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Literature this lecture (L13)

P [ESL] The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition (Springer Series in
Statistics, 2009) by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman. Ebook. Chapter 8.7 (bagging), 9.2 (trees),
15 (random forest, not 15.3.3 and 15.4.3).


https://hastie.su.domains/ElemStatLearn/download.html
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IN these democratic days, any investigation into the
trustworthiness and peculiarities of popular judgments
is of interest. The material about to be discussed refers
to a small matter, but is much to the point.

A weight-judging competition was carried on at the
annual show of the West of England Fat Stock and
Poultry Exhibition recently held at Plymouth. A fat ox
having been selected, competitors bought stamped and
numbered cards, for 6d. each, on which to inscribe their
respective names, addresses, and estimates of what the
ox would weigh after it had been slaughtered and
‘““dressed.’”” Those who guessed most successfully received
prizes. About 8oo tickets were issued, which were kindly
lent me for examination after they had fulfilled their
immediate purpose. These afforded excellent material.
The judgments were unbiassed by passion and uninfluenced
by oratory and the like. The sixpenny fee deterred prac-
tical joking, and the hope of a prize and the joy of com-
petition prompted each competitor to do his best. The
competitors included butchers and farmers, some of whom
were highly expert in judging the weight of cattle; others
were probably guided by such information as they might
pick up, and by their own fancies. The average com-
petitor was probably as well fitted for making a just
estimate of the dressed weight of the ox, as an average
voter is of judging the merits of most political issues on
which he votes, and the variety among the voters to judge
justly was probably much the same in either case.

After weeding thirteen cards out of the collection, as
being defective or illegible, there remained %87 for dis-
cussion. I arrayed them in order of the magnitudes of
the estimates, and converted the cwt., quarters, and Ibs,
in which they were made, into 1bs., under which form they
will be treated.
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g1, ¢3, the first and third quartiles, stand at 23" dnd

i1, the median or middlemost value, stands at 50°.

75° resp:ctively.

The dressed weight proved to be 1198 1bs.

According to the democratic principle of ‘‘ one vote one
value,”” the middlemost estimate expresses the wox populi,
every other estimate being condemned as too low or too
high by a majority of the voters (for fuller explanation
see ‘“ One Vote, One Value,”” NaTUurg, February 28,
P- 414). Now the middlemost estimate is 12 Ib.,
and the weight of the dressed ox proved to be 1198 lb.;
so the wox populi was in this case g lb., or 0.8 per
cent. of the whole weight too high. The distribu-



What is a wise crowd?

James Surowiecki: The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies and Nations, 2004 as presented at
https://en.wikipedia.org/wiki/The_Wisdom_of_ Crowds

P Diversity of opinion: Each person should have private
information even if it is just an eccentric interpretation of the
known facts. (Chapter 2)

P Independence: People’s opinions are not determined by the
opinions of those around them. (Chapter 3)

P Decentralization: People are able to specialize and draw on
local knowledge. (Chapter 4)

P Aggregation: Some mechanism exists for turning private
judgements into a collective decision. (Chapter 5)

P Trust: Each person trusts the collective group to be fair.
(Chapter 6)


https://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
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FIGURE 8.11. Simulated academy awards voting. 50 members vote in 10 cat-
egories, each with 4 nominations. For any category, only 15 voters have some
knowledge, represented by their probability of selecting the “correct” candidate in
that category (so P = 0.25 means they have no knowledge). For each category, the
15 experts are chosen at random from the 50. Results show the expected correct
(based on 50 simulations) for the consensus, as well as for the individuals. The
error bars indicate one standard deviation. We see, for example, that if the 15
informed for a category have a 50% chance of selecting the correct candidate, the
consensus doubles the expected performance of an individual.
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How can we construct wise crowds for prediction?
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Why is it a good idea?

