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Shrinkage and regularization

Literature L7
On the reading list:▶ [ELS] The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, Second Edition (Springer Series in
Statistics, 2009) by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman. Ebook. Chapter 3.2.2, 3.4.1.▶ [HTW] Hastie, Tibshirani, Wainwrigh: “Statistical Learning
with Sparsity: The Lasso and Generalizations”. CRC press.
Ebook. Chapter 2.1.

Strongly supporting literature▶ Wessel N. van Wieringen: Lecture notes on ridge regression
Chapter 1. (We will refer to this note as WNvW below.)

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://trevorhastie.github.io/
https://arxiv.org/pdf/1509.09169v7.pdf


.
.
.

.

.
.
.

.

Central question:
In linear models (linear regression, generalized linear regression) we
mainly work with methods where parameter estimates are unbiased
- but might have high variance and not give very good prediction
performance overall.
Can we use penalization (shrinkage) to produce parameter
estimates with some bias but less variance, so that the prediction
performance is improved?
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We will look at different ways of penalization (which produces
shrunken estimators) - mainly what is called ridge and lasso
methods.
Ridge is not a sparse method, but lasso is. In sparse statistical
models a small number of covariates play an important role.
HTW (page 2): Bet on sparsity principle: Use a procedure that
does well in sparse problems, since no procedure does well in dense
problems.
Shrinkage (penalization, regularization) methods are especially
suitable in situations where we have multi-collinearity and/or more
covariates than observations 𝑁 << 𝑝. The latter may occur in
medicine with genetic data, where the number of patient samples
is less than the number of genetic markers studied.
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Linear models Patt Decisiontheoreticframework
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The Gauss-Markov theorem
(ELS 3.2.2)
The Gauss-Markov theorem is the famous result stating: the least
squares estimators for the regression parameters 𝛽 have the
smallest variance among all linear unbiased estimators.

plus is a linear function in Y and E pis p
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Comparing variances of estimators
It is not hard to check that an estimator (for example 𝑝 × 1
column vector) is unbiased (in each element).
But, what does it mean to compare the variance (covariance
matrix) of two estimators of dimension 𝑝 × 1?
In statistics a “common” strategy is to consider all possible linear
combinations of the elements of the parameter vector, and check
that the variance of estimator ̂𝛽 is smaller (or equal to) the
variance of another estimator ̃𝛽.
This is achieved by looking at the difference between the
covariance matrices Cov( ̃𝛽) − Cov( ̂𝛽). If the difference is a
positive semi-definite matrix, then every linear combination of ̂𝛽
will have a variance that is smaller or equal to the variance of the
corresponding linear combination for ̃𝛽.
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Why is this correct?
Assume we want to see if Var(𝑐𝑇 ̃𝛽) ≥ Var(𝑐𝑇 ̂𝛽) for any (nonzero)
vector 𝑐.
We know that Var(𝑐𝑇 ̂𝛽) = 𝑐𝑇 Cov( ̂𝛽)𝑐 and
Var(𝑐𝑇 ̃𝛽) = 𝑐𝑇 Cov( ̃𝛽)𝑐.
We then consider

Var(𝑐𝑇 ̃𝛽) − Var(𝑐𝑇 ̂𝛽) = 𝑐𝑇 (Cov( ̃𝛽) − Cov( ̂𝛽))𝑐
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If Cov( ̃𝛽) − Cov( ̂𝛽) is positive semi-definite then the variance
difference will be equal or greater than 0 - by the definition of a
positive semi-definite matrix.
This is also referred to as: The variance of ̃𝛽 exceeds in a positive
definite ordering sense that of ̂𝛽, and written Var( ̃𝛽) ⪰ Var( ̂𝛽).
(Remark: here both Var and Cov is used as notation for the
variance-covariance matrix.)
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When is a matrix 𝐶 positive definite?
The matrix 𝐶 is positive definite if the real number 𝑧𝑇 𝐶𝑧 is
positive for every nonzero real column vector 𝑧.
Harville (1997)

