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Literature L
Main source:

» [HTW] Hastie, Tibshirani, Wainwright: “Statistical Learning
with Sparsity: The Lasso and Generalizations”. CRC press.
Ebook. Chapter 6.0, 6.1, 6.2, 6.4, 6.5. (Results from 6.3
through Taylor and Tibshirani (2015))

Also: brush up on bootstrap intervals from TMAA4300, where
Givens and Hoeting (2013) is on the reading list. See specifically

chapter 9 (9.2.1 and 9.3 will be used here). NTNU-access to the
full book if you are on vpn.


https://trevorhastie.github.io/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552
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Figure 1. Overview of Part 2
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Statistics vs Machine learning
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Figure 2: Figures redrawn from Robert Tibshiran’s Breiman lecture at

the NIPS 2015
https://www.youtube.com /watch?v=RKQJEvc02hc&t=81s.

(Conference on Neural Information Processing System)


https://www.youtube.com/watch?v=RKQJEvc02hc&t=81s

Prediction vs statistical inference

Prediction
P Predict the value of the progression variable for a person with

diabetes.
P Predict the probability of heart disease for a person from the
population in the South African heart disease example.

Inference
P Assess the goodness of the prediction (MSE, error rate,

ROC-AUC) - with uncertainty. y sadackeh
P Interpret the GLM-model - which covariates are included?
P Confidence interval for the model regression parameters.

<1> Testing hypotheses about the model regression parameters.

Q)fﬁlk-e.nﬁﬂ-— : &l (08803 averzlo o dn‘a‘t’kﬁ_zal:!:o;d) !



Known sampling distributions

For the linear regression and logistic regression we know the
sampling distribution of the regression coefficient estimators.
Then it is easy to construct confidence intervals and perform

hypothesis tests.
What are the known results?



Multiple linear regression

Y =X03+¢

where € ~ N (0,0°I) (independent observation pairs).
Bis = (X X)Xy

with 5LS ~ N, (8,0 2(XT X)),
Restricted maximum likelihood estimator for $ §2%:

1 A A SSE

5 = (¥~ XA~ XBig) = -

5.2
with &Y J> NX?V—p'




Statistic for inference about [, ¢;; is diagonal element j of

JJ
(X" X)L
_ Bis;— b

TJ - C. .0 NtN_p
77

or, inference can be done asymptotically and then replace the ¢
with the normal distribution.

T’; is the starting point for constructing Cls for 5, and testing

hypotheses about ;.

Observe: the least squares estimator is unbiased!
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Logistic regression

B is now not on closed form, but asymptotically when N — oo
B~ N,(B, (X WX)™)

where W = diag(7,(1 — 7;)), so that inference can be based on

the asymptotic normality of each element of the regression
estimate vector.

Observe: the logistic regression parameter estimator is unbiased.
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Confidence interval — generic set-up
Set-up
» We have a random sample Y;,Y,, ..., Y, from
P some distribution F' with some (unkonwn) parameter 6.

» Let y{,¥,,...,yn be the observed values for the random
sample.

Statistics )
» We have two statistics 6, (Y7, Y5, ..., Yy ) and
0,(Y],Y,, ..., Yy) so that

P<§L(Y17Y27 7YN) S 0 S §U<Y17Y27 7YN>> =1—«

Where o E [07 1] - CA/&P—%L Gg CI : %% ”& Com\/u.A
Confidence interval / Conle-n Vi 9
The numerical interval Grerwele debon o arded < dal,

e AN

[HL(ylay% 7yN)7 QU(y17y27 ayN)]

is called a (1 — «) 100% confidence interval.



Sampling distribution for ridge and lasso?

Multippel linear ridge regression

AN

Brgge = (X' X +A)IXTY
B(Nyigge ~ N{(XTX + M) ' X" X B,

(X' X+ M) TIXTX(XTX 4+ ML)

W{!\h%\m1 Su\‘b‘i_"
a2
T T & d2
dfN) =tr(H,) =tr( X( X" X+ X)X )= = J
(A) =tr(H ) = tr(X( + Al) ) ;21 Z A

» What can we do with that?
» What if the design matrix is orthogonal, does that help?
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Logistic ridge
For large sample sizes the ridge logistic regression estimator is
approximately multivariate normal (Wieringen (2021) Section 5.3).

AN

BA) ~ N, (B—MXTWX +\)15),
(XWX + XD — (XTWX + A)72)

This is based on the asymptotic normality of the score function
(gradient of the loglikelihood - here the penalized loglikelihood).

