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Before we begin

Outline▶ Prediction vs statistics inference: what are the aims?▶ Sampling distributions▶ Bayesian lasso▶ Boostrapping▶ Debiased lasso▶ Sample splitting▶ Inference after selection (forward regression example,
polyhedral result, PoSI)▶ Reproducibility crisis and selective inference▶ Conclusions
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Literature
Main source:▶ [HTW] Hastie, Tibshirani, Wainwright: “Statistical Learning

with Sparsity: The Lasso and Generalizations”. CRC press.
Ebook. Chapter 6.0, 6.1, 6.2, 6.4, 6.5. (Results from 6.3
through Taylor and Tibshirani (2015))

Also: brush up on bootstrap intervals from TMA4300, where
Givens and Hoeting (2013) is on the reading list. See specifically
chapter 9 (9.2.1 and 9.3 will be used here). NTNU-access to the
full book if you are on vpn.
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https://trevorhastie.github.io/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552
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Figure 1: Overview of Part 2
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What do we mean by statisticalinferencehere
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Statistics vs Machine learning

Figure 2: Figures redrawn from Robert Tibshiran´s Breiman lecture at
the NIPS 2015
https://www.youtube.com/watch?v=RKQJEvc02hc&t=81s.
(Conference on Neural Information Processing System)












































































https://www.youtube.com/watch?v=RKQJEvc02hc&t=81s
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Prediction vs statistical inference
Prediction▶ Predict the value of the progression variable for a person with

diabetes.▶ Predict the probability of heart disease for a person from the
population in the South African heart disease example.

Inference▶ Assess the goodness of the prediction (MSE, error rate,
ROC-AUC) - with uncertainty.▶ Interpret the GLM-model - which covariates are included?▶ Confidence interval for the model regression parameters.▶ Testing hypotheses about the model regression parameters.
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Known sampling distributions
For the linear regression and logistic regression we know the
sampling distribution of the regression coefficient estimators.
Then it is easy to construct confidence intervals and perform
hypothesis tests.
What are the known results?
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Multiple linear regression 𝑌 = 𝑋𝛽 + 𝜀
where 𝜀 ∼ 𝑁𝑁(0, 𝜎2𝐼) (independent observation pairs).̂𝛽LS = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑌
with ̂𝛽L𝑆 ∼ 𝑁𝑝(𝛽, 𝜎2(𝑋𝑇 𝑋)−1).
Restricted maximum likelihood estimator for $ �^2$:�̂�2 = 1𝑁 − 𝑝(𝑌 − 𝑋 ̂𝛽L𝑆)𝑇 (𝑌 − 𝑋 ̂𝛽L𝑆) = SSE𝑁 − 𝑝
with (𝑁−𝑝)�̂�2𝜎2 ∼ 𝜒2𝑁−𝑝.
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Statistic for inference about 𝛽𝑗, 𝑐𝑗𝑗 is diagonal element 𝑗 of(𝑋𝑇 𝑋)−1. 𝑇𝑗 = ̂𝛽L𝑆,𝑗 − 𝛽𝑗√𝑐𝑗𝑗�̂� ∼ 𝑡𝑁−𝑝
or, inference can be done asymptotically and then replace the 𝑡
with the normal distribution.𝑇𝑗 is the starting point for constructing CIs for 𝛽𝑗 and testing
hypotheses about 𝛽𝑗.
Observe: the least squares estimator is unbiased!
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Logistic regression�̂� is now not on closed form, but asymptotically when 𝑁 → ∞�̂� ≈ 𝑁𝑝(𝛽, (𝑋𝑇 �̂�𝑋)−1)
where 𝑊 = 𝑑𝑖𝑎𝑔( ̂𝜋𝑖(1 − ̂𝜋𝑖)), so that inference can be based on
the asymptotic normality of each element of the regression
estimate vector.
Observe: the logistic regression parameter estimator is unbiased.
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Confidence interval — generic set-up
Set-up▶ We have a random sample 𝑌1, 𝑌2, … , 𝑌𝑁 from▶ some distribution 𝐹 with some (unkonwn) parameter 𝜃.▶ Let 𝑦1, 𝑦2, … , 𝑦𝑁 be the observed values for the random

sample.
Statistics▶ We have two statistics ̂𝜃𝐿(𝑌1, 𝑌2, … , 𝑌𝑁) and̂𝜃𝑈(𝑌1, 𝑌2, … , 𝑌𝑁) so that