DDT
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Preparing for shrinkage
Standarization of covariates
For shrinkage methods it is common to standardize the covariates,
where standardize means that▶ the covariates are first centered, that is 1𝑁 ∑𝑁𝑖=1 𝑥𝑖𝑗 = 0 for

all 𝑗 = 1, … , 𝑝,▶ and then scaled to unit variance, that is 1𝑁 ∑𝑁𝑖=1 𝑥2𝑖𝑗 = 1.
This is done in practice by first subtracting the mean and then
dividing by the standard deviation. The standarization is only
needed if the covariates are of different units or scales, because for
shrinkage we will (for some of the method) penalize the
optimization with the same penalty for all covariates.
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Centering covariates and response
The intercept term 𝛽0 will not be the aim for shrinkage in
shrinkage methods.
To make the presentation of the shrinkage methods easier to
explain and write down, HTW use the common trick to center all
covariates and the response.
By centering the covariates and the response we may imagine
moving the centroide of the data to the origin, where we do not
need an intercept to capture the best linear regression hyperplane.
When both covariates and responses are centered the LS estimate
for the intercept 𝛽0 will be ̂𝛽0 = 0.
If interpretation is to be done for uncentered data we may calculate
the estimated 𝛽0 for uncentered data from the estimated regression
coefficients and the mean of the original covariates and response.
When covariates and responses are centered HTW remove 𝛽0 from
the regression model for the shrinkage methods. We will also do
that.
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Group discussion
1) Why is the LS estimate equal to ̂𝛽0 = 0 for centered

covariates and centered response in the multiple linear
regression model?

2) Explain what is done in the analysis of the Gasoline data
directly below.

Choose yourself if you want to focus mainly on 1 or 2.
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2.9 Group discussion

1) Why is the LS estimate equal to ̂𝛽0 = 0 for centered covariates and centered response in
the multiple linear regression model?

2) Explain what is done in the analysis of the Gasoline data directly below.

Choose yourself if you want to focus mainly on 1 or 2.

2.10 Gasoline data

Consider the multiple linear regression model, with response vector Y of dimension (𝑁 × 1)
and 𝑝 covariates and intercept in X (𝑁 × 𝑝 + 1).

Y = X� + 𝜀
where 𝜀 ∼ 𝑁(0, 𝜎2I).
When gasoline is pumped into the tank of a car, vapors are vented into the atmosphere. An
experiment was conducted to determine whether 𝑌 , the amount of vapor, can be predicted
using the following four variables based on initial conditions of the tank and the dispensed
gasoline:

• TankTemp tank temperature (F)
• GasTemp gasoline temperature (F)
• TankPres vapor pressure in tank (psi)
• GasPres vapor pressure of gasoline (psi)

The data set is called sniffer.dat.

We start by standardizing the covariates (make the mean 0 and the variance 1), we also center
the response. From the scatter plots of the response and the covariates - would you think an
MLR is suitable?

ds <- read.table("./sniffer.dat",header=TRUE)
x <- apply(ds[,-5],2,scale)
y <- ds[,5]-mean(ds[,5])
print(dim(x))

[1] 32 4
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dss=data.frame(y,x)
ggpairs(dss)

Corr:
0.826***

Corr:
0.909***

Corr:
0.774***

Corr:
0.870***

Corr:
0.955***

Corr:
0.782***

Corr:
0.921***

Corr:
0.934***

Corr:
0.837***

Corr:
0.985***
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Calculate the estimated covariance matrix of the standardized covariates. Do you see a poten-
tial problem here?

cov(dss)

y TankTemp GasTemp TankPres GasPres
y 87.790323 7.7399536 8.5202970 8.1505120 8.6325694
TankTemp 7.739954 1.0000000 0.7742909 0.9554116 0.9337690
GasTemp 8.520297 0.7742909 1.0000000 0.7815286 0.8374639
TankPres 8.150512 0.9554116 0.7815286 1.0000000 0.9850748
GasPres 8.632569 0.9337690 0.8374639 0.9850748 1.0000000