F>60
—>
?”’Z'CX} bw Cx) 12 ©n ed'aals “’& £, ({g C?Q)
( P (& Soprcal Austalouto
Wt K Lo @dh «? Gy
Hoar - ann ‘
alinete * (55 Lj;Sf\-

foow



T <ad =Hon .

. Ve L LA ECpd)-n

/) \k«J‘CTbsc Ol
LOme_ &Y
conld e Cu( T, T =0
@D o
o 1+ B —_
T =& 2T 'ECT\cp\

b=,

Ve (D = o
erge s @ Owre pecac ethratie -
B T, @ (& kesed on \oohcleppuy then
Cn(Tp, T2) = 0.
W=t ‘/& Q«arz(‘l‘bJ )= L cempoad Sty

What is tren Vor (T) 2

~ -k
Sxe=ies & st T ’_g . G
I'nle’plck thwis 2—= co
repwlt - R 6" Vv
[
T

lvp ement passible ot TS e
Aecomreleaied,



Connect to Part 1. Out-of-bag error estimation

P We use a subset of the observations in each bootstrap sample.
We know that the probability that an observation is in the
bootstrap sample is approximately 1 — e~ 1=0.6321206
(0.63212).

P when an observation is left out of the bootstrap sample it is
not used to build the% and we can use this observation as
a part of a “test set” to measure the predictive performance
and error of the fitted model, f*°(x).

In other words: Since each observation ¢ has a probability of
approximately 2/3 to be in a bootstrap sample, and we make B
bootstrap samples, then observation ¢ will be outside the bootstrap

sample in approximately B/3 of the fitted n%§

The observations left out are referred to as the out-of-bag
observations, and the measured error of the B/3 predictions is
called the out-of-bag error.



When should we use bagging?

Breiman originally contructed bagging for classification and
regression trees! Aim: combat the high variance of trees!

Bagging can be used for many types of predictors in addition to
trees (regression and classification) according to Breiman (1996):

P the vital element is the instability of the prediction method
P if perturbing the learning set can cause significant changes in
the predictor constructed, then bagging can improve accuracy.

Breiman (1996) suggests that these methods should be suitable for

bagging:
[ L] [ QT L] L]
P neural nets, classification and regression trees, subset selection
in linear regression

however not nearest neighbours - since

P the stability of nearest neighbour classification methods with
respect to perturbations of the data distinguishes them from
competitors such as trees and neural nets.
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Review of trees - through 4 questions



1) From non-overlapping regions in predictor space to a
roted decision tree

Draw the binary decision tree corresponding to the predictor space
regions. Mark root, branch, internal node, leaf node.

s
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2) Tree prediction: what are the missing estimates?
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Classification

P Majority vote: Predict that the observation belongs to the
most commonly occurring class of the training observations in
R_.

P Estimate the probability that an observation x; belongs to a
class k, p,,.(x;), and then classify according to a threshold

value. A n —
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3) Recursive binary splitting
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C P When to stop growing a tree?
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Classification

Some measure of impurity of the node. For leaf node (region) m
and class k=1, ..., K:

Gini index:

Cross entropy:
K
D==> Ppiloghm
k=1
Here p, ;. is the proportion of training observation in region m that

are from class k.

Remark: the deviance is a scaled version of the cross entropy.

—2 3, Mk 108 By, Where B, = %k Ripley (1996, page
219).




When making a split in our classification tree, we want to minimize
the Gini index or the cross-entropy.

The Gini index can be interpreted as the expected error rate if the
label is chosen randomly from the class distribution of the node.

According to Ripley (1996, page 217) Breiman et al (CART)
preferred the Gini index.



4) Pros and cons of trees
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Advantages (+) of using trees

Trees automatically select variables

Tree-growing algorithms scale well to large n, growing a tree
greedily

Trees can handle mixed features (continuouos, categorical)
seamlessly, and can deal with missing data

Small trees are easy to interpret and explain to people
Some believe that decision trees mirror human decision
making

Trees can be displayed graphically

Trees model non-linear effects

Trees model interactions between covariates

Trees handle missing data in a smart way!

