MA8701 Advanced methods in statistical

inference and learning
Part 3: Ensembles. L15: Stacked ensembles

Mette Langaas

375723"

L.cz..c,\rwc_cl 0b.o2. 202

Before we start

---L—l&

, LA

Qoostgr\\g v'\-lc-)\eo

LAS

| Staclke d. ensomblas) l Hypereravel] | 16
e 4uan \‘%

N _

~

Stacked ensembles

The (o 13 1o comlaia ?{uﬁ&cho./\o 1S well- ot 1 Sty —
bk ow gwoeldd thhs Yo done 12 yrochucs

aka super learner or generalized stacking

What is it?
The Stacked Esembles is an algorithm that combines
P multiple, (typically) diverse prediction methods (learning
algorithms) called base learners (first-level) into a
P a second-level metalearner - which can be seen as a single

method. & Ko lan
| / Q«,..)K'S
O) Trainag dle ((wd-zeo w”) QL= (2&;,\(;)) e, N

’\) D232 learre \l'_)g)'g (=4, ‘\~ . ‘&"50\ éb“-b(.bd?&uk maSenacly

2) Moo learas B ¢ an "oghnel cancmhon 3§ the et
(@2cren_

Literature
P Erin Le Dell (2015): Scalable Ensemble Learning and
Computationally Efficient Variance Estimation. PhD Thesis,
University of California, Berkeley. or
https://github.com/ledell /phd-thesis. Section 2.

Supporting literature

» Breiman (1996) 6
» Laan, Polley, and Hubbard (2007)
» Polley, Rose, and Laan (2011)

Asw. oces o
Neocal. nedd ‘SI {ka ‘\%mpf\b Exlensors = .0
Wolpvt Breuven Usndas L“ﬁ.?ﬁ" k. Dal
\ \ | \

| |)

192 a6 Oneo Lels

https://escholarship.org/uc/item/3kb142r2
https://escholarship.org/uc/item/3kb142r2
https://escholarship.org/uc/item/3kb142r2
https://github.com/ledell/phd-thesis

SVUEESTED WNew' ENENG\E HeTHOD
d) 0L =txy¥) =h, N lesel-200 dele
Aunve VY e and X e®F

n A, A
1) We ek 42 Py LWy, P,y 6
it T /
il los

Ig o “e Xgjecort

v e L prducko (o~ Y

I
2) We wadd Lue 10 tor ovre or alll (JL o conloce. ko

N A A
meta e2c e @C‘P‘Oﬂ ébz&i)) . .)&PL(?‘}> W
7\ ’\“

A
C} night- be a Qmarn«bd&l_{:tb& LY.

EstimATION SWRATEENL

D GE P, PT) wen the wdl-zen brang dere
> ‘,\54&3) ..){\P"Cx)

2) @%CQ‘b{},...){‘;}L(A\B funck. of . Joen

Plxy - oty By o, Py ¢ 1 PR
‘0:3 Mm\mw,/\f) e Cﬁue/e_d by
t C%b — X4 ‘P"O‘Q ~a! éPQp - —-oz,,\QY)@BZ

2 N\ Vloﬁ‘ © q)wd\u\,e,q
T Mg a @oo& d@,‘% k{)g QO(QLM

M% ‘t)JJD ISWn — whed e=n w b&

Nuv — e oo & Seple2.

STALEZD ENMENRBLE TTTING SSRATESY

1) Dwide the fanvy deie ks \J elds (N=STor 1o poputan)

e =2ada o& Ha —\2se \cornen une tha ézf\nl_—%ld)

’9}\‘00 (N-1) =2nd grdick on A o prduce ;(&dxc\a’afl.a fe

\j&x} \Pz(}e)

E =2y Z2)
= = :
L@e&\ 7 2
Ase
CNx L) [
TN <2n

Whzt cen tine \ozse [0z be?

B0
21

(<A, N

2w

CART, ﬁoczbv%
LS elane nak) rervmlnel) €6

(AAA> rtokoﬁg) \:g)é(’/msl R, he NN

“Any” method that produces a prediction - “all” types of problems.