We have fitted a MLR with all four covariates. Explain what you see.

full <- lm(y~.,dss)
summary(full)
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Call:
lm(formula = y ~ ., data = dss)

Residuals:
Min 1Q Median 3Q Max

-5.586 -1.221 -0.118 1.320 5.106

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.233e-16 4.826e-01 0.000 1.00000
TankTemp -5.582e-01 1.768e+00 -0.316 0.75461
GasTemp 3.395e+00 1.065e+00 3.187 0.00362 **
TankPres -6.274e+00 4.140e+00 -1.515 0.14132
GasPres 1.249e+01 3.859e+00 3.237 0.00319 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.73 on 27 degrees of freedom
Multiple R-squared: 0.9261, Adjusted R-squared: 0.9151
F-statistic: 84.54 on 4 and 27 DF, p-value: 7.249e-15

confint(full)

2.5 % 97.5 %
(Intercept) -0.9902125 0.9902125
TankTemp -4.1852036 3.0688444
GasTemp 1.2093630 5.5812551
TankPres -14.7689131 2.2214176
GasPres 4.5730466 20.4078380

ggplot(full, aes(.fitted, .stdresid)) + geom_point(pch = 21) + geom_hline(yintercept = 0,
linetype = "dashed") + geom_smooth(se = FALSE, col = "red", size = 0.5,
method = "loess") + labs(x = "Fitted values", y = "Standardized residuals",
title = "Fitted values vs standardized residuals", subtitle = deparse(full$call))

14
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lm(formula = y ~ ., data = dss)
Fitted values vs standardized residuals

ggplot(full, aes(sample = .stdresid)) + stat_qq(pch = 19) + geom_abline(intercept = 0,
slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles",
y = "Standardized residuals", title = "Normal Q-Q", subtitle = deparse(full$call))
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lm(formula = y ~ ., data = dss)
Normal Q−Q
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ad.test(rstudent(full))

Anderson-Darling normality test

data: rstudent(full)
A = 0.3588, p-value = 0.43

Perform best subset selection using Mallows 𝐶𝑝 (equivalent to AIC) to choose the best model.

bests <- regsubsets(x,y)
sumbests <- summary(bests)
print(sumbests)

Subset selection object
4 Variables (and intercept)

Forced in Forced out
TankTemp FALSE FALSE
GasTemp FALSE FALSE
TankPres FALSE FALSE
GasPres FALSE FALSE
1 subsets of each size up to 4
Selection Algorithm: exhaustive

TankTemp GasTemp TankPres GasPres
1 ( 1 ) " " " " " " "*"
2 ( 1 ) " " "*" " " "*"
3 ( 1 ) " " "*" "*" "*"
4 ( 1 ) "*" "*" "*" "*"

which.min(sumbests$cp)

[1] 3

Model after best subset selection.

red <- lm(y~GasTemp+TankPres+GasPres,data=dss)
summary(red)
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Call:
lm(formula = y ~ GasTemp + TankPres + GasPres, data = dss)

Residuals:
Min 1Q Median 3Q Max

-5.6198 -1.2934 -0.0496 1.4858 4.9131

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.390e-16 4.748e-01 0.000 1.00000
GasTemp 3.290e+00 9.951e-01 3.306 0.00260 **
TankPres -7.099e+00 3.159e+00 -2.247 0.03272 *
GasPres 1.287e+01 3.607e+00 3.568 0.00132 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.686 on 28 degrees of freedom
Multiple R-squared: 0.9258, Adjusted R-squared: 0.9178
F-statistic: 116.4 on 3 and 28 DF, p-value: 6.427e-16

confint(red)

2.5 % 97.5 %
(Intercept) -0.9725378 0.9725378
GasTemp 1.2513019 5.3281126
TankPres -13.5706954 -0.6270544
GasPres 5.4823283 20.2586338

3 Ridge regression

(ELS 3.4.1)

Ridge regression is also called “Tikhonov regularization”.

