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Before we begin

Literature▶ [HTW] Hastie, Tibshirani, Wainwrigh: “Statistical Learning
with Sparsity: The Lasso and Generalizations”. CRC press.
Ebook. Chapter 4.1-4.3,4.6

and for the interested student▶ [WNvW] Wessel N. van Wieringen: Lecture notes on ridge
regression Chapter 6.6▶ [CASI] Efron and Hastie (2016) Chapter 16 (lasso in general)

https://hastie.su.domains/StatLearnSparsity/
https://arxiv.org/pdf/1509.09169v7.pdf
https://arxiv.org/pdf/1509.09169v7.pdf
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Goal
The main goal of this part is to▶ know about these special versions of the lasso (also in

combination with the ridge), and▶ to see which practical data situation these can be smart to
use.

Maybe one of these is suitable for the Data analysis project?
Theoretical properties and algorithmic details are not on the
reading list.

and be able
to use f
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Lasso and ridge

We have seen that the ridge regression shrinks the regression
coefficients (as compared to the least squares solution), while the
lasso regression both shrinks and sets some coefficients to zero
(model selection).
Why do we need lasso variants
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Why lasso variants needed

for highly correlated variables riÉÉÉÉg
but lasso kind of randomly assigns coefficientsamong
those variables
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Properties▶ 0 ≤ 𝑞 ≤ 1: not differentiable▶ 1 < 𝑞 < 2: in between lasso and ridge, but differentiable (and
no variable selection property)▶ 𝑞 can be estimated from data, but according to Hastie,
Tibshirani, and Friedman (2009) this is “not worth the effort
for the extra variance incurred”

Figure 1: Figure 3.12 from Hastie, Tibshirani, and Friedman (2009)
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Figure 2: Figure 4.12 from Hastie, Tibshirani, and Wainwright (2015)
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Elastic net

(HTW 4.2) Origin of method: Zou and Hastie (2005)▶ Compromise between the ridge and lasso penalty.▶ Lasso gives sparsity but does not handle correlated variables
well.▶ Ridge handles correlated variables well, but is not sparse.

Solution: elastic net which handles” coefficients of correlated
features together (similar values or all zero).
The penalty used is now weighted sum of the ridge and the lasso
penalty.
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Figure 3: Figure 4.2 from Hastie, Tibshirani, and Wainwright (2015)
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What is the elastic net parameter constraint region? Why will this
give a variable selection property?

Figure 4: Figure 6.11 from Wieringen (2021)

Slightly different parametrization in Wieringen (2021), with𝜆1 = 𝜆𝛼 and 𝜆2 = 𝜆(1 − 𝛼).

I
bothpenaly shark

go

betray
X L

B

edge

Now 2 hypeparam to choose



.
.
.

.

.
.
.

.

The figure to the right shows potential problems in selecting the
best hyperparameters. Observe that several combination of the
two hyperparameters are equally good.
This is the reason for the parameterization with 𝛼 as a mixing
parameter, where the 𝛼 is assumed to be set by the user, while the𝜆 is found using cross-validation.
However, of cause 𝛼 is a tuning parameter and need to be set. See
for example the Master thesis of Lene Omdal Tillerli Chapter 3.5
and 5.3 for different cross-validation strategies for selecting the two
hyperparameters.

Might bechallengingto choose both L and X

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
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Why do you think this can be solved in such a similar way as for
the lasso?
There is a “data augmentation trick” where we can add 𝑝
0-reponses with covariates √𝜆(1 − 𝛼)𝐼𝑝𝑝 to perform a ridge
regression (Wieringen (2021) 6.8.1).
Details are found in the article in the Journal on Statistical
Software on the glmnet Friedman, Hastie, and Tibshirani (2010).

MY Ipllittuph is xx ixtirewrite I

Bridgj If
toy txt 79 a I i xty



.
.
.

.

.
.
.

.