Outliers and irrelevant inputs will not affect the tree.

VVVVV VV VvV VY

There is no need to specify the functional form of the regression
curve or classification border - this is found by the tree
automatically.



Disadvantages (-) of using trees

> Large trees are not easy to interpret

P Trees do not generally have good prediction performance
(high variance)

P Trees are not very robust, a small change in the data may
cause a large change in the final estimated tree

P Trees do not produce a smooth regression surface.



Regression example: Boston housing

James et al. (2013) Section 8.3.4.

Information from https:
/ /www.cs.toronto.edu/~delve /data/boston /bostonDetail.html.

P Collected by the U.S Census Service concerning housing in the
area of Boston Massachusetts, US.

P Two tasks often performed: predict nitrous oxide level (nox),
or predict the median value of a house with in a “town”

(medv).


https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Variables

» CRIM - per capita crime rate by town

» ZN - proportion of residential land zoned for lots over 25,000
sq.ft.

» INDUS - proportion of non-retail business acres per town.

» CHAS - Charles River dummy variable (1 if tract bounds river;
0 otherwise)

» NOX - nitric oxides concentration (parts per 10 million)

» RM - average number of rooms per dwelling

» AGE - proportion of owner-occupied units built prior to 1940

P DIS - weighted distances to five Boston employment centres

» RAD - index of accessibility to radial highways

» TAX - full-value property-tax rate per $10,000

» PTRATIO - pupil-teacher ratio by town

» B - #1000(Bk - 0.63)"2# where Bk is the proportion of
African Americans by town (black below)

» LSTAT - % lower status of the population

» MEDV - Median value of owner-occupied homes in $1000's
(seems to be a truncation)



Handling missing covariates in trees

Instead of removing observation with missing values, or performing
single or multiple imputation, there are two popular solutions to
the problem for trees:

Make a “missing category”

If you believe that missing covariates behave in a particular way
(differently from the non-missing values), we may construct a new

category for that variable.



Look at the Boston default tree with tree and rpart to see how
the two handles ONE missing value that we have CONSTRUCTED

[1] "tree package"

lstad = NiA-
ONE crim zn indus chas  nox rm age dis rad tax ptraf
OES10.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 1!

@(f\JNA for stk

19. 8223
[1] "rpart package"

1
27.82308



boston.rpart <- rpart(formula = medv~. , data = Boston,subset=train)
plot (boston.rpart)
text (boston.rpart,pretty=0)

rm< 6.945

@;:1 4. rm< 7.445

33.13 46.56

crim>+5.769 rm< 6.543

12.04 17.33 21.86 27.82



node), split, n, deviance, yval
* denotes terminal node

1) root 354 32270.0 22.95
2) rm < 6.945 296 10830.0 19.82
4) lstat < 14.405 177 3681.0 23.17
8) rm < 6.543 138 1690.0 21.86 *
9) rm > 6.543 39 908.2 27.82 *

5) lstat > 14.405 119 2215.0 14.84
10) crim < 5.76921 63 749.9 17.33 *
11) crim > 5.76921 56 636.1 12.04 *

3) rm > 6.945 58 3754.0 38.92
6) rm < 7.445 33 749.7 33.13 x*
7) rm > 7.445 25  438.0 46.56 x*



Use surrogate splits
The best split at a node is called the primary split.

An observation with missing value for variable x; is dropped down
the tree, and arrive at a split made on z;.

A “take” tree is built to predict the split, and the observation
follows the predicted direction in the tree. This means that the
correlation between covariates are exploited - and the higher the
correlation between the primary and predicted primary split - the
better.

This is called a surrogate split.

If the observation is missing the surrogate variable, there is also a
back-up surrogate variable that can be used (found in a similar
fashion.)

If the surrogate variable is not giving more information than
following the majority of the observations at the primary split, it
will not be regarded as a surrogate variable.