We consider the classical linear model set-up, as for the LS estimation, but now we look at
shrinking the coefficients towards 0 to construct biased estimators - and then “hope” that this
also has made the variances decrease.

We will not shrink the intercept 𝛽0, because then the this will depend on the origin of the
response.

17
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Ridge regression

(ELS 3.4.1)
Ridge regression is also called “Tikhonov regularization”.
We consider the classical linear model set-up, as for the LS
estimation, but now we look at shrinking the coefficients towards 0
to construct biased estimators - and then “hope” that this also has
made the variances decrease.
We will not shrink the intercept 𝛽0, because then the this will
depend on the origin of the response.
The ridge solution is dependent on the scaling of the covariates,
and usually we work with standardized covariates and also with
centered response.
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Figure 3: Figure from Wessel N. van Wieringen: Lecture notes on ridge
regression, Figure 1.4 lower left panel. CC-BY-NC-SA
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Observe that the solution adds a positive constant 𝜆 to the
diagonal of X𝑇 X, so that even if X𝑇 X does not have full rank
then the problem is non-singular and we can invert (X𝑇 X + 𝜆I).
When ridge regression was introduced in statistics in the 1970s this
(avoiding non-singuarlity) was the motivation.
When 𝑁 < 𝑝 then the design matrix will have rank less than the
number of covariates, and the LS estimate does not exist.
The case when two or more covariates are perfectly linearly
dependent is called super-collinearity (accoring to WNvN).
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Properties of the ridge estimator

Figures from Wessel N. van Wieringen: Lecture notes on ridge
regression, Example 1.3 and Figure 1.1 on super-collinearity.
CC-BY-NC-SA
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Mean
Derive the mean of the ridge estimator.
What happens if:▶ 𝜆 → 0▶ 𝜆 → ∞
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Covariance
Derive the covariance of the ridge estimator.
What happens if:▶ 𝜆 → 0▶ 𝜆 → ∞
(in our centered model without intercept)
Same resources as above.
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Is ridge “better than” LS?
1) We may prove that the variance of the ridge estimator is

smaller or equal the variance of the LS estimator. See exercise
“Variance of ridge compared to LS”, where we need to look at
differences of covariance matrices and check for positive
semi-definite matrix.

2) In addition it is possible to prove that given a suitable choice
for 𝜆 the ridge regression estimator may outperform the LS
estimator in terms of the MSE. See WNvW Section 1.4.3 for
the full derivation.

3) The optimal choice of 𝜆 depends both the true regression
parameters and the error variance. This means that the
penalty parameter should be chosen in a data-driven fashion.
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Figure 4: Figures from Wessel N. van Wieringen: Lecture notes on ridge
regression CC-BY-NC-SA
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Model selection
To choose the optimal penalty parameter 𝜆 cross-validation is the
default method in use. ELS recommends to either▶ choose the 𝜆 corresponding to the smallest CV error▶ or first find the 𝜆 with the smallest CV-error, and then record

the estimated standard error of the CV-error at this value, and
then choose the largest 𝜆 such that the CV error is still within
one standard error of the minimum. We choose the largest
because we want the less flexible model.

The R package glmnet (by Hastie et al) has default 𝐾 = 10 fold
cross-validation with the function cv.glmnet where alpha=0 gives
the ridge penalty.



start=glmnet(x=x,y=y,alpha=0)
autolambda=start$lambda # automatic choice of lambda had smallest lambda 0.96 - but I added more small values to also be able to see that LS-solution is for lambda=0
newlambda=c(autolambda,0.5,0.3,0.2,0.1,0)
fit.ridge=glmnet(x,y,alpha=0,lambda=newlambda)
plot(fit.ridge,xvar="lambda",label=TRUE)
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#plot(fit.ridge,xvar="norm",label=TRUE)

3.6 Group discussion

Explain what you see!