» What can we do with that?
» What if the design matrix is orthogonal, does that help?
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asso
Some results using approximations to ridge (for mean and variance,

see Wieringen (2021) p 97), but else no parametric version of
sampling distribution known.



What is our aim?

Penalized estimation: reduce variance by introducing (strong) bias.

The squared bias then is a major part of the mean squared error,
and the variance is thus a minor part.

But, do we need to use the ridge or lasso estimator to construct a
confidence mterval for 5 or test if 5, = 07

> P>p - ?



Debiased (desparsified) lasso
(HTW Section 6.4)

Bt = B+ MXT(Y — X))

the matrix M is some approximation to the inverse of

==X X
N

Use the debiased estimator to form Cl from:

0.2

B~ N(B, MY M)
N
Interpretation of debiasing: assume we want to minimize the

residual sum of squares using an approximate Newton step starting
at the lasso estimator.
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https://mediaspace.gatech.edu/media/Sara+van+de+Geer+-+The+Debiased+Lasso/
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Two solutions are based on

P neighbour-based methods to |mpose sparsity
P optimzation problem to get @EM I while the variance of
the debiased estimator is small.

See Hastie, Tibshirani, and Wainwright (2015) page 159 for
references to these solutions.
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Figure 6.13 Diabetes data: Lasso estimates, debiased lasso estimates, and confi-
dence intervals from the debiasing approach. These intervals have not been adjusted
for multiple comparisons. The first 6 predictors have intervals not containing zero:
when Bonferroni-adjusted, this number drops to three.

Figure 3: Figure 6.13 in Hastie, Tibshirani, and Wainwright (2015)



Conclusion

This is absolutely not straightforward.

The adaptive and biased nature of the estimation procedures
makes it challenging to perform inference.

» We will discuss other (in addition to the debiasing) solutions
to finding confidence intervals for regression parameters for
lasso, and for constructing p-values for testing hypotheses
about the regression parameters.

» We will address some philosophical principles behind inference

» and mention topics that can be studied further for the
interested student!

Warning: there seems not to be consensus, but many interesting
approaches and ideas that we may consider.
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In Defense of the Indefensible: A Very Naive
Approach to High-Dimensional Inference

Sen Zhao, Daniela Witten and Ali Shojaie

Abstract. A great deal of interest has recently focused on conducting infer-
ence on the parameters in a high-dimensional linear model. In this paper, we
consider a simple and very naive two-step procedure for this task, in which
we (1) fit a lasso model in order to obtain a subset of the variables, and (i1) fit
a least squares model on the lasso-selected set. Conventional statistical wis-
dom tells us that we cannot make use of the standard statistical inference
tools for the resulting least squares model (such as confidence intervals and
p-values), since we peeked at the data twice: once in running the lasso, and
again in fitting the least squares model. However, in this paper, we show that
under a certain set of assumptions, with high probability, the set of variables
selected by the lasso is identical to the one selected by the noiseless lasso and
is hence deterministic. Consequently, the naive two-step approach can yield
asymptotically valid inference. We utilize this finding to develop the naive
confidence interval, which can be used to draw inference on the regression
coefficients of the model selected by the lasso, as well as the naive score test,
which can be used to test the hypotheses regarding the full-model regression
coefficients.

Key words and phrases: ~Confidence interval, lasso, p-value, post-selection
inference, significance testing.
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Diabetes data
In a medical study the aim was to explain the ethiology of diabetes
progression. Data was collected from n = 442 diabetes patients,
and from each patient the following measurements are available:
age (in years) at baseline
sex (O=female and 1=male) at baseline
body mass index (bmi) at baseline
mean arterial blood pressure (map) at baseline
six blood serum measurements: total cholesterol (tc), IdI
cholesterol (1d1), hdl cholesterol (hdl), tch, 1tg, glucose
glu, all at baseline,

P a quantitative measurement of disease progression one year

after baseline (prog)

All measurements except sex are continuous. There are 10
covariates.
The response is the disease progression prog - thus a regression
problem.

VVVVY



Data can be

» downloaded from https://web.stanford.edu/~hastie/StatLear
nSparsity_files/DATA /diabetes.html in three variants: raw,

standardized and 442 x 64 matrix with quadratic terms (not
used here).