Parameter estimation
The glmnet-R package is constructed around the elastic net. Here
the cyclic coordinate descent algorithm is used, and compared to
the pseudo-algorithm we devised in class in L8, for the step with
the update of 𝛽𝑗 the soft-threshold solution is slightly modified to
(HTW Equation 4.4)̂𝛽𝑗 = 1∑𝑁𝑖=1 𝑥2𝑖𝑗 + 𝜆(1 − 𝛼)𝑆𝜆𝛼( 𝑁∑𝑖=1 𝑟𝑖𝑗𝑥𝑖𝑗)
where (as in L8) the soft thresholding operator is𝑆𝜇(𝑧) = 𝑠𝑖𝑔𝑛(𝑧)(|𝑧| − 𝜇)+ and the partial residual (as in L8) is𝑟𝑖𝑗 = 𝑦𝑖 − 𝛽0 − ∑𝑘≠𝑗 𝑥𝑖𝑘 ̂𝛽𝑘 (in L8 we used ̃𝑦 and not 𝑟).
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Example
This example is shown in Figure 4.2 in HTW and reproduced with
the R code below.
set.seed(8701)
N=100
z1=rnorm(N,0,1); z2=rnorm(N,0,1)
eps=rnorm(N,0,1)

y=3*z1-1.5*z2+2*eps

add=matrix(rnorm(N*6,0,1),ncol=6)
x1=z1+add[,1]/5; x2=z1+add[,2]/5; x3=z1+add[,3]/5
x4=z2+add[,4]/5; x5=z2+add[,5]/5; x6=z2+add[,6]/5

x=as.matrix(data.frame(x1=x1,x2=x2,x3=x3,x4=x4,x5=x5,x6=x6))
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Group discussion: Exam 2019 Problem 1c (STK-IN4300, UiO)
Briefly explain elastic net and bridge regression and explain why
despite the corresponding constraints are almoust indistinguishable
in Figure 3.13 of Hastie, Tibshirani, and Friedman (2009), they
provide, in general, quite different models.

Figure 5: Figure 3.13 from Hastie, Tibshirani, and Friedman (2009)
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Exam 2020 Problem 1 (STK-IN4300, UiO)
Consider data simulated with the following setting:▶ 𝛽𝑖 ∼ 𝑁(0, 2), 𝑖 = 1, … , 𝑝▶ 𝑋 ∼ 𝑁𝑝(0, Σ) where (i)𝑁𝑝(⋅, ⋅) denotes a 𝑝-dimensional

multivariate Gaussian distribution; (ii) 0 is a 𝑝-dimensional
vector of 0; (iii) Σ is a 𝑝 × 𝑝 matrix with diagonal elements
equal to 1 and all other elements equal to 0.9;▶ 𝑦 = 𝑋𝛽 + 𝜀, with 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 and 𝜀 ∼ 𝑁(0, 1).

a) If you were forced to choose between ridge regression and lasso,
which one would you have used to predict y on a test set generated
with the same setting? Why?
b) Would your choice have been the same if you ignored the first
information on 𝛽 ? Why?
c) Do you think that elastic net could have been a better choice in
the situation of point (b)? Why?

Ridge due to the corr verabler
and i f p is large

Lasso maybe bet on sparelyif nothin

handle on ay bye
also Shank

whatis p Ridgebecauseofcorr
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Group lasso

