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Part 3: plan
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Literature

▶ [ESL] The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition (Springer Series in
Statistics, 2009) by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman. Ebook. Chapter 10.1-10.6, 10.9-10.10,
10.12, 10.13 (in Part 4).▶ Video by Berent Lunde (link on Bb), covering Chapter 10 (in
particular 10.10) and the Chen and Guestrin paper.▶ Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (pp. 785–794). New York, NY, USA: ACM.
https://doi.org/10.1145/2939672.2939785. The
mathematical notation is not in focus


























































































https://hastie.su.domains/ElemStatLearn/download.html





















































































BOOSTING
slightly better than random guessing

Combine many weklearners classification

regression to produce a powerful ensemble committee

Differences to begging random forest
no bootstrapping

sequential train rg outcome of learned decides

the problem to give to learn 2 etc
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AdaBoost.M1

Figure 1: Hastie, Tibshirani, and Friedman (2009) Figure 10.1
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Example 10.2𝑁 = 1000 + 1000, 𝑁𝑡𝑒𝑠𝑡 = 10000. 𝑋s from N(0,1) for 𝑝 = 10
and true class is 1 if ∑10𝑗=1 𝑥𝑗 > 9.34 (median chisq), and −1 else.

Figure 2: Hastie, Tibshirani, and Friedman (2009) Figure10.2
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Figure 3: Hastie, Tibshirani, and Friedman (2009) Algorithm 10.1
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Understanding AdaBoost.M1

























































































Aim Why does this wah and how to develop further

Additive Loss

of Minimizein a

stage wise
manner
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𝐺(𝑥) is an additive model

6mA elementary basis fund on and Adar ooh lil an

addle set of these
could be

the

fax Egm tÉÉ
linear

preachingGUM GAM

single trees
expansion with paramel Cj scoeft

rank Ipht

Additive models are known outside boosting and is It

by minimizing some loss L over the trangset

min

pm ya FIL Yi É Bmbcxi rn
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Figure 4: Hastie, Tibshirani, and Friedman (2009) Algorithm 10.2
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Forward Stagewise Additive Modelling with Exponential
loss Ada Boost Ml
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Group discussion:

▶ look at this derivation of the equivalence of the AdaBoost.M1
and the forward stagewise modelling with exponential loss.▶ For the steps 2a-2d in Algorithm 10.1 what is your new
insight into what is done at each step?

Weshowed
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Figure 3: Hastie, Tibshirani, and Friedman (2009) Algorithm 10.1
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What is great with exponential loss?

1 computational easyweight scheme

2 L ly fax exp y fax is not a neg loghhhood but

fax again Ee e
f ten 11111 ÉÉ ios

to derivethis

É Fopulation minimize tyg
Chinahandouts

It can be shown that these ane can be writer as

E In At e t
both have the manner

But for finite are sets give different results

although both functions of y fax



.
.
.

.

.
.
.

.Figure 5: Efron and Hastie (2016) Figure 17.10: Importance of learning
rate
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Figure 6: Hastie, Tibshirani, and Friedman (2009) Figure 10.3



Based on the insight gained from AdeBoost Friedman in

2000 presented gradient boosting we will look at

trees as the base learners

Estimation of some function f can be done by minimizing
a diffentiable loss and also convex by applying

functional gradient descent The function f is an

additive expansion of base learner and each step

crew learner goes in the direction of the negative

gradient of the loss function at the current function estate
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Gradient boosting

Figure 8: Hastie, Tibshirani, and Friedman (2009) Algorithm 10.3

R: gbm and mboost packages
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But there is no weighing of the observations Now instead

we work with the value of the negative gradient at the last

step of the algo for each obs rim
of

Istep

For squared loss we fit the new base leave to the sun of
the residuals

9
pseudo

This method is called first order GTB and second order

involves the Hession done xgboost watch Berent video
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Figure 9: Guest lecture by Berent (at 25 minutes in the video)

Comments from Berent: essential to add an extra learning rate 𝛿
between 0 and 1 and 𝛿 = 0.05 not uncommon. In Hastie,
Tibshirani, and Friedman (2009) 10.12.1 Equation (10.41).

O

info

called u



.
.
.

.

.
.
.

.

Figure 10: Efron and Hastie (2016) Figure 17.10: Importance of learning
rate

CASI book Eton Hastie
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Tree depth is a measure of the complexity of the treesfusedin the GTB

11th only spur on one reble

main effectsof X
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since low order models rememberTMA4267 DOEproject models seen to

dominate 4 858 often and even smaller

7 4 nodes 7 5 76 nudes 7 6 02nodes 7 7 64 nodes
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Figure 11: Hastie, Tibshirani, and Friedman (2009) Figure 10.9
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Regularization

(10.12)▶ The number of weak learners, 𝑀 , is chosen by monitoring
prediction risk on a validation sample (same as early stopping
in Deep nets - stop training when error validation set
increases).▶ Learning rate - low rate generally recommended, but may lead
to 𝑀 then being large. (2d in Algo 10.3 add 𝜈.)▶ Decorrelated functions: subsampling of both obserations
(rows) and variables (columns). Same motivation as for
random forest. When subsampl observations this is also called
stochastic gradient boosting.▶ L1 and L2 regularization term can be added (more in 16.2)

fmcx fr i x t b tree

Shrinkage ionr
next page
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Figure 12: Hastie, Tibshirani, and Friedman (2009) Figure 10.11

shrinkageVacalearning rate
is impotent
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Video by Berent — part 1

01:40 Berent starts - with motivation
11:45: Boosting timeline
16:27: Boosting principle
18:42: AdaBoost
22:45: From AdaBoost to gradient boosting
31:26: Relationchip to L1 regularization
34:39: Techniques for improvement
End of first part

Replaces lecture
03.03 2023

S
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Video by Berent — part 2

38:10 Gradient Tree Boosting
39:15: Why does trees work
43:49: 2nd order GTB
52:17: Algorithm for 2nd order GTB
55:07: Loss vs complexity trade-off in GTB
56:05: XGBoost
1:02 XGBoost regularization
1:03 Hyperparameter tuning
1:10: Other GTB implmentations (LightGBM, CatBoost,
NGBoost)
End of part two

1st

t article
Chen Guest an
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Video by Berent — part 3

1:20 Answer questions
1:22 Automatic GTB (not on the reading list - the phd-topic of
Berent)
1:49 Full lecture recap