P linear regression

P lasso

» cart

P random forest with mtry=value 1

» random forest with mtry=value 2

P xgboost with hyperparameter set 1
P xgboost with hyperparameter set 2
P neural net with hyperparameter set 1

)
QL) I+t Ve
O\Q,\Q»ULQ_(‘(\Q/

©
2,\
)73 L
i e=the | _bzse o=
Q) Q?&d-ttkn
N

§—~o\@:k

(|1
G w
=YY
ast weed. ‘o Y
rodice
T
AN

Swn
()U/(\r C2so
: fQ{)Ma/\ A
% O
le3

{1+
WD\
ey i\ ~ed-
>
ﬂnk O/ij-..) &
L
=nl
My &
= O

For Cess Yealpr, 10,43 [P e

A AN N e
let Gz ot P+ -t X P+ Re

o< me,&')oo_,

A
%@q Y losgit- CPAGR) £+ % il (o) + o
= \VoN :f\%- \c@&\c_ leﬂnc_w
i oo
4
?oq = VQ(;) = 2V CQ,C") o ek ;\(\/“);‘L\,\

przo\}\%
BQT‘} oD ung, othe Ao, A—wexel\ful

S. atan. ch/ M AL A \IZ°23Q&_QO’\¢51<3/\&_‘)

\ A 4

VVvVY

the mean (bagging)

constructed by minimizing the "
» squared loss (ordinary least squares) or
P non-negative least squares (most popular) e rxt g=y

ridge or lasso regression o« 2\e ke ~b-
logistic regression (for binary classification)<- &9'&“‘”“,1 -
constructed by minimizing 1—ROC—A$JC

-

Not~ = cone—and el

Lo Sell pnD & “auwlkd o clas ‘ordole e

2. Why Non-negativity Constraints Work AL
Wi<) Eeionen
Only partial answers are available. Suppose that the {vy(x)} are strongly correlated and %
the {cv } are chosen using least squares or ridge regression. Then there is no guarantee that

the resulting predictor) |, vy () will stay near the range [miny, vy, (), maxy vx ()] and
generalization may be poor.

57 L. BREIMAN

Now consider imposing the non-negativity constraints on the {cy } together with the addi-
tional constraint) ay = 1. For any {ay } satisfying the constraints ag > 0, >, ax =1,

v(x) = Zakvk(m)
k
is an “interpolating” predictor. That is, for every value of x,
mkin v Tl max vi(x).

So, what our procedure does is to find the best “interpolating” predictor.

AN
3> Qo edfinaie Q\)L Lu&(\f_-)qu kaw;ddq)\a&kup‘t‘ﬁ,

e (o=rng ~ Q&Q or Mot Wnp\ex ;&. e.ﬁ ?ﬁ\ooow{'}

0
dPCKB Stng Ll Cone "% Gvezr [wnden male

B SR DG
A T no.u//oJlL g Sle
fror sep2

/’{‘> Wae A*—f ((de:dzu)!\ onN N Oe <

A

— w2 twe LP((KB to g rodie_ Z,’“ preaidson
L-k Lsuzc.l/\—

~ [20d 2" 1o thel vedeliziae o 220d R

. A\
EXOLPN -

1. Split data 2. Train each 3. Predict the outcomes in the
into V blocks candidate learner validation block based on the
m corresponding training block
5 candidate learner
> —>| Im ID/S’A | L l RF }— 4. Model selection and
. 7 ey fitting for the regression
v of the observed
Im [D/S/A| ... | RF Y outcome onto the
> 1 1 predicted outcomes
Data | 2 2 2 2 from the candidate
. learners
im [osal ... | RF —
-1 M By (2) =
» Vv v v v
m_|ois/A] ... | RF — 5. Evaluate super leamer
by combining predictions from

each candidate learner (step 0)
with m(z;B) (steps 1-4)

0. Train each
candidate learner on
entire dataset \J
Im [D/S/A| I RF } »| Super Learner

Figure 1: Flow Diagram for Super Learner

(Class notes: Study Figure 3.2 from Polley, Rose, and Laan (2011)
and/or Figure 1 from Laan, Polley, and Hubbard (2007))

1. Input data 2. Split data 3. Fit each of the 3 4. Predict the estimated probabilities of

and a collection into 10 blocks. algorithms on the death (2) using the validation set
of algorithms. training set (non- (shaded block) for each algorithm, based
shaded blocks). on the corresponding training set fit.
2 regression,
: »| regression, 227 ENENEY
, regression_ o2 20 | Zy | 2
10 , 5. Calculate estimated
risk within each validation
1 . . . i
o, e e
algorithms i z Z Z :
g _ fegression, I Zoa | Zow [Zoe | U ks acrose
—» . |——pjregression, validation sets resulting
. : regression, in one estimated cross-
Mortality 10 validated risk for each

data . algorithm.
: [CVRisk, | Y
] [CVRisk, |

2 regression_
»| |——»{regression,
: regression, - y - 6. Propose a family of
44/ Family ;’,f Wt‘?'ghted weighted combinations of the
SOMBANONs 3 algorithms indexed by a

weight vector a.