𝑃( ̂𝜃𝐿(𝑌1, 𝑌2, … , 𝑌𝑁) ≤ 𝜃 ≤ ̂𝜃𝑈(𝑌1, 𝑌2, … , 𝑌𝑁)) = 1 − 𝛼
where 𝛼 ∈ [0, 1]
Confidence interval
The numerical interval[ ̂𝜃𝐿(𝑦1, 𝑦2, … , 𝑦𝑁), ̂𝜃𝑈(𝑦1, 𝑦2, … , 𝑦𝑁)]
is called a (1 − 𝛼) 100% confidence interval.
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Sampling distribution for ridge and lasso?
Multippel linear ridge regression̂𝛽ridge = (𝑋𝑇 𝑋 + 𝜆𝐼)−1𝑋𝑇 𝑌̂𝛽(𝜆)ridge ∼ 𝑁{(𝑋𝑇 𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇 𝑋 𝛽,𝜎2(𝑋𝑇 𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇 𝑋(𝑋𝑇 𝑋 + 𝜆𝐼𝑝)−1}.

df(𝜆) = tr(𝐻𝜆) = tr(𝑋(𝑋𝑇 𝑋 + 𝜆𝐼)−1𝑋𝑇 ) = ⋯ = 𝑝∑𝑗=1 𝑑2𝑗𝑑2𝑗 + 𝜆▶ What can we do with that?▶ What if the design matrix is orthogonal, does that help?












































































K
howto ensue Iggy



.
.
.

.

.
.
.

.












































































Orthogonal Ba Ia plus EGR Fa B
Elements G Btr afp I

PL

ÉqBItJ
e E ta

Bry ZE E E Ia Pj E BtZEEx

CyFrj
220 E Pj E Atx Prytz et

ants with XX I I



.
.
.

.

.
.
.

.












































































Pray N A1 GC A 117 CAR

ate
Frigg N afp o Cjj

Foronly a functionof PJ



.
.
.

.

.
.
.

.

Logistic ridge
For large sample sizes the ridge logistic regression estimator is
approximately multivariate normal (Wieringen (2021) Section 5.3).�̂�(𝜆) ≈ 𝑁𝑝(𝛽 − 𝜆(𝑋𝑇 �̂�𝑋 + 𝜆𝐼)−1𝛽),(𝑋𝑇 �̂�𝑋 + 𝜆𝐼)−1 − (𝑋𝑇 �̂�𝑋 + 𝜆𝐼)−2)
This is based on the asymptotic normality of the score function
(gradient of the loglikelihood - here the penalized loglikelihood).▶ What can we do with that?▶ What if the design matrix is orthogonal, does that help?
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Lasso
Some results using approximations to ridge (for mean and variance,
see Wieringen (2021) p 97), but else no parametric version of
sampling distribution known.
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What is our aim?
Penalized estimation: reduce variance by introducing (strong) bias.
The squared bias then is a major part of the mean squared error,
and the variance is thus a minor part.
But, do we need to use the ridge or lasso estimator to construct a
confidence interval for 𝛽 or test if 𝛽𝑗 = 0?▶ 𝑁 > 𝑝▶ 𝑝 < 𝑁?
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Debiased (desparsified) lasso
(HTW Section 6.4)̂𝛽𝑑 = ̂𝛽𝜆 + 1𝑁 𝑀𝑋𝑇 (𝑌 − 𝑋 ̂𝛽𝜆)
the matrix 𝑀 is some approximation to the inverse ofΣ̂ = 1𝑁 𝑋𝑇 𝑋
Use the debiased estimator to form CI from:̂𝛽𝑑 ∼ 𝑁(𝛽, 𝜎2𝑁 𝑀Σ̂−1𝑀𝑇 )
Interpretation of debiasing: assume we want to minimize the
residual sum of squares using an approximate Newton step starting
at the lasso estimator.
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Two solutions are based on▶ neighbour-based methods to impose sparsity▶ optimzation problem to get ℎ𝑎𝑡Σ�̂� ≈ 𝐼 while the variance of
the debiased estimator is small.

