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Before we start

Literature▶ Hyperparameter tuning with Bayesian Optimization. Frazier
(2018): “A tutorial on Bayesian optimization”,
https://arxiv.org/abs/1807.02811: Sections 1,2,3,4.1, 5: only
the section “Noisy evaluations”, 6,7.▶ G. A. Lujan-Moreno, P. R. Howard, O. G. Rojas and D. C.
Montgomery (2018): Design of experiments and response
surface methodology to tune machine learning
hyperparameters, with a random forest case- study. Expert
Systems with Applications. 109, 195-205.
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Choosing hyperparameters

▶ What are hyperparameters?▶ Which hyperparameters have we encountered in the course so
far?

Group Discussion

dd
affect model fit
decidedby the user

a What are challenges with hyperparametertuning

CU k fold boosting leary she discrete

k NN k me depth continuous

elastic net a A me É categorical
spit art B tree

trees depth Ginnie
RF tee



Challenges

expensive computationally
many hypeper d
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ft or model

need a separate validston set or cu

hyperparam may direly relate to bias variance
tradeoff
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optimization problem we optimize some loss
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black box
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There exist many ways to group methods for hyperparameter
tuning. One way to look at this is (Kuhn and Silge, 2021, Ch 12)▶ grid search: specify a set of possible values a priori and

investigate only these values, choose the value where the
chosen selection criterion is optimal. This is also called
“model free methods”.▶ iterative search: start with a set of values, fit/evaluate some
(surrogate) model (might also be the loss function), and
based on this choose new values to evaluate next.

For grid search also methods for speeding up calculations exists -
for example by stopping evaluation at a grid point where the loss is
seen to be high after some CV-folds, for example the method of
racing described by Kuhn and Silge, Ch 13.4.
Some Anton performs hypeparanch tiny m de the hood's often

grid search

Stacked ensembles more ensemble from many debt hypeper model



(Class notes: see example from Kuhn and Silge, 2021, Spacefilling
grid vs global search)

Grid search vs iterative search
Kuhn Siege 2021

GRID SEARCH ITERATIVE SEARCH

Decide fist on which valuesof the seat with a small grid Fet

hypepar to investigate choose the some surrogatemodel use that

best combination to susses new points
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Surrogate methods
We will look at two types of surrogate models: Bayesian regression
with Gaussian processes (in Bayesian optimization) and
regression-type models in response surface methods.

evaluate th suggest re

y
an approximation to the objective function

as a function of the hype paran
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Bayesian optimization
Bayesian optimization is an iterative method - where we start with
evaluating some loss function at some predefined set of points in
the hyperparameter space. New position in the hyperparameter
space are chosen iteratively.
Two key ingredients:▶ a surrogate model (we will only look at Bayesian regression

with Gaussian processes) to fit to the observed values of the
loss function in the hyperparameter space▶ an acquisition function to decide a new point in the
hyperparameter space to evaluate next

Cry

Criterion to maximize

p
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Underlying idea: given some “observations” in the hyperparameter
space, the task is to decide where to place a new point. We should
try a point where:▶ we expect a good value and/or▶ we have little information so far
To do that we need information on both expected value and
variance - or preferably the distribution of the loss function for our
problem.
We now look at the multivariate Gaussian distribution and
conditional distribution, a Gaussian process



Gaussian process
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Gaussian processes
(Eidsvik 2017, page 6-7, note in TMA4265)
A Gaussian process is defined for▶ times or locations 𝑥𝑖, 𝑖 = 1, … , 𝑛 in ℜ𝑑, where▶ 𝑌𝑖 = 𝑌 (𝑥𝑖) is a random variable at 𝑥𝑖▶ such that 𝑌 = (𝑌1, … , 𝑌𝑛) is multivariate Gaussian.
The process is first order (mean) stationary if E(𝑌 (𝑥)) = 𝜇 for all𝑥, and this can be extended to depend on covariates.
The process is second order stationary if Var(𝑌 (𝑥)) = 𝜎2 for all 𝑥
and the correlation Corr(𝑌 (𝑥), 𝑌 (𝑥′)) only depends on differences
between 𝑥 and 𝑥′.
The multivariate Gaussian distribution is defined by the mean and
covariance alone.

objective function

I

assume this
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Correlation functions
(Eidsvik 2017, page 7, Frazier 2018, Ch 3.1)
Correlation functions are also referred to as kernels.
We assume that points at positions close to each other have a
stronger correlation than point far apart.
Power exponential or Gaussian kernel

Corr(𝑌 (𝑥), 𝑌 (𝑥′)) = exp(−𝜙𝐺‖𝑥 − 𝑥′‖2)
where the L2 distance is used and 𝜙𝐺 is a parameter that
determine the decay in the correlations.