Super learner function |«——— P (Y=112)=expit(q, Z+a, Z+q, Z)
8. Fit each of the algorithms on the 7. Use the probabilities (2) to predict
complete data set. Combine these fits the outcome Y and estimate the vector
with the weights obtained in the a, thereby determining the
previous step to generate the super combination that minimizes the cross-
learner predictor function. validated risk over the family of

weighted combinations.

Fig. 3.2 Super learner algorithm for the mortality study example

The metalearning

Some observations caly are. & £O

>
>

vy v Vv V

The term discrete super learner is used if the base learner with
the lowest risk (i.e. CV-error) is selected.

Since the predictions from multiple base learners may be
highly correlated - the chosen method should perform well in
that case (i.e. ridge and lasso).

When minimizing the squared loss it has been found that
adding a non-negativity constraint o;; 20 works well,

and also the additivity constraint Zlel a; = 1 - the ensemble
is a convex combination of the base learners.

Non-linear optimization methods may be employed for the
metalearner if no existing algorithm is available

Historically a regularized linear model has “mostly” been used
For classification the logistic response function can be used on

the linear combination of base learners (Figure 3.2 Polley,
Rose, and Laan (2011)).

1. Input data 2. Split data 3. Fit each of the 3 4. Predict the estimated probabilities of

and a collection into 10 blocks. algorithms on the death (2) using the validation set
of algorithms. training set (non- (shaded block) for each algorithm, based
shaded blocks). on the corresponding training set fit.
2 regression,
: »| regression, —» 0 Zia | Zi | Zie
, regression_ a2 ZENEE2
10
1 . : . .
Collection of ,,-
algorithms regression, —PW Zi0a | Ziop | Zioe |
> | regression,
: regression
Mortality 10

data CV Risk,
’ CcVv Riskb

] { CV Risk, |
e regression,
»| |——|regression, 5. Calculate estimated
. regression, risk within each validation
M v set for each algorithm

using Yand Z. Average
the risks across
validation sets resulting
in one estimated cross-
validated risk for each
algorithm.

regression,

6. The discrete super learner
algorithm selects the
algorithm with the smallest
cross-validated risk

Fig. 3.1 Discrete super learner algorithm for the mortality study example where Q%(A, W) is the
algorithm with the smallest cross-validated risk

Simulation 1

Simulation 2
° ee L siondele . regyesns)
.—q o® Ozlc ol —add ¥
4 /'; R
PR . = had NopKaad R=06.€
Van K °o
2 fo ° e .o ,J' .
g R R I
i bl
e[> !
/] 0... []
2 p_— b []

2 0 2 -2 0 2 | 4 ,\91
clege UL X /

X
Gt 0. xt U £ 0005 x & (L

Simulation 4

——g

-_——

e
& -

+ W

Fig. 3.3 Scatterplots of the four simulations. The solid line is the true relationship. The points
represent one of the simulated data sets of size n = 100. The dashed line is the super learner fit for

o
the shown data set @LLDZ N

Table 3.2 Results for four simulations. Average R*> based on 100 simulations and the correspond-
ing standard errors

Algorithm Sim 1 Sim 2 Sim 3 Sim 4 R
R- SE(R) R“ SE(R*) R- SE(R°) R- SE(R?) o2 (= N

Super learner 0.741 0.032 0.754 0.025 0.760 0.025 0.496 0.122 - TG

Discrete SL 0.729 0.079 0.758 0.029 0.757 0.055 0.509 0.132

(SL.glm 0.422 0.012 0.189 0.016 0.107 0.016 -0.018 0.021

SL.interaction 0.428 0.016 0.769 0.011 0.100 0.020 -0.018 0.029
SL.randomForest 0.715 0.021 0.702 0.027 0.724 0.018 0.460 0.109
SL.bagging(0.01) 0.751 0.022 0.722 0.036 0.723 0.018 0.091 0.054
SL.bagging(0.1) 0.635 0.120 0.455 0.195 0.661 0.029 0.020 0.025
SL.bagging(0.0) 0.752 0.021 0.722 0.034 0.727 0.017 0.102 0.060
SL.bagging(ms5) 0.747 0.020 0.727 0.030 0.741 0.016 0.369 0.104

\,&NL.