» Or, loaded from the lars package, that is automatically
loaded in the monomvn package (where blasso is found).


https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/diabetes.html
https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/diabetes.html
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Bayesian ridge and lasso —» cvaany Lia R o gk
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(HTW 6.1 for lasso, WNvW Section 5.5 and 6.6)

For penalized models there exists Bayesian equivalents. We will
here focus on the multiple linear regression model.
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Bayesian set-up

In the Bayesian statistics the regression parameters 3 are random
quantities, and in addition to the likelihood also a prior for the
regression parameters (and other parameters) are needed. When a
conjugate prior the posterior distribution may be derived

analytically.
Multiple linear regression: distribution of response - where we for
simplicity assume that we have centred covariates and centred

response (so no intercept term)

y|B,0~N(XB,o%I)
This gives the likelihood:

1

L(B |y, X,0) o< (0" M) expl——(y — XB)T (y — XB))



Prior for regression parameters (ridge)
In Part 1 we worked with multiple imputation and one method for

drawing observations was the Bayesian linear regression.
We will use the same priors here, for the o2 we use a inverse
Gamma prior. For the regression coefficents a normal prior is used.






Posterior for regression parameters (ridge)

5. X, Yo oc expl— 5](8 — BOT (XTX + AD)(8 — B(V)

The posterior mean is the ridge estimator 5(\).

l we dxds
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Prior for regression parameters (lasso)

P A
Bl Ao~ ]];[1 oy exp(—;\/i’jb

This prior is called an i.i.d. Laplacian (or double exponential) prior.
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Posterior for regression parameters (lasso)

It can be shown that the negative log of the posterior density for
B |y, ois (up to an additive constant)

1 A
— |y — X8|2+ Z . &
sly—XB3+ 218 - «

Does this look familiar?



For a fixed value of 0 and A - the 3 giving the minimum of the
negative log posterior is the /asso estimate where the regularization

parameter is o \.

The minimum negative log posterior will then be the same as the
maximum log posterior - and the maximum of a distribution is
called the mode of the distribution.

The lasso estimate is the posterior mode in the Bayesian model.
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Figure 6.1 Prior and posterior distribution for the seventh variable in the diabetes
example, with \ held fixed. The prior in the figure is a double exponential (Laplace)
distribution with density proportional to exp(—.0065|37|). The prior rate .0065 is a
representative value just for illustration.

Figure 4: Figure 6.1 in Hastie, Tibshirani, and Wainwright (2015)

From Hastie, Tibshirani, and Wainwright (2015): a 95% posterior
credibility interval covers zero.



Posterior Medians Lasso
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Figure 6.2 Bayesian lasso on the diabetes data. The left plot shows the posterior
medians from MCMC runs (conditional on \). The right plot shows the lasso pro-
file. In the left plot, the vertical line is at the posterior median of ||B|1 (from an
unconditional model), while for the right plot the vertical line was found by N-fold

cross-validation.
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A full Bayesian approach requires priors for A and o, in addition to
priors on the regression coefficient.

Markov Chain Monte Carlo MCMC is used efficiently sample
realizations form the posterior distribution.

See Wieringen (2021) Chapter 2 for more on Bayesian regression

and the connection to the ridge and Section 6.6 for connection to
lasso.



Not only the point estimate

The posterior distribution gives the

P point estimates for the lasso (the mode of the distribution)
but

P also the entire joint distribution.



Bayesian Posterior Samples
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Figure 6.3 Posterior distributions for the B; and ||B||1 for the diabetes data. Sum-
mary of 10,000 MCMC samples, with the first 1000 “burn-in” samples discarded.

Figure 6: Figure 6.3 in Hastie, Tibshirani, and Wainwright (2015)

Hastie, Tibshirani, and Wainwright (2015): 10 000 samples from
the posterior.



Boxplots of regression coefficients
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Bootstrap

(HTW 6.2)



Procedure to find lasso estimate B(Aqy/)

(Copied word by word from HTW page 142) Mo = aﬂL'é‘.\, =D

Refer to these 6 steps as B(}Cv)—loop

1. Fit a lasso path to (X, y) over a dense grid of values
A={NH locv

2. Divide the training samples into 10 groups at random.

3. With the kth group left out, fit a lasso path to the remaining
9/10ths, using the same grid A.

4. For each A € A compute the mean-squared prediction error
for the left-out group.

5. Average these errors to obtain a prediction error curve over
the grid A. + se B o (R

6. Find the value 3(A\sy) that minimizes thls curve, and then
return the coefficient vector from our original fit in step (1) at
that value of .



