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Before we start

Literature

» Hyperparameter tuning with Bayesian Optimization. Frazier
(2018): “A tutorial on Bayesian optimization”,
https://arxiv.org/abs/1807.02811: Sections 1,2,3,4.1, 5: only
the section “Noisy evaluations”, 6,7.

» G. A. Lujan-Moreno, P. R. Howard, O. G. Rojas and D. C.
Montgomery (2018): Design of experiments and response
surface methodology to tune machine learning
hyperparameters, with a random forest case- study. Expert
Systems with Applications. 109, 195-205.
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» What are hyperparameters?

» Which hyperparameters have we encountered in the course so
far?
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There exist many ways to group methods for hyperparameter
tuning. One way to look at this is (Kuhn and Silge, 2021, Ch 12)

P grid search: specify a set of possible values a priori and
investigate only these values, choose the value where the

chosen selection criterion is optimal. This is also called

“model free methods".
D> iterative search: start with a set of values, fit/evaluate some

(surrogate) model (might also be the loss function), and
based on this choose new values to evaluate next.

For grid search also methods for speeding up calculations exists -
for example by stopping evaluation at a grid point where the loss is
seen to be high after some CV-folds, for example the method of

racing described by Kuhn and Silge, Ch 13.4.
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Grid search vs iterative search
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Surrogate methods
We will look at two types of surrogate models: Bayesian regression
with Gaussian processes (in Bayesian optimization) and
regression-type models in response surface methods.
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Bayesian optimization (@0)
Bayesian optimization is an itefative method - where we start with
evaluating some loss function at some predefined set of points in
the hyperparameter space. New position in the hyperparameter
space are chosen iteratively.

Two key ingredients:

P a surrogate model (we will only look at Bayesian regression
with Gaussian processes) to fit to the observed values of the
loss function in the hyperparameter space

» an acquisition function to decide a new point in the
hyperparameter space to evaluate next
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Underlying idea: given some “observations” in the hyperparameter
space, the task is to decide where to place a new point. We should

try a point where:

P we expect a good value and/or
P we have little information so far

To do that we need information on both expected value and
variance - or preferably the distribution of the loss function for our

problem.

We now look at the multivariate Gaussian distribution and
conditional distribution, a Gaussian process
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Gaussian processes

(Eidsvik 2017, page 6-7, note in TMA4265)
A Gaussian process is defined for
P times or locations z,, i = 1,...,m in R where
» Y, =Y (z,) is a random variable at z; &= Sheclve fndhion
» such that Y = (Y7,...,Y ) is multivariate Gaussian.
The process is first order (mean) stationary if E(Y (x)) = u for all
x, and this can be extended to depend on covariates.
The process is second order stationary if Var(Y (z)) = o2 for all x
and the correlation Corr(Y (x),Y (")) only depends on differences
between x and x’.
The multivariate Gaussian distribution is defined by the mean and

covariance alone.
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Correlation functions
(Eidsvik 2017, page 7, Frazier 2018, Ch 3.1)
Correlation functions are also referred to as kernels.
We assume that points at positions close to each other have a
stronger correlation than point far apart.
Power exponential or Gaussian kernel
OoY
Corr(Y(z),Y (2)) = exp(—dglz — 27|7)

where the L2 distance is used and ¢, is a parameter that
determine the decay in the correlations.
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Matern-type kernel

Corr(Y(z),Y(z")) = (1 + ¢p/llz — 27|]) exp(—@pllz — 27)

now with decay-describing parameter ¢,,.

The parameters of the kernels need to be estimated, see Ch 3.2 of
Frazier 2018 (who use a slightly different parameterization). We
will just assume that these parameters are known.

(Class notes: study Figure 4 and 5 of Eidsvik, 2018.)
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Figure 5: One realization from the Gaussian process with exponential co-
variance function and one with Matern type correlation function. The mean

is 0 and variance 1. The correlation decay parameters are ¢p = 3/25 and
onp = 0.19.
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From correlations into covariance matrix
For simplicity assume that d = 1. The number of positions to

consider is n.
To get from correlation function to a n X n covariance matrix first
construct a n X n matrix of distances for each pair of positions,

denote this H.
For the Matern-type correlation function the covariance matrix can

then be written

Y =01+ ¢y H)®exp(—¢yH))

where ® is elementwise multiplication.
See Eidsvik (2018, Ch 3.2 and 3.3) for how to build covariance
matrices in an efficient way.