See Hastie, Tibshirani, and Wainwright (2015) page 159 for
references to these solutions.
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Figure 3: Figure 6.13 in Hastie, Tibshirani, and Wainwright (2015)
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Conclusion
This is absolutely not straightforward.
The adaptive and biased nature of the estimation procedures
makes it challenging to perform inference.▶ We will discuss other (in addition to the debiasing) solutions

to finding confidence intervals for regression parameters for
lasso, and for constructing 𝑝-values for testing hypotheses
about the regression parameters.▶ We will address some philosophical principles behind inference▶ and mention topics that can be studied further for the
interested student!

Warning: there seems not to be consensus, but many interesting
approaches and ideas that we may consider.
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2014 Abel symposium on high dimensional date

Martin Wainwright Trevor Haste
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Diabetes data
In a medical study the aim was to explain the ethiology of diabetes
progression. Data was collected from 𝑛 = 442 diabetes patients,
and from each patient the following measurements are available:▶ age (in years) at baseline▶ sex (0=female and 1=male) at baseline▶ body mass index (bmi) at baseline▶ mean arterial blood pressure (map) at baseline▶ six blood serum measurements: total cholesterol (tc), ldl

cholesterol (ldl), hdl cholesterol (hdl), tch, ltg, glucose
glu, all at baseline,▶ a quantitative measurement of disease progression one year
after baseline (prog)

All measurements except sex are continuous. There are 10
covariates.
The response is the disease progression prog - thus a regression
problem.






.
.
.

.

.
.
.

.

Data can be▶ downloaded from https://web.stanford.edu/~hastie/StatLear
nSparsity_files/DATA/diabetes.html in three variants: raw,
standardized and 442 × 64 matrix with quadratic terms (not
used here).▶ Or, loaded from the lars package, that is automatically
loaded in the monomvn package (where blasso is found).

https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/diabetes.html
https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/diabetes.html
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Bayesian ridge and lasso

(HTW 6.1 for lasso, WNvW Section 5.5 and 6.6)
For penalized models there exists Bayesian equivalents. We will
here focus on the multiple linear regression model.
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Bayesian set-up
In the Bayesian statistics the regression parameters 𝛽 are random
quantities, and in addition to the likelihood also a prior for the
regression parameters (and other parameters) are needed. When a
conjugate prior the posterior distribution may be derived
analytically.
Multiple linear regression: distribution of response - where we for
simplicity assume that we have centred covariates and centred
response (so no intercept term)𝑦 ∣ 𝛽, 𝜎 ∼ 𝑁(𝑋𝛽, 𝜎2𝐼)
This gives the likelihood:

𝐿(𝛽 ∣ 𝑦, 𝑋, 𝜎) ∝ (𝜎−𝑁/2) exp[− 12𝜎2 (𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽)]
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Prior for regression parameters (ridge)
In Part 1 we worked with multiple imputation and one method for
drawing observations was the Bayesian linear regression.
We will use the same priors here, for the 𝜎2 we use a inverse
Gamma prior. For the regression coefficents a normal prior is used.𝛽 ∣ 𝜎 ∼ 𝑝∏𝑗=1 √ 𝜆2𝜎2 exp(− 𝜆2𝜎2 𝛽2𝑗 )

and nose game f o
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Posterior for regression parameters (ridge)