(HTW Section 4.3.1)
Now we aim at fixing the following problem with the lasso: if we
have a factor and have used dummy variable coding, then the lasso
may only choose to select some of the dummy variables to be in
the model, and the lasso solution also is dependent on how the
dummy variable encoding is done (choosing different contrasts will
produce different solutions). Other application might have groups
of genes in pathways, where those can be handled together.
The solution is to use a penalty that can be seen kind of
intermediate to 𝐿1 and squared 𝐿2:
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What does this new (unsquared) 𝐿2 penalty do?▶ All groups with one variable ends up with lasso 𝐿1 penalty
because: when 𝑝𝑗 = 1 then ||𝜃𝑗||2 = |𝜃𝑗|, and thus the 𝐿1
lasso penalty is used for singelton groups.▶ All groups with more than two variables end up with the
square root of the ridge penalty. since the penalty is√∑𝑗∈𝐽 𝛽2𝑗 for all elements of this group 𝐽 .
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Figure 6: Figure 4.3 from Hastie, Tibshirani, and Wainwright (2015)
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Observe that the penalty is the same for all groups, independent of
the group size- but it is common to also include the group size in
the penalty (HTW does not, WNvW does).
HTW Exercise 4.4: the penalty term ensures that the coefficients
in a group sum to zero given that there is an intercept term in the
model.
Comment: some results are for orthogonal design matrices for a
group. But, this will only happen if we have a balanced design,
with the same number of observations for each level of a
categorical variable group. This is very seldom the case in
observational data, but in Design of Experiments this may happen
for example in 2𝑘 designs.
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Parameter estimation
The coordinate descent algorithm may be modified to a block
coordinate descent version. The step to update ̂𝜃𝑗 in the
coordinate descent cyclic algorithm iŝ𝜃𝑗 = (𝑍𝑇𝑗 𝑍𝑗 + 𝜆|| ̂𝜃𝑗||2 𝐼)−1𝑍𝑇𝑗 𝑟𝑗
where as earlier 𝑟𝑗 is a partial residual.
If the designmatrix 𝑍𝑗 is ortogonal this is simplified tô𝜃𝑗 = (1 𝜆||𝑍𝑇𝑗 𝑟𝑗|| )+𝑍𝑇𝑗 𝑟𝑗
For non-ortogonal design matrices iterative methods are used.

Drop p
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Sparse group lasso
(HTW Section 4.3.2, WNvW Section 6.8.3)
The group lasso (with the Euclidean penalty) is now joined by the𝐿1 penalty. This is kind of similar to the elastic net now the
squared 𝐿2 penalty is replaced by 𝐿2 penalty.

minimize𝜃0,𝜃{ 𝑁∑𝑖=1(𝑦𝑖−𝜃0− 𝐽∑𝑗=1 𝑧𝑖𝑗𝜃𝑗)2+𝜆 𝐽∑𝑗=1[(1−𝛼)||𝜃𝑗||2+𝛼||𝜃𝑗||1]}oldgap lasso

go
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Figure 7: Figure 4.5 from Hastie, Tibshirani, and Wainwright (2015)
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Parameter estimation
Again, a version of cyclic block-wise coordinate descent can be
used.
The case when 𝑍𝑗 is not orthogonal requires more work than for
orthonal versions.
Again, as for the elastic net, tuning the two hyperparametres may
have several values being equally good.
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Group discussion: Exam 2019 Problem 1b (STK-IN4300, UiO)
Consider the following version of the sparse group lasso:

minimize𝛽0,𝛽{||𝑦−𝛽0 ⃗1− 𝐿∑𝑙=1 𝑋𝑙𝛽𝑙||22+(1−𝛼)𝜆 𝐿∑𝑙=1 √𝑝𝑙||𝛽𝑗||2+𝛼𝜆||𝛽||1}
where ⃗1 denotes an 𝑁 -dimensional vector of 1s, 𝜆 ≥ 0 and0 ≥ 𝛼 ≥ 1. Answer the following questions:▶ Why does 𝛽0 only appear in the first term?▶ What happens when 𝛼 = 0 and 𝛼 = 1, respectively?▶ Briefly describe the concept of “bet on sparsity”.

no needtoshogyf

I
group
lasso lasso
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Overlap group lasso
(HTW Section 4.3.3)
This is an extension to allow for a covariate to belong to more than
one group.
The overlap group lasso “replicates a variable” in whatever group it
is a member of, and then fits the group lasso to the problem.
The overlap group lasso can be used to ensure that interactions
between covariates are only part of the model if the main effects of
the covariates are in the model. See example HTW 4.3 for details.
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Figure 8: Figure 4.6 from Hastie, Tibshirani, and Wainwright (2015)
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Non-convex penalties