Obj

2

exponential Carr Yax xx exp Ge lx x l



.
.
.

.

.
.
.

.

Matern-type kernel

Corr(𝑌 (𝑥), 𝑌 (𝑥´)) = (1 + 𝜙𝑀‖𝑥 − 𝑥′‖) exp(−𝜙𝑀‖𝑥 − 𝑥′‖)
now with decay-describing parameter 𝜙𝑀 .
The parameters of the kernels need to be estimated, see Ch 3.2 of
Frazier 2018 (who use a slightly different parameterization). We
will just assume that these parameters are known.
(Class notes: study Figure 4 and 5 of Eidsvik, 2018.)



Eidsvir 2018
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From correlations into covariance matrix
For simplicity assume that 𝑑 = 1. The number of positions to
consider is 𝑛.
To get from correlation function to a 𝑛 × 𝑛 covariance matrix first
construct a 𝑛 × 𝑛 matrix of distances for each pair of positions,
denote this 𝐻.
For the Matern-type correlation function the covariance matrix can
then be writtenΣ = 𝜎2(1 + 𝜙𝑀𝐻) ⊗ exp(−𝜙𝑀𝐻))
where ⊗ is elementwise multiplication.
See Eidsvik (2018, Ch 3.2 and 3.3) for how to build covariance
matrices in an efficient way.

1 n

lx x
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Multivariate normal distribution
The random vector Y𝑝×1 is multivariate normal 𝑁𝑝 with mean �
and (positive definite) covariate matrix Σ. The pdf is:𝑓(Y) = 1(2𝜋) 𝑝2 |Σ| 12 exp{−12(Y − �)𝑇 Σ−1(Y − �)}
The conditional distributions of the components are (multivariate)
normal.

Y2 ∣ (Y1 = Y1) ∼ 𝑁𝑝2(�2 + Σ21Σ−111 (Y1 − �1), Σ22 − Σ21Σ−111 Σ12).
µ pe
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Acquisition function: Expected improvement
(Frazier 2018 page 7)
Thought experiment:

1) we have evaluated our function at all possible points 𝑥, and
must return a solution based on what we already have
evaluated. If the evaluation is noise-less we need to return the
point with the largest observed value 𝑓 .

2) Correction: We may perform one more evaluation. If we
choose 𝑥 we observe 𝑓(𝑥), and the best point before that was𝑓∗𝑛. The improvement at the new observation is then

max(𝑓(𝑥) − 𝑓∗𝑛, 0)
(In class study Figure 1 of Frazier 2018)T sky at fn

Yz Idf
is the bet



.
.
.

.

.
.
.

.

3) We define the expected improvement as

EI𝑛(𝑥) = E𝑛[max(𝑓(𝑥) − 𝑓∗𝑛, 0)]
where the expectation is taken at the posterior distribution given
that we have evaluated 𝑓 at 𝑛 observations 𝑥1, … , 𝑥𝑛, and the
posterior distribution is that 𝑓 conditional on 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛
is normal with mean 𝜇𝑛(𝑥) and variance 𝜎2𝑛(𝑥).
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4) How to evaluate the expected improvement? Integration by
parts gives

EI𝑛(𝑥) = max(𝜇𝑛(𝑥) − 𝑓∗𝑛, 0)]) + 𝜎𝑛(𝑥)𝜙(𝜇𝑛(𝑥) − 𝑓∗𝑛𝜎𝑛(𝑥) )−abs(𝜇𝑛(𝑥) − 𝑓∗𝑛)Φ(𝜇𝑛(𝑥) − 𝑓∗𝑛𝜎𝑛(𝑥) )𝜇𝑛(𝑥) − 𝑓∗𝑛 is expected proposed vs previously best
5) We choose to evaluate the point with the largest expected

improvement 𝑥𝑛+1 = argmaxEI𝑛(𝑥)
Is often found using quasi-Newton optimization.

Idf
Ncoe

CdfNCOD
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trade off between high expectedperformance and

high unce king flown
Xploato



.
.
.

.

.
.
.

.