2« SL.gam(2) 0.489 0.013 0.649 0.026 0.213 0.029 -0.014 0.023
SL.gam(3) 0.535 0.033 0.748 0.024 0.412 0.037 -0.017 0.029
yase SL.gam(4) 0.586 0.027 0.759 0.020 0.555 0.022 -0.020 0.034
SL.gbm 0.717 0.035 0.694 0.038 0.679 0.022 0.063 0.040
SL.nnet(2) 0.476 0.235 0.591 0.245 0.283 0.285 -0.008 0.030
SL.nnet(3) 0.700 0.096 0.700 0.136 0.652 0.218 0.009 0.035
SL.nnet(4) 0.719 0.077 0.730 0.062 0.738 0.102 0.032 0.052
SL.nnet(5) 0.705 0.079 0.716 0.070 0.731 0.077 0.042 0.060
SL.polymars 0.704 0.033 0.733 0.032 0.745 0.034 0.003 0.040
SL.bart 0.740 0.015 0.737 0.027 0.764 0.014 0.077 0.034

SL.loess(0.75) 0.599 0.023 0.761 0.019 0.487 0.028 -0.023 0.033
SL.loess(0.50) 0.695 0.018 0.754 0.022 0.744 0.029 -0.033 0.038
SL.loess(0.25) 0.729 0.016 0.738 0.025 0.772 0.015 -0.076 0.068
SL.loess(0.1) 0.690 0.044 0.680 0.064 0.699 0.039 0.544 0.118

Tahe Nora mengzsp:
— e bost alsp (pesa\amrmes) & Mot wnown () adu2aQ
ard. willl dnenge = degendest on gedem debe
— addane csre dast iy S swevlimne—
does ebtr end qek % 036 oplnaly

Fig. 3.4 Tenfold cross-validated relative mean squared error compared to glm across 13 real data
sets. Sorted by geometric mean, denoted by the plus (+) sign

SuperLearner-| o o o o—|ume e = AT
discreteSL- o eo ohmee SE CUW)
bart- e e o cmm
gam(3) - o opoe
gam(4) - wo-pooo
gam ° ogm
gam(5) - . .+oo
polymars - oo wim o
step.interaction cee mpmeo
glm - -+
3 bayesglm — <+
< glmnet(.75) - -+ 2600 &H
o)
> glmnet(1) - - J P 3—-\¥
glmnet(.50) - -+
glmnet(.25) - - Name n 1/ Source
DSA - -+ ais 202 10 Cook and Weisberg (1994)
step - - diamond 308 17 Chu (2001)
ridge - ole o cps78 550 18 Berndt (1991)
gbm(2) - “ o | 5 cps8S 534 17 Berndt (1991)
randomForest - - 4 | cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
gbm(1) - (X1 J —|— ° .
Pima 392 7 Newman et al. (1998)
svm 7 ¢ w * | laheart 200 10 Afifi and Azen (1979)
0f5 1' 2' é 1'0 1'21'4 mussels 201 3 Cook (1998)
Relative MSE enroll 258 6 Liu and Stengos (1999)
fat 252 14 Penrose et al. (1985)
diabetes 366 15 Harrell (2001)
house 506 13 Newman et al. (1998)

|22 Qelealy

T heoretical result
LeDell (2015) (page 6)

P Oracle selector: the estimator among all possible weighted
combinations of the base prediction function that minimizes
the risk under the true data generating distribution.

» The oracle result was established for the Super Learner by
Laan, Polley, and Hubbard (2007) tines« ofs

P If the true prediction function cannot be represented by a
combination of the base learners (available), then “optimal”
will be the closest linear combination that would be optimal if
the true data-generating function was known.