cv.ridge=cv.glmnet(x,y,alpha=0,lambda=newlambda)
print(cv.ridge)

24
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Call: cv.glmnet(x = x, y = y, lambda = newlambda, alpha = 0)

Measure: Mean-Squared Error

Lambda Index Measure SE Nonzero
min 0.100 104 9.835 2.790 4
1se 4.976 81 12.616 4.124 4

#print(paste("The lamda giving the smallest CV error",cv.ridge$lambda.min))
#print(paste("The 1se method lambda",cv.ridge$lambda.1se))

plot(cv.ridge)
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# use 1se error rule default
plot(fit.ridge,xvar="lambda",label=TRUE);
abline(v=log(cv.ridge$lambda.1se));
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print("Ridge 1 se method coeff")

[1] "Ridge 1 se method coeff"

coef(fit.ridge,s=cv.ridge$lambda.1se)

5 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) -2.097194e-15
TankTemp 1.181294e+00
GasTemp 2.863238e+00
TankPres 1.651347e+00
GasPres 2.276497e+00

print("LS full model coeff")

[1] "LS full model coeff"

full$coeff

26
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(Intercept) TankTemp GasTemp TankPres GasPres
3.232869e-16 -5.581796e-01 3.395309e+00 -6.273748e+00 1.249044e+01

print("Mallows Cp reduced model coeff")

[1] "Mallows Cp reduced model coeff"

red$coeff

(Intercept) GasTemp TankPres GasPres
8.390059e-16 3.289707e+00 -7.098875e+00 1.287048e+01

3.7 Insight based on SVD

(ELS 3.4.1)

3.7.1 Singular value decomposition (SVD)

Let X be a 𝑁 × 𝑝 matrix.

SVD is a decomposition of a matrix X into a product of three matrices

X = UDV𝑇 .
D is an (𝑝 × 𝑝)-dimensional block matrix, with singular values on the diagonal, ordered
such that 𝑑1 ≥ 𝑑2 ≥ … 𝑑𝑝 ≥ 0. The singular values 𝑑𝑗 are equal √eigenvalues(XX𝑇 ) =√eigenvalues(X𝑇 X).
The eigenvalues of X𝑇 X and XX𝑇 are identical, since

X𝑇 Xe = 𝜆e
XX𝑇 Xe = 𝜆Xe
XX𝑇 e∗ = 𝜆e∗.

The eigenvectors of XX𝑇 equals Xe where e are the eigenvectors of X𝑇 X.

For a column centred matrix X, we estimate the covariance matrix by (𝑁 − 1)S = X𝑇 X.

27
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̂𝑦LS = X ̂𝛽L𝑆 = UU𝑇 y = 𝑝∑𝑗=1 u𝑗(u𝑇𝑗 y)
̂𝑦ridge = X ̂𝛽r𝑖𝑑𝑔𝑒 = UD2(D2+𝜆I𝑝)−1U𝑇 y = 𝑝∑𝑗=1 u𝑗( 𝑑2𝑗𝑑2𝑗 + 𝜆)(u𝑇𝑗 y)

Xply X XX XTY

XpA UDVT VAVT AVVT VDUTY

Ex A A

dj 1 off I shrink alot

d 25 E e shank less
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The effective degrees of freedom
In ELS Ch 7.6 we defined the effective number of parameters (here
now referred to as the effective degrees of freedom) for a linear
smoother ŷ = S𝑦 as

df(S) = trace(S)
For ridge regression our linear smoother is

H𝜆 = X(X𝑇 X + 𝜆I)−1X𝑇
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df(𝜆) = tr(H𝜆) = tr(X(X𝑇 X + 𝜆I)−1X𝑇 ) = ⋯ = ∑𝑝𝑗=1 𝑑2𝑗𝑑2𝑗 +𝜆▶ 𝜆 = 0 gives df(𝜆) = 𝑝▶ 𝜆 → ∞ gives df(𝜆) → 0
The df(𝜆) is sometimes plotted instead of 𝜆 on the horisontal axis
when model complexity is chosen.
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Finally▶ When is ridge preferred to LS? When the LS estimates have
high variance and many predictors are truly non-zero.▶ Ridge is computationally fast.▶ Ridge is not very easy to interpret, because all 𝑝 predictor are
included in the final model.
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Software