𝛽, ∣ 𝑋, 𝑌 𝜎2 ∝ exp[− 12𝜎2 ](𝛽 − �̂�(𝜆))𝑇 (𝑋𝑇 𝑋 + 𝜆𝐼)(𝛽 − �̂�(𝜆))]
The posterior mean is the ridge estimator �̂�(𝜆).I

we did
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Prior for regression parameters (lasso)

𝛽 ∣ 𝜆, 𝜎 ∼ 𝑝∏𝑗=1 𝜆2𝜎 exp(−𝜆𝜎 |𝛽𝑗|)
This prior is called an i.i.d. Laplacian (or double exponential) prior.
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Posterior for regression parameters (lasso)
It can be shown that the negative log of the posterior density for𝛽 ∣ 𝑦, 𝜆, 𝜎 is (up to an additive constant)12𝜎2 ‖𝑦 − 𝑋𝛽‖22 + 𝜆𝜎‖𝛽‖1
Does this look familiar?
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For a fixed value of 𝜎 and 𝜆 - the 𝛽 giving the minimum of the
negative log posterior is the lasso estimate where the regularization
parameter is 𝜎𝜆.
The minimum negative log posterior will then be the same as the
maximum log posterior - and the maximum of a distribution is
called the mode of the distribution.
The lasso estimate is the posterior mode in the Bayesian model.
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Figure 4: Figure 6.1 in Hastie, Tibshirani, and Wainwright (2015)

From Hastie, Tibshirani, and Wainwright (2015): a 95% posterior
credibility interval covers zero.
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Figure 5: Figure 6.2 in Hastie, Tibshirani, and Wainwright (2015)

Hastie, Tibshirani, and Wainwright (2015): MCMC with 10 000
samples.

Look similar
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A full Bayesian approach requires priors for 𝜆 and 𝜎, in addition to
priors on the regression coefficient.
Markov Chain Monte Carlo MCMC is used efficiently sample
realizations form the posterior distribution.
See Wieringen (2021) Chapter 2 for more on Bayesian regression
and the connection to the ridge and Section 6.6 for connection to
lasso.
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Not only the point estimate
The posterior distribution gives the▶ point estimates for the lasso (the mode of the distribution)
but▶ also the entire joint distribution.
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Figure 6: Figure 6.3 in Hastie, Tibshirani, and Wainwright (2015)

Hastie, Tibshirani, and Wainwright (2015): 10 000 samples from
the posterior.
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Bootstrap

(HTW 6.2)
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Procedure to find lasso estimate ̂𝛽(�̂�𝐶𝑉 )
(Copied word by word from HTW page 142)
Refer to these 6 steps as ̂𝛽(�̂�𝐶𝑉 )-loop

1. Fit a lasso path to (𝑋, 𝑦) over a dense grid of valuesΛ = {𝜆𝑙}𝐿𝑙=1.
2. Divide the training samples into 10 groups at random.
3. With the 𝑘th group left out, fit a lasso path to the remaining9/10ths, using the same grid Λ.
4. For each 𝜆 ∈ Λ compute the mean-squared prediction error

for the left-out group.
5. Average these errors to obtain a prediction error curve over

the grid Λ.
6. Find the value ̂𝛽(�̂�𝐶𝑉 ) that minimizes this curve, and then

return the coefficient vector from our original fit in step (1) at
that value of 𝜆.

Amex allp's 0

10CV

se Amin or Abe
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Observe:▶ 𝜆-path is the same for each run of the lasso▶ the chosen 𝜆 is then used on the orginal data
Q: Is it possible to use resampling to estimate the distribution of
the lasso ̂𝛽 estimator including the model selection (choosing 𝜆)?
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Non-parametric (paired) bootstrap▶ Let 𝐹 denote the joint distribution of (𝑋, 𝑌 ).▶ The empirical ̂𝐹 is 1𝑁 for each observation (𝑋, 𝑌 ) in our
training data (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, … , 𝑁 .▶ Drawing from ̂𝐹 is the same as drawing from the 𝑁
observations in the training data with replacement.