» The oracle result require an uniformly bounded loss function.
Using the convex restriction (sum alphas =1) implies that if
each based learner is bounded so is the convex combination.
In practice: truncation of the predicted values to the range of
the outcome in the training set is sufficient to allow for
unbounded loss functions

Other issues

» Many different implementations available, and much work on
parallell processing and speed and memory efficient execution.

» Super Learner implicitly can handle hyperparameter tuning by
including the same base learner with different model
parameter sets in the ensemble.

» Speed and memory improvements for large data sets involves
subsampling, and the R subsemble package is one solution,
the H20 package another.

Super Learner Algorithm H2O el p=rl

The steps below describe the individual tasks involved in training and testing a Super Learner
ensemble. H20 automates most of the steps below so that you can quickly and easily build
ensembles of H20O models.

1. Set up the ensemble.

a. Specify a list of L base algorithms (with a specific set of model parameters).
b. Specify a metalearning algorithm.

2. Train the ensemble.

a. Train each of the L base algorithms on the training set.

b. Perform k-fold cross-validation on each of these learners and collect the cross-validated
predicted values from each of the L algorithms.

c. The N cross-validated predicted values from each of the L algorithms can be combined to
form a new N x L matrix. This matrix, along with the original response vector, is called the
“level-one” data. (N = number of rows in the training set.)

d. Train the metalearning algorithm on the level-one data. The “ensemble model” consists of
the L base learning models and the metalearning model, which can then be used to generate
predictions on a test set.

3. Predict on new data.

a. To generate ensemble predictions, first generate predictions from the base learners.
b. Feed those predictions into the metalearner to generate the ensemble prediction.

e metalearner_algorithm (Optional) Specify the metalearner algorithm type. Options include:

"AUT0" (GLM with non negative weights & standardization turned off, and if
validation_frame is present,then 1lambda search is set to True; may change over time). This

is the default.

e "gim" (GLM with default parameters)

e "gbm" (GBM with default parameters)

e 'drf" (Random Forest with default parameters)

e r"deeplearning” (Deep Learning with default parameters)

e "naivebayes" (NaiveBayes with default parameters)

e "xgboost" (if available, XGBoost with default parameters)

e metalearner_params: (Optional) If a metalearner_algorithm is specified, then you can also
specify a list of customized parameters for that algorithm (for example, a GBM with ntrees=100 ,

max_depth=10 , etc.)

¢ metalearner_nfolds: (Optional) Specify the number of folds for cross-validation of the
metalearning algorithm. Defaults to O (no cross-validation). If you want to compare the cross-
validated performance of the ensemble model to the cross-validated performance of the base
learners or other algorithms, you should make use of this option.

¢ metalearner_fold_assignment: (Optional; Applicable only if a value for metalearner_nfolds is
specified) Specify the cross-validation fold assignment scheme for the metalearner. The
available options are AUTO (which is Random), Random, Modulo, or Stratified (which will stratify
the folds based on the response variable for classification problems). This value defaults to
AUTO.

e metalearner_fold_column: (Optional; Cannot be used at the same time as nfolds) Specify the
name of the column that contains the cross-validation fold assignment per observation for
cross-validation of the metalearner. The column can be numeric (e.g. fold index or other integer
value) or it can be categorical. The number of folds is equal to the number of unique values in
this column.

e metalearner_transform: (Optional) Specify the transformation used on predictions from the base
models in order to make a level one frame. Options include:

e "NONE" (no transform applied)
e "Logit" (applicable only to classification tasks, use logit transformation on the predicted

nrahahilitiec)

R example from H2o-package

https://docs.h20.ai/h20/latest-stable /h20-docs/data-
science/stacked-ensembles.html

Python examples available from the same page

The Higgs boson data is used - but which version is not specified,
maybe this https://archive.ics.uci.edu/ml/datasets/HIGGS or a
specifically made data set. The problem is binary, so maybe to
detect signal vs noise.

h20.init ()

Connection successful!