1--. N
(_&: :1]1&0 I,K—’X'\ -
.' 4 ‘\x" \7,
™ L | x-x - -




fesa e §éra
So fer: Cxny yn ) (x2y %)) - (2\0) 34\3

@(y{ \ o\ojacy ve prnchy

ied on &Y

New oW

\[ Y N\n CM)ZQB
f(&)&/\ CoCrelaba N égv\‘/nc(«/\ Qm\b\(\d

L -
NxA fl (- dar\e~an

Ut cemnon T selr piy = @0

= (w,) $"‘ ;SIB
e

% e clhhoden & edynal~\ Teccn NOW

Aecrded Whert Yo Se—meh cexct 9\
R
X

g

U
\g—— Mo ordh = ress \(o\/\kts S
Nx |

/
A



Multivariate normal distribution

The random vector Y . ; is multivariate normal N, with mean
and (positive definite) covariate matrix 3. The pdf is:
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The conditional distributions of the components are (multivariate)
normal.
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Figure 1: Illustration of BayesOpt, maximizing an objective function f with a 1-dimensional continuous

input.

The top panel shows: noise-free observations of the objective function f at 3 points, in blue; an

estimate of f(x) (solid red line); and Bayesian credible intervals (similar to confidence intervals) for f(x)
(dashed red line). These estimates and credible intervals are obtained using GP regression. The bottom panel
shows the acquisition function. Bayesian optimization chooses to sample next at the point that maximizes
the acquisition function, indicated here with an “x.”



Acquisition function: Expected improvement

(Frazier 2018 page 7)
Thought experiment:

1) we have evaluated our function at all possible points x, and
must return a solution based on what we already have
evaluated. If the evaluation is noise-less we need to return the
point with the largest observed value f.

2) Correction: We may perform one more evaluation. If we
choose x we observe f(x), and the best point before that was
f.. The improvement at the new observation is then
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3) We define the expected improvement as

El,, () = E, [max(f(z) — f;,,0)]

where the expectation is taken at the posterior distribution given

that we have evaluated f at n observations x,,...,x,, and the
posterior distribution is that f conditional on ml,. Ty Yy -ee s Yn,
is normal with mean p, () and variance o2 (z).
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4) How to evaluate the expected improvement? Integration by

parts gives ey
Lot
1 ) = max(, (o) — £3,00) + 0, (0)o( M)
—abs(in, (o) — )P DL

cd& N@© 1)

s expected proposed vs previously best

e choose to evaluate the point with the largest expected
Improvement

‘et o'&r
T, = argmaxEl (x) O ) A

Is often found using quasi-Newton optimization.
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Figure 3: Contour plot of EI(x), the expected improvement @, in terms of A, (z) (the expected difference
in quality between the proposed point and the best previously evaluated point) and the posterior standard
deviation o, (z). Blue indicates smaller values and red higher ones. The expected improvement is increasing
in both quantities, and curves of A, (x) versus o,(x) with equal EI define an implicit tradeoff between
evaluating at points with high expected quality (high A, (z) versus high uncertainty (high o, (x)).
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Algorithm for Bayesian optimization of a function f

(Frazier 2018, page 3, noise-free evaluation)



Place a Gaussian process prior on f.

Observe f at ng points from some experimental design. Set

while n < N do
Update the posterior on f with all available data

Let x,, be a maximizer of the acquisition function over z,
computed using the current posterior

Observe y,, = f(x,,)
Increment n
end while

Return a solution: a point with largest f(x) or the point with the
largest posterior mean
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What does the steps mean?

P Gaussian prior: choose (estimate?) mean and correlation
function for the problem.

P Observe n, points: calculate the loss function at each of the
points (remark: we have noise)

P Update the posterior: calculate the conditional distribution for
f for a new point given the observed loss at all previously
observed points

» Acquisition function: find argmaxEl ().

(Class notes: Figure 1 of Frazier 2018.)



P For a point & we model the distribution of f(x),

» which is normally distributed with mean p,, (x) and variance
02 (x). The mean and variance is found from the conditional
distribution.

» With 95% credibility interval u, (z) + 1.950, (x).

» The width of the credibility interval at observations is 0.