(HTW Section 4.5, WNvW Section 6.9)
We have looked at the 𝑙𝑞 penalty formula in the start of L9:

minimize𝛽0,𝛽{ 𝑁∑𝑖=1(𝑦𝑖 − 𝛽0 + 𝑝∑𝑗=1 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 𝑝∑𝑗=1|𝛽𝑗|𝑞}, 𝑞 ≤ 0
Observe that if 0 ≤ 𝑞 ≤ 1 is non-convex.
For 𝑙0 we aim for best subset selection and need to investigate 2𝑝
possible models. This is not easy for 𝑝 > 40.
The Smoothly Clipped Absolute Deviation SCAD method is an
alternative to the 𝑙𝑞.
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Adaptive lasso
(HTW Section 4.6, WNvW Section 6.8.4)
Origin: Zou (2006)
The aim is to fit models that are even sparser than the lasso. The
method uses a so-called pilot estimate ̃𝛽:

minimize𝛽0,𝛽{ 𝑁∑𝑖=1(𝑦𝑖 − 𝛽0 + 𝑝∑𝑗=1 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 𝑝∑𝑗=1 𝑤𝑗|𝛽𝑗|}
where 𝑤𝑗 = 1/| ̃𝛽𝑗|𝜈 includes the pilot estimated, and given this
pilot estimate the criterion i convex in 𝛽. The value of 𝜈 makes
this an approximation to the 𝑙𝑞 penalty where 𝑞 = 1 − 𝜈.
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Since the pilot estimate needs to be found first, this can be seen as
a two-step procedure.
If 𝑝 < 𝑁 then the least squares estimator can be used as the pilot
estimate, and for larger 𝑝 the ridge or lasso estimate may be used.
If ̃𝛽𝑗 = 0 then the penalty of the 𝑗th element of the coefficient
vector is infinity and the adaptive lasso estimate for the coeffisient
will be zero.
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For the orthogonal design, the adaptive lasso can be written as:̂𝛽(𝜆) = 𝑠𝑖𝑔𝑛( ̂𝛽L𝑆,𝑗)(| ̂𝛽L𝑆,𝑗| − 𝜆2 ̂𝛽L𝑆,𝑗 )+
Compare this with the lasso, the difference is the last denominator.

d

lasso softthreshold

Y
t
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Unlike the lasso (according to Zou (2006)) the adaptive lasso is
found to fulfill the oracle property.
According to Zou (2006), for an oracle procedure 𝛿 then 𝛽(𝛿) has
the following properties:▶ It identifies the right (correct) subset model, {𝑗 ∶ 𝛽𝑗 ≠ 0} = 𝐴▶ “Has the optimal estimation rate”√𝑁( ̂𝛽(𝛿)𝐴 − 𝛽∗𝐴) →𝑑 𝑁(0, Σ)
If stepwise selection is used to find the active set, it can be trapped
in local minima.
The continuous shrinkage property of the lasso is know to improve
the prediction accuracy of the method (bias-variance trade-off).
The adaptive lasso can be estimated using the LARS algorithm of
Efron et al (2004) (not covered in this course, but presented in
Hastie, Tibshirani, and Friedman (2009) Section 3.4.4).
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Back to forward stepwise model selection
If the aim is to minimize the squared loss with the 𝑙0 penalty, the
forward stepwise model method for model selection is efficent and
“hard to beat”.
The forward stepwise model selection is a greedy algorithm.▶ build a model sequentially by adding one variable at a time.▶ At each step the best variable to include in the active set is

identified and▶ then the LS-fit is (re)computed for all the active variables.
This is an algorithm and not an optimization problem, and the
theoretical properties of the algorithm “are less well understood”
(HTW page 86).
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A never ending story?

There seems to always be something that can be improved upon,
and there are several lasso variantes that we have not discussed.
Other variants include▶ The fused lasso (HTW Section 4.5)▶ The random lasso
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Group discussion
Choose one of the lasso/ridge variants we have covered in L8-L9
and write down:▶ which variation on the classic lasso penalty is used (write

down the penalty part of the minimization problem)▶ make a drawing of the penalty (comparable to the sphere for
ridge and the diamond for lasso)▶ in which practical data analysis situation is this variation used
(e.g. when many correlated variables are present, when the
covariates have a natural group structure, …)▶ how can the parameter estimates be found?▶ anything else you found interesting?