Look at the Boston default tree with tree and rpart to see how
the two handles ONE missing value that we have CONSTRUCTED

[1] "tree package"

b crim zn indus chas  nox rm age dis rad tax ptraf
1 0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 1!
, 7
19.8223 toeceser
[1] "rpart package" Lo\t =N4&
1

27.82308



boston.rpart <- rpart(formula = medv~. , data = Boston,subset=train)
plot (boston.rpart)
text (boston.rpart,pretty=0)

rm< 6.945

Istat>=14.4 rm< 7.445

crim>+5.769 rm< 6.543

12.04 17.33 21.86 27.82
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AnNotHES. foSSTRILATY
The R package rpart vignette page 18 gives the following

example:

P Assume that the split (age <40, age>40) has been chosen.

P Surrogate variables are found by re-applying the partitioning
algorithm (without recursion=only one split?) to predict the
two categories age <40 vs. age240 using the other covariates.

P Using “number of misclassified” /“number of observations” as
the criterion: the optimal split point is found for each
covariate.

» A competitor is the majority rule - that is, go in the direction
of the split where the majority of the training data goes. This
is given misclassification error min(p, 1 — p) where p = (# in
A with age < 40) / nA.

P A ranking of the surrogate variables is done based on the
misclassification error for each surrogate variable, and
variables performing better than the majority rule is kept.


https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

Choosing B

» The number B is chosen to be as large as “necessary”.

P An increase in B will not lead to overfitting, and B is not
regarded as a tuning parameter.

P If a goodness of fit measure is plotted as a function of B
(soon) we see that (given that B is large enough) increasing
B will not change the goodness of fit measure.



Bagging with trees - summing up

Original Tree b=1 b=2
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FIGURE 8.9. Bagging trees on simulated dataset. The top left panel shows the
original tree. Eleven trees grown on bootstrap samples are shown. For each tree,
the top split is annotated.



Bagging with trees - summing up
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FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown 1s
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.



Random forest e—i¢ a mebod to Qococrlele tran

If there is a strong predictor in the dataset, the decision trees

produced by each of the bootstrap samples in the bagging
algorithm becomes very similar: Most of the trees will use the

same strong predictor in the top split.

Random forests is a solution to this problem and a method for
decorrelating the trees. The hope is to improve the variance

reduction.



Algorithm 15.1 Random Forest for Regression or Classification.
1. For b =1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, 1s reached.

i. Select m variables at random from the p variables.
b=

on
d.;ge‘;ﬂmkb ii. Pick the best variable/split-point among the m.
b?«{ﬂ\es iii. Split the node into two daughter nodes. n-p

2. Output the ensemble of trees {T}}%.
To make a prediction at a new point x:
Regression: f2(x) = - Zle Ty (x).

Classification: Let Cy(x) be the class prediction of the bth random-forest
tree. Then CZ(x) = majority vote {Cy(z)}P.

Figure 8: Hastie, Tibshirani, and Friedman (2009) Figure 15.1



OOB

When the OOB error stabilizes the B is large enough and we may
stop training.

wmn
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FIGURE 15.4. 00B error computed on the spam training data, compared to the
test error computed on the test set.

Figure 9: Hastie, Tibshirani, and Friedman (2009) Figure 15.4
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plus additive unit-variance Gaussian noise. Tree depth is controlled here by the
minimum node size; the smaller the minimum node size, the deeper the trees.

Figure 7: Hastie, Tibshirani, and Friedman (2009) Figure 15.8



California Housing Data
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FIGURE 15.3. Random forests compared to gradient boosting on the California
housing data. The curves represent mean absolute error on the test data as a
function of the number of trees in the models. Two random forests are shown, with
m = 2 and m = 6. The two gradient boosted models use a shrinkage parameter
v =0.05 in (10.41), and have interaction depths of 4 and 6. The boosted models
outperform random forests.
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