R is connected to the H20 cluster:

H20 cluster uptime: 1 days 3 hours

H20 cluster timezone: Europe/0Oslo

H20 data parsing timezone: UTC

H20 cluster version: 3.40.0.1

H20 cluster version age: 25 days

H20 cluster name: H20 _started_from R mettela_bzel26

H20 cluster total nodes: 1

- gy gy - . - . - o~ o~ g~ PN T~

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
https://archive.ics.uci.edu/ml/datasets/HIGGS

Identify predictors and response
y <- "response"
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(trainl[, yl)
test[, y] <- as.factor(test[, yl)

print (dim(train))

[1] 10000 29

Number of CV folds (to generate level-one data for stacking)
nfolds <- 5

There are a few ways to assemble a list of models to stack toegether:
1. Train individual models and put them in a list
1. Generate a 2-model ensemble (GBM + RF)

Train & Cross-validate a GBM
my_gbm <- h2o0.gbm(x = x,

y=73;
training_frame = train,
distribution = "bernoulli",

ntrees = 10,

max_depth = 3,

min_rows = 2,

learn_rate = 0.2,

nfolds = nfolds,
keep_cross_validation_predictions = TRUE,
seed = 1)

Train & Cross-validate a RF
my_rf <- h2o.randomForest(x = x,
y=75,
training_frame = train,
ntrees = 50,
nfolds = nfolds,

16

keep_cross_validation_predictions = TRUE,
seed = 1)

Now the default metalearner

Default metalearner: Options include ‘AUTQO" (GLM with non
negative weights; if validation_frame is present, a lambda search is
performed)

Train a stacked ensemble using the GBM and RF above

ensemble <- h2o.stackedEnsemble(x = x,
y =79,
training frame = train,
base_models = list(my_gbm, my_rf))

default metalearner_ transform should be NONE
#print (summary (ensemble))

#ensemble@model

Eval ensemble performance on a test set

perf <- h2o.performance(ensemble, newdata = test)

Compare to base learner performance on the test set

perf_gbm_test <- h2o.performance(my_gbm, newdata = test)

perf_rf_test <- h2o.performance(my_rf, newdata = test)
baselearner_best_auc_test <- max(h2o.auc(perf_gbm_test), h2o.auc(perf_r

metalearner_model acte Loan
Model Details: \[

e A Z (5 0=0g¢ < ollgyl)

H20BinomialModel: glm
Model ID: metalearner_ AUTO_Stacked
GLM Model: summary

family 1link regularization number_o
1 binomial logit Elastic Net (alpha = 0.5, lambda = 8.399E-5)
training_ frame
1 levelone_training_ StackedEnsemble_model R_1677945156774_1824

ble _model R_1677945156774_1824

Coefficients: glm coefficients

names coefficients standardized_coefficients

1 Intercept -3.603549 0.149102

2 GBM_model_R_1677945156774_1086 3.298011 0.493334

3 DRF_model_R_1677945156774_1214 3.809905 0.701246
A

Qﬂ/ A 4 A
BOA) = —F o e 1) = ~Bbe ez B0 £ 320000
\te

Adding transform “logit”

Train a stacked ensemble using the GBM and RF above

ensemble <- h2o.stackedEnsemble(x = x,
y=y3
training_ frame = train,
base_models = list(my_gbm, my_rf),
metalearner_transform = "Logit")

#print (summary (ensemble))
#print (ensemble@model)

Eval ensemble performance on a test set
perf <- h2o.performance(ensemble, newdata = test)

Compare to base learner performance on the test set

perf_gbm_test <- h2o.performance(my_gbm, newdata = test)

perf_rf_test <- h2o.performance(my_rf, newdata = test)
baselearner_best_auc_test <- max(h2o.auc(perf_gbm_test), h2o.auc(perf_r
encsemble aiic test <- h20 aic(verf)

$metalearner model
Model Details:

H20BinomialModel: glm

Model ID: metalearner AUTO_StackedEnsemble model R_1677945156774_1830
GLM Model: summary

family 1link regularization number_o
1 binomial logit Elastic Net (alpha = 0.5, lambda = 3.885E-4)

training_ frame
1 levelone_training StackedEnsemble_model_R_1677945156774_1830

Coefficients: glm coefficients
names coefficients standardized _coefficients

1 Intercept -0.053725 0.154528
2 GBM_model_R_1677945156774_1086 0.791767 0.515081
3 DRF_model_R_1677945156774_1214 0.845217 0.731991

N
rz/od = —0.05 + 6745 . kocox’vCé\)%“O\}

< 0.¥s - L"‘fv (&"Pm (2\3>

[1] "Best Base-learner(Test AUC:] 0.769204725074508"

print (sprintf ("Ensemble Test AUC: Y%s", ensemble_auc_test))

