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Figure 1. Overview of Part 2
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What is selective inference?
Selective inference is concerned with testing hypotheses suggested
by the data.

Mudhpla ey

Cpﬂd(h.‘bﬂ VA éﬂ-wb/\



Sample splitting

What if we just split the data in two?

Lasso - linear or logistic regression

Dataset with p covariates and N observations. Divided into a
training set of size a/N and a test set of (1 —a)N, where a € |0, 1].
» Training data used to decide on A\ using CV - gives final
model where some coefficients is set to 0 and some are
shrunken. (The 6 steps.)

P Test data:
» Fit ordinary LS or GLM model with only the non-zero lasso
covariates
» present Cl and p-values.

Group discussion: Is this ok? What is gained and what is lost?
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Single hypothesis test

Not reject H,; Reject H|

H, true  Correct Type | error
H, false Typell error  Correct

MuLR\VCQ—\rgPOHQ,b\s 3:6»%3 Cand

[ Not mpet tb [ Zegeck o | Teord
— W o
ﬁo fvuL W m°ﬁ
H foto 2 ™ S ] Mo fes
el \ % ﬁ ™M



o soma p-Valig u\,,@,g{ (ohec) we jeck K Wphaed of of

e ay> 6) < o — "eauj fo wols wikhh o0y wawlsen
P(clb.og- no X—wlm eomhﬂ. Hs b

K
Cen eithre f\.«i A e Cu?s”’&& on O few pualean Qo(uog\
‘o convo PWER < o~

o Creakl 0\-69-600\'&.0\ f’"\/bllwf{) i;i 04/‘{_ ;’f
\/_\_/-/ - A"V

@oflgdfd\;‘ %52 MIN (4/ mn\ ﬁ‘)')
T

g eethod o wdh T ot UAQ_"\-M

q\ W2 '!\edecj’ a\-dldwg\ﬁd\ !("U‘W % I oL the
Puee, is earoled ak lwel o o all 0w o1 hmteien



We have m hypothesis tests and corresponding p-values. Let us define the event R;,

R; =the jth null hypothesis is rejected
= the p-value for the jth hypothesis test is below ajqc.

5.1 The Bonferroni method

The Bonferroni method is valid for all types of dependence structures between the test statistics.
Using Boole’s inequality (the probability of a union of events is smaller than or equal to the
sum of the probability of each of the events):

a=FWER=P(RiU---URy,) <Y P(Rj) = aioc = mac (3)
j=1 j=1

and the local significance level is ajoc = ;- for the Bonferroni method. In Equation the
equality is if all events are disjoint, that is, perfectly negatively associated hypotheses.

The Bonferroni method gives strong control of the FWER (Goeman and Solari, 2014), but is
known to be conservative when the tests are dependent. Conservative means that it is possible
to get a higher value for oy, that controls the FWER error rate by modelling the dependency
structure between the tests.
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» Raw p-value, P, the lowest nominal level to reject the null

hypothesis.
» Adjusted p-value, P, is the nominal level of the multiple
(simultaneous) test procedure at which Hy,;,j =1,...,m is

just rejected, given the values of all test statistics involved.
The adjusted p-values can be defined as
p; = infla | Hy, is rejected at FWER level o}

In a multiple testing problem where all adjusted p-value below «
are rejected, the overall type | error rate (for example FWER) will

be controlled at level «.



The Bonferroni method controls the FWER

Single-step methods controls for multiple testing by estimating one
local significance level, ., which is used as a cut-off to detect
significance for each individual test.

The Bonferroni method is valid for all types of dependence
structures between the test statistics.

The local significance level is

8
Kjpe =

The adjusted p-value is

p; = min(1, mp;)

Read more here if needed: Short note on multiple hypothesis
testing


https://www.math.ntnu.no/emner/TMA4267/2017v/multtest.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/multtest.pdf

High-dimensional inference

(Dezeure, Biihimann, Meier, Meinshausen, 2.1.1 + 2.2)
» The article has focus on frequentist methods for
high-dimensional inference with confidence intervals and

p-values in linear and generalized linear models.
» We will focus on linear models. FEREas=="
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p-Values for High-Dimensional Regression

Nicolai Meinshausen, Lukas Meier & Peter Biihiman

E ticle: Nicolai Meinshausen, Lukas Meier & Peter Bihlmann (2009) p-Value:
o A L m O'Od for H| h D|mensiona| Regression, Journa | of the American Stat|stica| Association, 104.488

1671-1681, DOI: 10.1198/jasa.2009.tm08647
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P The authors get more advanced and choose to search all ~y
within the interval (7. ,1), where a common choice is
Ymin = 0.09, to get the smallest p-value. However there is a

price to pay: (1 —log(vin))

P; = min((1 —log(ymin) - inf  Q;(7)),1)
7€<’7min71)

fory=1,...,p.
Some assumptions are necessary to assure FWER control.