Observe:

P )\-path is the same for each run of the lasso
P the chosen \ is then used on the orginal data

Q: Is it possible to use resampling to estimate the distribution of
the lasso 3 estimator including the model selection (choosing \)?



Non-parametric (paired) bootstrap

P Let F denote the joint distribution of (X,Y).

» The empirical F' is + ~ for each observation (X,Y') in our
training data (X, Y) i=1,...,N.

» Drawing from I is the same as drawmg from the N
observations in the training data with replacement.
Now, we draw B bootstrap samples from the training data, and for
each new bootstrap sample we run through the 6 steps in the
B(Acy )-loop. o
P The result is B vectors S(Aqy ).

» We plot the result as
» boxplots,
P proportion of times each element of 5(\sy/) is equal 0.



Diabetes example
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11 x 1 sparse Matrix of class "dgCMatrix"

(Intercept)
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Bootstrapping vs Bayesian lasso

The results from the Bayesian lasso on the proportion of times a
coefficient is 0 and the boxplots are very similar to the results from
the bootstrapping. The bootstrap seems to be doing the “same”
as a Bayesian analysis with the Laplacian prior.

When the model is not so complex and the number of covariates is
not too large (p ~ 100) the Bayesian lasso might be as fast as the
bootstrapping, but for larger problems the bootstrap “scales
better”.

For GLMs the Bayesian solution is more demanding, but the
bootstrap is as easy as for the linear model.



Bayesian Posterior Samples
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Figure 6.3 Posterior distributions for the 3; and ||B||1 for the diabetes data. Sum-
mary of 10,000 MCMC samples, with the first 1000 “burn-in” samples discarded.

Figure 7: Figure 6.3 in Hastie, Tibshirani, and Wainwright (2015)



Bootstrap Samples
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Figure 6.4 [Left] Boxplots of 1000 bootstrap realizations of B\*(S\cv) obtained by the
nonparametric bootstrap, which corresponds to re-sampling from the empirical CDF
Fn. Comparing with the corresponding Bayesian posterior distribution in Figure 6.3,
we see a close correspondence in this case. [Right] Proportion of times each coefficient

is zero in the bootstrap distribution.

Figure 8: Figure 6.4 in Hastie, Tibshirani, and Wainwright (2015)



Bootstrap¥ percentile Cl

To construct a (1 — «) - 100% Cl:
P order the bootstrap sample for the estimate of interest
P read off the (1 — «/2) - 100 percetile
» (a/2)-100 percentil

These are now the lower and upper limit of the CI.



Bootstrap BCa Cl

See page 34 of Bootstrap confidence intervals in the master thesis
of Lene Tillerli Omdal Section 3.6.2 and teaching material from
TMA4300: Givens and Hoeting (2013) chapter 9.3. NTNU-access

to the full book if you are on vpn.


https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552

Diabetes example

What if we calculated percentile bootstrap intervals - could we use
that to say anything about the true underlying regression
coefficients?
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Medical example
(See Figures from study in class notes.)



Bootstrap Cls for 3,

Sadly, there are two main challenges:

P The percentile interval is not a good choice for biased
estimators, and it is not clear if the bias-corrected accelerated
intervals are better

P It has been shown that (for fixed p) the asymptotic (N — o0)
distribution of the lasso has point mass at zero (which leads
to that bootstrapping not having optimal properties).



The authors of the penalized package take the following view
Section 6: A note on standard errors and confidence intervals in
the Penalized user manual https://cran.r-

project.org/web /packages/penalized /vignettes/penalized.pdf

“Unfortunately, in most applications of penalized regression it is
impossible to obtain a sufficiently precise estimate of the bias. Any
bootstrap-based calculations can only give an assessment of the
variance of the estimates. Reliable estimates of the bias are only
available if reliable unbiased estimates are available, which is
typically not the case in situations in which penalized estimates are
used.”

“It is certainly a mistake to make confidence statements that are
only based on an assessment of the variance of the estimates, such
as bootstrap-based confidence intervals do.”

Reliable confidence intervals around the penalized estimates can be
obtained in the case of low dimensional models using the standard
generalized linear model theory as implemented in Im, glm and
coxph.”


https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf
https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf

Outline
P Prediction vs statistics inference: what are the aims?
» Sampling distributions
P Bayesian lasso
P Boostrapping
P Debiased lasso
WE are here now!
» Sample splitting
P Inference after selection (forward regression example,
polyhedral result, PoSl)
P Reproducibility crisis and selective inference
» Conclusions