2.3.1 Example

(Kuhn and Silge, Ch 14, the example is for SVM)

First just grid search to test what is best value for mtry

data(Boston, package = "MASS")
# first using a grid
tune_grid <- expand.grid(
mtry = (1:13))
# ntree=seq(100,500,length=10)) # how to also include ntree? primary only mtry, how to d
tune_control <- caret::trainControl(
method = "oob", # cross-validation #eller cv
#number = 3, # with n folds
verboselter = FALSE, # no training log
allowParallel = FALSE # FALSE for reproducible results
)
rf_tune <- caret::train(
medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat,
data=Boston,
na.action=na.roughfix,
trControl = tune_control,
tuneGrid = tune_grid,
method = "rf", # rf is randomForest, checked at #vhttp://topepo.github.io/caret/train-m
verbose = TRUE
)
tuneplot <- function(x, probs = .90) {
ggplot (x) +
coord_cartesian(ylim = c(quantile(x$results$RMSE, probs = probs), min(x$results$RMSE))
theme_bw()
&
tuneplot (rf_tune)
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The R the function tune_bayes is available in the package tune, and requires that the analyses
is done with a workflow. Default in the GP is exponential correlation function, but first we
try the Matern.

tree_rec <- recipe(medv~crim+zn+indus+chas+nox+rm+aget+dis+rad+tax+ptratio+black+lstat, d

tune_spec <- rand_forest( # parsnip interface to random forests models
mode="regression",
mtry = tune(),
trees = tune(),

iy malen am = dmaaem o /N

set_engine("randomForest") # randomforest ok

tune_wf <- workflow() %>% 4
add_recipe(tree_rec) %>’
add_model (tune_spec)

tune_param <- tune_spec/>%
parametersy>Y
update (mtry=mtry(c(1L,13L)) ,trees=trees(c(100L,500L)))

vfold <- vfold cv(Boston, v = 5)
# then trying BO
ctrl <- control_bayes(verbose = TRUE)
bayesres<- tune_bayes (tune_wf,
resamples = vfold,
#metrics = rmse,
corr=list (type="matern",nu=5/2),
#default in corr_mat(GPfit) is "exponential" power 1.95
initial = 10,
param_info = tune_param,
iter = 10,
objective=exp_improve(),
control = ctrl
)
dput (bayesres, "bayesres.dd")
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# A tibble: 10 x 9

mtry trees .metric .estimator mean n std_err .config .iter
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr> <int>

1 4 383 rmse standard 3.26 5 0.439 Preprocessorl_Model~ 0
2 6 423 rmse standard 3.26 5 0.416 Preprocessorl_Model~ 0
3 4 500 rmse standard 3.28 5 0.442 Iter4d 4
4 5 336 rmse standard 8..29 5 0.446 Iterl 1
5 6 347 rmse standard 3.29 5 0.411 Preprocessorl_Model~ 0
6 6 500 rmse standard 329 5 0.413 TIter6 6
7 7 500 rmse standard 3.30 5 0.411 Iter3 3
8 8 399 rmse standard 3.:32 5 0.393 Preprocessorl_Model~ 0
9 9 186 rmse standard 3.33 5 0.367 Preprocessorl_Model~ 0
10 9 477 rmse standard 3.34 5 0.384 Preprocessorl_Model~ 0
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bayesres2<- tune_bayes(tune_wf,

)

resamples = vfold,
#metrics = rmse,

#corr=1ist (type="matern" ,nu=5/2),

#default in corr_mat(GPfit) is "exponential" power 1.95

initial = 10,

param_info = tune_param,
iter = 10,
objective=exp_improve (),
control = ctrl

dput (bayesres2, "bayesres2.dd")

bayesres2=dget ("bayesres2.dd")
show_best (bayesres2,n=10)

# A tibble: 10 x 9

© 0 N O O W N+~

[=s
o

mtry trees .metric .estimator

<int> <int> <chr> <chr>
5 499 rmse standard
4 313 rmse standard
7 445 rmse standard
5 453 rmse standard
6 498 rmse standard
4 500 rmse standard
7 500 rmse standard
5 258 rmse standard
8 496 rmse standard
4 231 rmse standard

mean
<dbl>

3.
.29
.29
.30
.31
.31
.31
.32
.33
.33
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<dbl>
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autoplot (bayesres2,type="performance")
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<chr>
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Extension

What is the objection function is not observed noise-less?
Independent normal error term € can be added to the previously
defined Y = f(x) to make a new Y = f(x) + €. This (only) adds
a diagonal term to the covariance matrix, and it is common to
assume that the variance is the same for all x and treat the
variance as a hyperparameter.



Bayesian Optimization is one way to
optimize expensive functions

Assume a Bayesian prior on F
(usually a Gaussian process prior)

while (budget is not exhausted) {
Find x that maximizes acquisition(x,posterior)
Sample x & observe F(x)

Update the posterior distribution on F

{S\'-Cb. Woow Lalin % @aZ\{f‘l



Design of experiments and response surface methodology

G. A. Lujan-Moreno, P. R. Howard, O. G. Rojas and D. C.
Montgomery (2018): Design of experiments and response surface
methodology to tune machine learning hyperparameters, with a
random forest case- study. Expert Systems with Applications. 109,
195-205.