[1] "Ensemble 0.773144298176816"

[1] "Best Base-learner Test AUC: 0.76979821502548"
[1] "Ensemble Test AUC: 0.773501212640419"

[1] "Best Base-learner Test AUC: 0.769204725074508"

print (sprintf ("Ensemble Test AUC: ¥%s", ensemble_auc_test))

[1] "Ensemble Test AUC: 0.773096033881535"

O U WN

Generate predictions on a test set (if neccessary)
pred <- h2o.predict(ensemble, newdata = test)

print (head(pred))

predict pO
.6739209
0.5814741
0.5826643
0.1971804
0
0

o

.4561659
.3365841

=)

pl
0.3260791
0.4185259
0.4173357
0.8028196
0.5438341
0.6634159

Puad

Wawic

L

Uncertainty in the ensemble

(Class notes: Study “Road map"” 2 from Polley, Rose, and Laan
(2011))
P Add an outer (external) cross validation loop (where the super

learner loop is inside). Suggestion: use 20-fold, especially
when small sample size.

P Overfitting? Check if the super learner does as well or better
than any of the base learners in the ensemble.

P Results using influence functions for estimation of the variance
for the Super Learner are based on asymptotic variances in the
use of V-fold cross-validation (see Ch 5.3 of LeDell (2015))

() DATA
The data are ni.i.d. observations of random variable O. O has
probability distribution P,

\4
MODEL
The statistical model M is a set of possible probability distributions
of O. Pyis in M.

\4
f TARGET PARAMETER)
The parameter Q(P,) is a particular feature of P,, where Q maps the

probability distribution Pyinto the target parameter of interest.

Y
LOSS FUNCTION
We have a uniformly bounded loss function such that Q, minimizes
the risk over all Q in the parameter space.

DEFINING THE RESEARCH QUESTION

SUPER LEARNER
Our estimation procedure involves an initial estimate of the relevant
part Q, of P, using the machine learning algorithm super learner.

Y

CROSS-VALIDATED SUPER LEARNER
The super learner must be externally cross-validated in order to
calculate an honest risk for the super learner.

ESTIMATION

\
INFERENCE
Carry out a test of independence between covariates and outcome
using permutation sampling. Use resampling to assess measures of
variability.
(Not covered in this text.)

.
(ED)

INFERENCE

Fig. 3.6 Road map for prediction

Ensembles - overview

(ELS Ch 16.1)

With ensembles we want to build one prediction model which
combines the strength of a collection of models.

These models may be simple base models - or more elaborate
models.

We have studied bagging - where we use the bootstrap to
repeatedly fit a statistical model, and then take a simple average of
the predictions (or majority vote). Here the base models can be
trees - or other type of models.

Random forest is a version of bagging with trees, with trees made
to be different (decorrelated).

We have studied boosting, where the models are trained on
sequentially different data - from residuals or gradients of loss
functions - and the ensemble members cast weighted votes
(downweighted by a learning rate). We have observed that there

are many hyperparameters that need to be to tuned to optimize
performance.

And toden — we Waue lenrra & eoat T SEZlad anye~ily

END
Before we stast

---L—lﬁ

, LA4-
€>oost'\r\\3 V‘-l;eo
LS
Staclke d. ensomblas) Hypereravel] | 16
L 4uan \'f&
N _

~

(Heour wWor ik :
drow a conet m_P /mmo\ he
(Veriet)
oM wp whaol we lnow odoowd~

oNnse. 2. meiUo de— l

Jole] .
whisdom o& crowdh— E— el L ndsgendant- “boduen

200U\T
owries e

a\)r'«DlAW (endnal for ael.\n
1

fren@=ay)
Boostine) modug
/‘\
)(Gbooy{—: e to ot Rer— o o1y PeAs EArNON REST
‘mﬁtfmvy > g(g;gl,Lg, o oL o%
UYS Llhf\(r‘/""\

321:&»“; Sl f e Cenplon kese leoraens > Yok W \neve
o XWeSse, so¥-

— N\p\a\lc, ocaclo (roPe/\'Leo é:;-— RN o oole lorrne~

— cen be wed. to Y 2ol \I\Q@UPZ—{OW h\,:\,&«
—asrd. ool sl ol no wrAC