We will use the glmnet implementation for R:▶ R glmnet on CRAN with resources.▶ Getting started▶ GLM with glmnet

For Python there are different options.▶ Python glmnet is recommended by Hastie et al.▶ scikit-learn (seems to mostly be for regression? is there lasso
for classification here?)

https://cran.r-project.org/web/packages/glmnet/index.html
http://www.stanford.edu/~hastie/glmnet
https://glmnet.stanford.edu/articles/glmnet.html
https://glmnet.stanford.edu/articles/glmnetFamily.html
https://web.stanford.edu/~hastie/glmnet_python/
https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification
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Exercises

Gauss-Markov theorem
The LS is unbiased with the smallest variance among linear
predictors: ELS exercise 3.3a

Variance of ridge compared to LS
Consider a classical linear model with regression parameters 𝛽. Let̂𝛽 be the LS estimator for 𝛽 and let ̃𝛽 be the ridge regression
estimator for 𝛽. Show that the variance of ̃𝛽 exceeds in a positive
definite ordering sense that of ̂𝛽, and written Var( ̃𝛽) ⪰ Var( ̂𝛽).
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Ridge regression
This problem is taken, with permission from Wessel van Wieringen,
from a course in High-dimensional data analysis at Vrije University
of Amsterdam.
a)
Find the ridge regression solution for the data below for a general
value of 𝜆 and for the simple linear regression model𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 (only apply the ridge penalty to the slope
parameter, not to the intercept). Show that when 𝜆 is chosen as 4,
the ridge solution fit is ̂𝑌 = 40 + 1.75𝑋.
Data: X𝑇 = (𝑋1, 𝑋2, … , 𝑋8)𝑇 = (−2, −1, −1, −1, 0, 1, 2, 2)𝑇 ,
and Y𝑇 = (𝑌1, 𝑌2, … , 𝑌8)𝑇 = (35, 40, 36, 38, 40, 43, 45, 43)𝑇 .

b)
The coefficients 𝛽 of a linear regression model, Y = X𝛽 + 𝜀, are
estimated by ̂𝛽 = (XTX)−1XTY. The associated fitted values
then given by Ŷ = X ̂𝛽 = X(XTX)−1XTY = HY, where
H = X(XTX)−1XT. The matrix H is a projection matrix and
satisfies H = H2. Hence, linear regression projects the response Y
onto the vector space spanned by the columns of X. Consequently,
the residuals ̂𝜀 and Ŷ are orthogonal.
Next, consider the ridge estimator of the regression coefficients:̂𝛽(𝜆) = (XTX + 𝜆I𝑝)−1XTY. Let Ŷ(𝜆) = X ̂𝛽(𝜆) be the vector
of associated fitted values.
Show that the matrix Q = X(XTX + 𝜆I𝑝)−1XT, associated with
ridge regression, is not a projection matrix (for any 𝜆 > 0). Hint:
a projection matrix is idempotent (commonly used in TMA4267).

c)
Show that the ridge fit Ŷ(𝜆) is not orthogonal to the associated
ridge residuals ̂𝜀(𝜆) (for any 𝜆 > 0).
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Orthonormal design matrix
Assume that the design matrix X is ortonormal, that is,
X𝑇 X = I𝑝𝑝 = (X𝑇 X)−1.

a) Derive the relationship between the least squares and the
ridge regression estimator.

b) Derive the relationship between the covariance matrices for
the two estimators.

c) Derive the MSE for each of the two estimators. Which value
of the penalty parameter 𝜆 gives the minimum value of the
MSE for the ridge regression estimator?

y Very
useful exercise