Now, we draw 𝐵 bootstrap samples from the training data, and for
each new bootstrap sample we run through the 6 steps in thê𝛽(�̂�𝐶𝑉 )-loop.▶ The result is 𝐵 vectors ̂𝛽(�̂�𝐶𝑉 ).▶ We plot the result as▶ boxplots,▶ proportion of times each element of ̂𝛽(�̂�𝐶𝑉 ) is equal 0.
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Diabetes example

Fist the original date set the 6 steps
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.
.
.

.

.
.
.

.

Int.cept age sex bmi map tc ldl hdl tch ltg glu

0.
0

0.
2

0.
4

0.
6

0.
8

oftires O

ing



.
.
.

.

.
.
.

.

Bootstrapping vs Bayesian lasso
The results from the Bayesian lasso on the proportion of times a
coefficient is 0 and the boxplots are very similar to the results from
the bootstrapping. The bootstrap seems to be doing the “same”
as a Bayesian analysis with the Laplacian prior.
When the model is not so complex and the number of covariates is
not too large (𝑝 ∼ 100) the Bayesian lasso might be as fast as the
bootstrapping, but for larger problems the bootstrap “scales
better”.
For GLMs the Bayesian solution is more demanding, but the
bootstrap is as easy as for the linear model.
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Figure 7: Figure 6.3 in Hastie, Tibshirani, and Wainwright (2015)
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Figure 8: Figure 6.4 in Hastie, Tibshirani, and Wainwright (2015)
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Bootstrapt percentile CI
To construct a (1 − 𝛼) ⋅ 100% CI:▶ order the bootstrap sample for the estimate of interest▶ read off the (1 − 𝛼/2) ⋅ 100 percetile▶ (𝛼/2) ⋅ 100 percentil
These are now the lower and upper limit of the CI.

1
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Bootstrap BCa CI
See page 34 of Bootstrap confidence intervals in the master thesis
of Lene Tillerli Omdal Section 3.6.2 and teaching material from
TMA4300: Givens and Hoeting (2013) chapter 9.3. NTNU-access
to the full book if you are on vpn.

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3026839
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552
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Diabetes example
What if we calculated percentile bootstrap intervals - could we use
that to say anything about the true underlying regression
coefficients?

Results
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Medical example
(See Figures from study in class notes.)

y
not included
only shown and
discussed in
class
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Bootstrap CIs for 𝛽𝑗
Sadly, there are two main challenges:▶ The percentile interval is not a good choice for biased

estimators, and it is not clear if the bias-corrected accelerated
intervals are better▶ It has been shown that (for fixed 𝑝) the asymptotic (𝑁 → ∞)
distribution of the lasso has point mass at zero (which leads
to that bootstrapping not having optimal properties).
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The authors of the penalized package take the following view
Section 6: A note on standard errors and confidence intervals in
the Penalized user manual https://cran.r-
project.org/web/packages/penalized/vignettes/penalized.pdf
“Unfortunately, in most applications of penalized regression it is
impossible to obtain a sufficiently precise estimate of the bias. Any
bootstrap-based calculations can only give an assessment of the
variance of the estimates. Reliable estimates of the bias are only
available if reliable unbiased estimates are available, which is
typically not the case in situations in which penalized estimates are
used.”
“It is certainly a mistake to make confidence statements that are
only based on an assessment of the variance of the estimates, such
as bootstrap-based confidence intervals do.”
Reliable confidence intervals around the penalized estimates can be
obtained in the case of low dimensional models using the standard
generalized linear model theory as implemented in lm, glm and
coxph.”

https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf
https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf
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Outline▶ Prediction vs statistics inference: what are the aims?▶ Sampling distributions▶ Bayesian lasso▶ Boostrapping▶ Debiased lasso
WE are here now!▶ Sample splitting▶ Inference after selection (forward regression example,

polyhedral result, PoSI)▶ Reproducibility crisis and selective inference▶ Conclusions


