 ∼ 𝑇 𝑁𝑐,𝑑(𝛽, 𝜏2)
i.e. the same normal distribution, but scaled to lie within the
interval (𝑐, 𝑑).
The limits (𝑐, 𝑑) depends on both the data and the selection
events that lead to the current model.
The formulae for these limits are somewhat complicated but easily
computable.
This truncated normal distribution is used to calculate
selection-adjusted 𝑝-values and confidence interval.
(Study Figure 3 in Taylor and Tibshirani (2015).) also showed figure 

6.11 from HTW in 
class
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ECDF of polyheder 𝑝-values under the null for first step of
forward selection
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Polyhedral lasso result
The same methodology can be used for the lasso, here also the
selection of predictors can be described as a polyhedral region of
the form 𝐴𝑦 ≤ 𝑏 - for a fixed value 𝜆.
For the lasso the 𝐴 and 𝑏 will depend on▶ the predictors▶ the active set▶ 𝜆
but not on 𝑦.
The methods are on closed form, but the values 𝑐 and 𝑑 may be of
complicated form.

Showed formulas for 
polyheder from Taylor 
and Tibshirani in class
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Selective inference with the diabetes data
Forward selection diabetes

[,1] [,2]
[1,] "1" "age"
[2,] "2" "sex"
[3,] "3" "bmi"
[4,] "4" "map"
[5,] "5" "tc"
[6,] "6" "ldl"
[7,] "7" "hdl"
[8,] "8" "tch"
[9,] "9" "ltg"

[10,] "10" "glu"
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Call:
fsInf(obj = fsfit)

Standard deviation of noise (specified or estimated) sigma = 54.154

Sequential testing results with alpha = 0.100
Step Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea

1 3 949.435 17.532 0.000 790.681 1037.113 0.049 0.050
2 9 614.951 10.163 0.000 521.696 887.192 0.049 0.050
3 4 262.275 4.291 0.010 90.437 363.617 0.049 0.048
4 5 -206.670 -3.266 0.684 -279.583 1539.967 0.049 0.050
5 2 -148.375 -2.648 0.689 -273.862 1234.380 0.050 0.050
6 6 538.586 3.664 0.025 208.452 5364.275 0.050 0.050
7 8 135.265 1.121 0.900 -Inf 577.340 0.000 0.050
8 10 67.141 1.027 0.033 100.724 Inf 0.050 0.000
9 7 99.718 0.470 0.629 -2450.846 1220.006 0.050 0.050

10 1 -10.012 -0.168 0.644 -527.324 1058.916 0.050 0.050

Estimated stopping point from ForwardStop rule = 3

Call:
fsInf(obj = fsfit, k = 3, type = "all")

Standard deviation of noise (specified or estimated) sigma = 54.154

Testing results at step = 3, with alpha = 0.100
Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea

3 603.074 9.604 0.001 329.956 700.275 0.049 0.050
9 543.872 8.669 0.000 444.878 816.142 0.048 0.050
4 262.275 4.291 0.010 90.437 363.617 0.049 0.048

Call:
fsInf(obj = fsfit, type = "aic")

Standard deviation of noise (specified or estimated) sigma = 54.154

Testing results at step = 6, with alpha = 0.100
Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea

3 529.873 8.061 0.071 -101.266 618.999 0.050 0.049
9 804.192 10.014 0.000 636.648 1316.723 0.050 0.050
4 327.220 5.211 0.012 104.438 428.643 0.049 0.049
5 -757.938 -4.716 0.016 -3805.607 -303.334 0.050 0.049
2 -226.511 -3.778 0.495 -378.663 794.641 0.050 0.050
6 538.586 3.664 0.025 208.452 5364.275 0.050 0.050

Estimated stopping point from AIC rule = 6
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For comparison, the suggested forward model with variabls bmi, ltg
and map - with naive 𝑝-values.

Call:
lm(formula = y ~ x[, 3] + x[, 9] + x[, 4])

Residuals:
Min 1Q Median 3Q Max

-140.229 -40.637 -2.187 38.269 139.804

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 152.133 2.653 57.342 < 2e-16 ***
x[, 3] 603.074 64.677 9.324 < 2e-16 ***
x[, 9] 543.872 64.619 8.417 5.56e-16 ***
x[, 4] 262.275 62.962 4.166 3.74e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 55.78 on 438 degrees of freedom
Multiple R-squared: 0.4801, Adjusted R-squared: 0.4765
F-statistic: 134.8 on 3 and 438 DF, p-value: < 2.2e-16
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Lasso diabetes
[1] 0.2527843
[1] 0.00000 -33.33808 508.19096 210.35372 0.00000 0.00000
[7] -138.84778 0.00000 444.56109 0.00000

Call:
fixedLassoInf(x = x, y = y, beta = beta, lambda = lambda * n)

Standard deviation of noise (specified or estimated) sigma = 54.154

Testing results at lambda = 111.731, with alpha = 0.100

Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea
2 -235.776 -3.913 0.117 -325.205 96.516 0.049 0.050
3 523.562 8.047 0.000 416.203 631.275 0.049 0.049
4 326.236 5.190 0.000 212.282 430.335 0.048 0.049
7 -289.117 -4.420 0.003 -397.090 -136.813 0.049 0.050
9 474.292 7.247 0.000 366.602 582.958 0.050 0.048

Note: coefficients shown are partial regression coefficients
[1] 1.168127e-01 1.092168e-15 3.912618e-05 2.928151e-03 6.562529e-13



Yoav Benjamini, 2014
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Post selection inference and the reproducibility crisis
The incorrect use of CIs and 𝑝-values in models found from model
selection and inference on the same data - is though to be one of
the main contributors to the reproducibility crisis in science.
Selective Inference: The Silent Killer of Replicability by Yoav
Benjamini Published on Dec 16, 2020

https://hdsr.mitpress.mit.edu/pub/l39rpgyc/release/1
https://hdsr.mitpress.mit.edu/pub/l39rpgyc/release/1