See separate slide-deck made by Hakon Gryvill, Yngvild Hamre and
Javier Aguilar for the article presentation in MA8701 in the spring

of 2021.
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Introduction - idea in this paper

1. Find most important hyperparameters (factors) in the random forest
algorithm using design of experiments (DOE)

2. Apply response surface methodology (RSM) on the parameters chosen in
step 1
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Background - Design of experiments (DOE)

A response variable may be impacted by controllable and uncontrollable
factors.

» Controllable factor: The experimenter can freely alter its levels.

» Uncontrollable factor: Variables that are not controlled by the
experimenter, but can be monitored and even included in the model.

® NTNU | dopuegian tniversity of



Background - Design of experiments (DOE)

Principles of DOE:

1. Randomization: experiments should be run in a random order to
prevent external factor from affecting results.

2. Replication: allows calculation of internal s.e
3. Blocking: can reduce variability

® NTNU | dopuegian tniversity of



Backgrou Nd - Design of experiments (DOE) TMAY LY

Two level factorial design (2%):
» Most basic type of experiment. biw g
» k factors at two levels: low and high. 22
» Regression model:

k
y = bo +ZﬁiXi + Zﬁ,jx,-xj +e
i=1

i<j
where g;,i = 1, ..k are main effects and g,/ = 2, ..., k are interaction terms.
As k increases, the number of runs increases exponentially.

Idea: use a fractional DOE

B NTNU | scencanatecnoisy



Background - Design of experiments (DOE)

Fractional Factorial DOE (2X—P):
1. Fewer runs are needed 2+,

2. Trade-off: loss of accuracy due to fewer df to evaluate each factor and
every possible interaction.

3. Powerful screening methods. Usually done at the beginning of
experiment to see which factors-are important.

® NTNU | dopuegian tniversity of



Background - Design of experiments (DOE)

3 unique characteristics that make them highly efficient:

1. Sparsity of effects principle: only a small number of effects are
significant and the final model is composed of low order terms.

2. Projection property: a design can be projected into a lower dimension
using a subset of factors.

3. Fold over: FFDOE can be combined to form designs of higher resolutio
Helps in isolating main effects.

erious disadvantage of FFDOE: unable to detect quadratic effects.

® NTNU | dopuegian tniversity of



Background - Response Surface Methodology

RSM: Procedure used to model a surface using statistical techniques for the
purpose of optimizing a response.

Objective: Find value of x that maximizes response y, with

y = f(x) +e,

where ¢ is the error and the response surface is n = f(x).

Challenge: a priori f is an unknown function.

B NTNU | scencanatecnoisy
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Background - Response Surface Methodology

Methodology: find a model which fits the relationship between the
predictors and the response using a polynomial function.

Popular choices:
» First-order model:

K
y =080+ Bixite

=1

» Second-order model:

K k
y="DBo+> Bixi+ Y B+ Y Bixixi+¢
i=1 i=1

1<j

B NTNU | scencanatecnoisy
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Background - Response Surface Methodology

Main effects
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Background - Response Surface Methodology

Interaction
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Background - Response Surface Methodology

Quadratic

1.0

0.5

2
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-1.0
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Background - Response Surface Methodology

» RSM is sequential procedure where at each step, we move in a direction
of improvement for our objective.

> Steepest ascent or ridge analysis is used to move to optimal region or
the response surface.

» The procedure is repeated until no more improvements are found in a
local neighborhood.

Most popular RSM designs: Central Composite designs (CCD) , Box-Behnken
(BBD)

B NTNU | scencanaecnoigy 16



Background - Performance metrics

Balanced accuracy (BACCQ):
BACC = (TPR + TNR)/2,

where TPR = TP/(TP + FN)and TNR = TN/(TN + FP).
Good metric for highly unbalanced data

B NTNU | scencanatecnoisy
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Background - Random forest

Bagging: create B bootstrap samples and fit a decision tree to each sample
Random forest: in each split, we are only allowed to consider m of the p

predictors
Use fully-grown trees rather than pruned ones
—> Less correlated

® NTNU | dopuegian tniversity of

18



Background - The RandomForest package in R

Hyperparameters in RandomForest:

1. ntree: number of trees to grow

2. mtry: number of predictors m allowed to be considered at each split
replace: should sampling be done with our without replacement?
nodesize: minimum size of leaf nodes
classwt: prior probability for each of the classes
cutoff: threshold for binary classification
maxnodes: maximum number of leaf nodes a tree can have

o= %

N o U

® NTNU | dopuegian tniversity of
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Experiments - The dataset

Aim: classifying whether a person makes over 50 000 USD per year
32561 observations, 14 covariates
Some of the covariates:

1. age

2. marital status
race

sex
education

i kbW
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Experiments - General procedure for hypertuning using DOE and RSM

Procedure

1.