A/nruh z 6,05 = (4—- loj((m.ﬁck{ = \We re,é,,c} Ho S‘, % rg.
A

P;) < o= QQ =3 3 Showed Appendix with

proof of the Qj formula
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Confidence intervals are found by “inversion”

» from the adjusted p-values P;

P using the duality of p-values and two-sided confidence
intervals. That is, a (1 — a) 100% CI contains values ¢ where
the p-value is below « for testing Hy, : 5; = c.

» A closed form solution involving P; is found.

P Both single testing and multiple corrected testing Cls are
found. (Appendix A.2 in article)



data(diabetes)

x=cbind(diabetes$x)#,diabetes$x2)

y=diabetes8y R

=

hdires=multi:split (x=x,y=y;B=1000, fraction=0.5,
ci.level=0.95, model.selector=lasso.cv,
classical.fit=lm.pval, classical.ci=1m.«
return.nonaggr = FALSE, #if not adj for
return.selmodels=FALSE, #just to have a
verbose=FALSE)

dput (hdires, "hdires.dd")



hdires=dget("hdires.dd")
names (hdires)

[1] "pval" "pval.corr" "pvals.nonaggr" "ci.level
[6] "lci" "uci" "gamma.min" "sel.mode
[9] "method" "call" "clusterGroupTest"

#summary (hdires$pvals.nonaggr) # if return.nonaggr=TRUE
hdires$gamma.min

[1] 0.999 0.999 0.050 0.062 0.999 0.999 0.076 0.999 0.053 0.999



age
sex
bmi
map
tcC

1d1
hdl
tch
ltg

adjusted pvalue

1

= Ol -k, Ol = B P W

.000000e+00
.000000e+00
.537003e-10
.525473e-02
.000000e+00
.000000e+00
.416138e-01
.000000e+00
.982750e-08
.000000e+00

lowerCI

-435.
370.
63.

-411

-332

—-Inf
36819
71236
76631

—Inf

—Inf

.95903
-764.
312.
. 40694

33148
01305

upperCIl

106

20.
204.
717.
242.

Inf

. 48904
7.
472.

71218
25384

Inf

Inf
84983
03679
79228
89069



Summing up
What is the take home message from this “Sample splitting” story?
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Inference after selection

(Taylor and Tibshirani, 2015 and HTW 6.3)

The plot

Let us leave the lasso for a while.

ooy~ 1980: small data sets, planned hypothesis to test ready before data
collected, no model selection. Only fit model and look at ClI and
p-values.
After 1980: larger data sets and looking at data to give best model.
New challenge: ‘how to do inference after selection.
This is an important topic that is not a part of ANY statistical

courses at IMF.

The main question is:
P we have used a selection method (forward selection, lasso) to

find potential association between covariates and response,
P with focus on interpreting the selected model: how can we
assess the strength (read: Cl and p-value) of these findings?



The answer includes:

P we have “cherry picked” the strongest associations, and we
can thus not just report Cl and p-values based on the final
model - when all is done on the same data set.

In this story we now focus on understanding how our model
selection influences the inference on the final model.

The technical solutions are of less importance, and is not presented
with enough mathematical detail so that we understand the
method in detail.

Remark: the single and multiple sample splitting strategy is valid.
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Alternative scenario - not selection just choose by random:
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ECDF of p-values under the null for first step of forward
selection
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Moving on to £ > 1

» We would like to obtain valid (“correct”) p-values for all steps,
not only for k = 1.
» Monte Carlo solution would be elaborate.

The method used in the article is to calculate a p-value for the
covariate at step k£ by conditioning on the fact that the strongest
k — 1 predictors in this sequential set-up has already been chosen.

The p-value to be calculated at step k£ would be dependent on the
number of covariates p.

We now change focus and look at the distribution of the estimated
regression coefficient for the covariate added at step k, because
that can be used to construct both a Cl for the coefficient and a
p-value for testing if the coefficient is different from zero.



The polyhedral result

(for details consult HTW 6.3 or articles references to in the Taylor
and Tibshirani article)

Distribution for regression coefficient:
P Assume that we are at some step k, and that k — 1 covariates
are in the model.
» We have found the new covariate to include, and fitted the
model with the k covariates. )
P Standard theory tells us that the estimator 3 for covariate & is

unbiased and follows a normal distribution with some variance

T2

AN

B~ N(B,7%)



But, this is given that we only had these k covariates available at
the start. We will instead condition on selection event.