2.
3.
4.

Choose a machine learning algorithm and decide on the response
variable to tune (accuracy, TPR, F1-score, etc.) @A

Select the hyperparameters to tune as well as their ranges
Perform @ing @A’nd identify the important hyperparameters

Reduce the model and, depending on the number of experiments that are
feasible to run, perform either a full or fractional 2k factorial design

. Fit a second-order model using RSM (CCD, BBD), selecting the

hyperparameter configuration with the best performance from the
previous step as the center of the design

Recursively optimize the second-order model until the change in the
response is < e.
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Experiments - Comments to the procedure

» Throughout each of these steps, the response variable should be
estimated using n-fold cross-validation.

» The result of the procedure will be compared to the default settings

» The data set is small enough to accommodate a full factorial as the first
run, but they choose to pretend that initial screening is needed

» The initial screening is performed using a 2’~2 design, so some two-factor
interactions are confounded

B NTNU | scencanatecmoisy
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Experiments - Initial levels for screening

Table: Factors and levels in the initial screening

@ NTNU |

Factor Low factor level (-) | High factor level (+)
ntree 100 500

mtry 2 4

replace FALSE TRUE
nodesize 1 3256

classwt 1 10

cutoff 0.2 0.8
maxnodes 5 NULL

Norwegian University of
Science and Technology
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Experiments - Analysis of first screening

Coefficients Estimate Std. Error t-value P(>|t|)
(Intercept) 0.3458 0.0043 80.503 2.47E-10 ***
ntree 0.0029 0.0043 0.684 0.5193

mtry —0.0069 0.0043 -1.614 0.1578
replace -0.0253 0.0043 -5.879 0.0011 **
nodesize 0.0435 0.0043 10.132 5.37E-05 ***
classwt -0.1364 0.0043 -31.766 6.47E-08 ***
cutoff 0.0475 0.0043 11.07 3.24E-Q5 ***
maxnodes -0.0593 0.0043 -13.816 8.95E-06 ***
ntree:mtry -0.0371 0.0043 -8.636 0.0001 ***
ntree:replace 0.0003 0.0043 0.085 0.9357

» Confounded effects significant, need follow-up. Use fold over design.
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Experiments - Analysis of second screening

Coefficients
(Intercept)
ntree

mtry
replace
nodesize
classwt
cutoff
maxnodes
ntree:mtry

ntree:replace

» Significant two-factor interactions: The hierarchy and heredity dilemma

0 NTNU |

Estimate
5.92E-01
-9.07E-04
5.36E-03
1.61E-03
-6.41E-03
-1.42E-02
-3.06E-03
1.39E-02
4.29E-04
-3.16E-03

Norwegian University of
Science and Technology

Std. Error

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

7.82E-03

t-value

75.777

-0.116

0.686

0.206

-0.821

-1.818

-0.391

1.782

0.055

—0.405

(> |t)
2E-16
0.9082
0.4975
0.8377
0.4174
0.0777 +
0.6978
0.0834 +
0.9566

0.6882
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Main results - Initial screening

> ntree not significant - saving computations by setting it low

» Note: A hyperparameter not being significant in this particular case can
matter in other settings

» Having identified the active factors, a full factorial experiment was
conducted

» Results analyzed, maxnodes removed, new full factorial with factors
nodesize, classwt and cutoff

B NTNU | scencanaecnoigy 2



Main results - RSM for optimization

v

Having completed the screening phase, it was time to optimize

Used Box Behnken design, suited for fitting second-order models (several
levels for each factor)

Fitted model, found the significant terms, fitted reduced model
Steepest ascent, but not outside the experimental region

New experiment, new model and new steepest ascent
Satisfying results - 0.81 in BACC compared to the default 0.64

v

vvyyvyy
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Discussion and conclusion - part 1

» Saving computations by using low levels of hyperparameters that are not
significant
» Some parameter can compensate for each other

» Method allows us to understand which hyperparameters matter and how
they impact the result - but the spesifics do not necessarily generalize

» Convexity unrealistic - probably found local maximum

® NTNU | dopuegian tniversity of
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Discussion and conclusion - part 2: Our comments

» Advantages of the method: Can save computation and gain information
about which hyperparameters matter

» Disadvantage: Not possible to use this if very many hyperparameters
must be tuned. Requires a lot of domain knowledge. Should probably be
automated to achieve popularity

» Would have been interesting: Comparison with grid search and Bayesian
optimization

» More information about computational demands
» Confidence intervals for BACC

® NTNU | dopuegian tniversity of
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