It turns out that the selection event can be written in a polyhedral
form Ay < b for some matrix A and some vector b.

At each step of the forward selection we have a competition among
all p variables, and the A and b is used to construct the
competition.

In the following case the region is nicely specified
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The correct distribution of the estimator 5 for covariate now has a
truncated normal distribution

B~ TN“(3,7%)

i.e. the same normal distribution, but scaled to lie within the
interval (c,d).

The limits (¢, d) depends on both the data and the selection
events that lead to the current model.

The formulae for these limits are somewhat complicated but easily
computable.

This truncated normal distribution is used to calculate
selection-adjusted p-values and confidence interval.

(Study Figure 3 in Taylor and Tibshirani (2015).) 2150 showed figure

6.11 from HTW in
class



ECDF of polyheder p-values under the null for first step of
forward selection
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polyheder

polyheder
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Polyhedral lasso result

The same methodology can be used for the lasso, here also the
selection of predictors can be described as a polyhedral region of
the form Ay < b - for a fixed value .
For the lasso the A and b will depend on

P the predictors

P the active set

> )\
but not on y.
The methods are on closed form, but the values ¢ and d may be of

complicated form.

Showed formulas for
polyheder from Taylor
and Tibshirani in class



Selective inference with the diabetes data

Forward selection diabetes
[,1] [,2]

N "age"
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Forward stepwise path

SIETLITET!

Step



Call:
fsInf(obj = fsfit)

Standard deviation of noise (specified or estimated) sigma

Sequential testing results with alpha = 0.100
Step Var Coef Z-score P-value LowConfPt UpConfPt LowT:

1 3 949.435 17.532 0.000 790.681 1037.113
2 9 614.951 10.163 0.000 521.696 887.192
3 4 262.275 4.291 0.010 90.437 363.617
4 b5 -206.670 -3.266 0.684 -279.583 1539.967
5 2 -148.375 -2.648 0.689 -273.862 1234.380
6 6 5383.686 3.664 0.025  208.452 5364.275
7 8 135.265 1.121 0.900 -Inf 577.340
8 10 67.141 1.027 0.033 100.724 Inf
9 7 99.718 0.470 0.629 -2450.846 1220.006
10 1 -10.012 -0.168 0.644 -527.324 1058.916

Estimated stopping point from ForwardStop rule = 3



For comparison, the suggested forward model with variabls bmi, Itg
and map - with naive p-values.

Call:
Im(formula = y ~ x[, 3] + x[, 9] + x[, 4])

Residuals:
Min 1Q Median 3Q Max
-140.229 -40.637 -2.187 38.269 139.804

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 152.133 2.653 57.342 < 2e-16 **x
x[, 3] 603.074 64.677 9.324 < 2e-16 *x*x
x[, 9] 543.872 64.619 8.417 5.56e-16 **x*
x[, 4] 262.275 62.962 4.166 3.74e-05 *xx*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 " ' 1

Residual standard error: 55.78 on 438 degrees of freedom
Multiple R-squared: 0.4801, Adjusted R-squared: 0.4765
F-statistic: 134.8 on 3 and 438 DF, p-value: < 2.2e-16



| asso diabetes
[1] 0.2527843

[1]

0.00000

[7] -138.84778

Call:

-33.33808 508.19096 210.35372

0.00000 444.56109

0.00000

fixedLassoInf(x = x, y = y, beta = beta, lambda

0.00000

lambda * n)

Standard deviation of noise (specified or estimated) sigma =

Testing results at lambda = 111.731, with alpha

Var

0.100

0.00000

54.154

Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea
2 -235.776
3 523.562
4 326.236
7 -289.117
9 474.292

-3.913

8.047
5.190

-4.420

7.247

0.117
0.000
0.000
0.003
0.000

-325.205 96.516
416.203 631.275
212.282 430.335

-397.090 -136.813
366.602 582.958

0.049
0.049
0.048
0.049
0.050

Note: coefficients shown are partial regression coefficients
[1] 1.168127e-01 1.092168e-15 3.912618e-05 2.928151e-03 6.562529e-13

0.050
0.049
0.049
0.050
0.048



Benjamin,




Post selection inference and the reproducibility crisis

The incorrect use of Cls and p-values in models found from model
selection and inference on the same data - is though to be one of
the main contributors to the reproducibility crisis in science.
Selective Inference: The Silent Killer of Replicability by Yoav
Benjamini Published on Dec 16, 2020


https://hdsr.mitpress.mit.edu/pub/l39rpgyc/release/1
https://hdsr.mitpress.mit.edu/pub/l39rpgyc/release/1