Algorithm for Bayesian optimization of a function 𝑓
(Frazier 2018, page 3, noise-free evaluation)
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Place a Gaussian process prior on 𝑓 .
Observe 𝑓 at 𝑛0 points from some experimental design. Set𝑛 = 𝑛0.
while 𝑛 ≤ 𝑁 do
Update the posterior on f with all available data
Let 𝑥𝑛 be a maximizer of the acquisition function over 𝑥,
computed using the current posterior
Observe 𝑦𝑛 = 𝑓(𝑥𝑛)
Increment 𝑛
end while
Return a solution: a point with largest 𝑓(𝑥) or the point with the
largest posterior mean

Explain what does these step rean I
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What does the steps mean?▶ Gaussian prior: choose (estimate?) mean and correlation
function for the problem.▶ Observe 𝑛0 points: calculate the loss function at each of the
points (remark: we have noise)▶ Update the posterior: calculate the conditional distribution for𝑓 for a new point given the observed loss at all previously
observed points▶ Acquisition function: find argmaxEI𝑛(𝑥).

(Class notes: Figure 1 of Frazier 2018.)
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▶ For a point 𝑥 we model the distribution of 𝑓(𝑥),▶ which is normally distributed with mean 𝜇𝑛(𝑥) and variance𝜎2𝑛(𝑥). The mean and variance is found from the conditional
distribution.▶ With 95% credibility interval 𝜇𝑛(𝑥) ± 1.95𝜎𝑛(𝑥).▶ The width of the credibility interval at observations is 0.
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Extension
What is the objection function is not observed noise-less?
Independent normal error term 𝜀 can be added to the previously
defined 𝑌 = 𝑓(𝑥) to make a new 𝑌 = 𝑓(𝑥) + 𝜀. This (only) adds
a diagonal term to the covariance matrix, and it is common to
assume that the variance is the same for all 𝑥 and treat the
variance as a hyperparameter.



Bayesian Optimization is one way to 
optimize expensive functions

Assume a Bayesian prior on F  
(usually a Gaussian process prior)

while (budget is not exhausted) {

Find x that maximizes acquisition(x,posterior)

Sample x & observe F(x)

Update the posterior distribution on F

}
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Design of experiments and response surface methodology
G. A. Lujan-Moreno, P. R. Howard, O. G. Rojas and D. C.
Montgomery (2018): Design of experiments and response surface
methodology to tune machine learning hyperparameters, with a
random forest case- study. Expert Systems with Applications. 109,
195-205.
See separate slide-deck made by Håkon Gryvill, Yngvild Hamre and
Javier Aguilar for the article presentation in MA8701 in the spring
of 2021.



DESIGN OF EXPERIMENTS AND
RESPONSE SURFACE METHODOLOGY

TO TUNE MACHINE LEARNING
HYPERPARAMETERS, WITH A
RANDOM FOREST CASE-STUDY

Article presentation in MA8701 by Javier, Håkon and
Yngvild



Introduction - Idea in this paper

1. Find most important hyperparameters (factors) in the random forest
algorithm using design of experiments (DOE)

2. Apply response surface methodology (RSM) on the parameters chosen in
step 1

2



Background - Design of experiments (DOE)

A response variable may be impacted by controllable and uncontrollable
factors.

I Controllable factor: The experimenter can freely alter its levels.
I Uncontrollable factor: Variables that are not controlled by the

experimenter, but can be monitored and even included in the model.

5



Background - Design of experiments (DOE)

Principles of DOE:
1. Randomization: experiments should be run in a random order to

prevent external factor from a�ecting results.
2. Replication: allows calculation of internal s.e
3. Blocking: can reduce variability

6



Background - Design of experiments (DOE)

Two level factorial design (2k ):
I Most basic type of experiment.
I k factors at two levels: low and high.
I Regression model:

y = �0 +
kX

i=1

�ixi +
X

i<j

�ijxixj + "

where �i , i = 1, ..k are main e�ects and �ij , j = 2, ..., k are interaction terms.
As k increases, the number of runs increases exponentially.

Idea: use a fractional DOE

7

TMA 4267

Low high
2 2



Background - Design of experiments (DOE)

Fractional Factorial DOE (2k�p):
1. Fewer runs are needed 2k�p.
2. Trade-o�: loss of accuracy due to fewer df to evaluate each factor and

every possible interaction.
3. Powerful screening methods. Usually done at the beginning of

experiment to see which factors are important.

8



Background - Design of experiments (DOE)

3 unique characteristics that make them highly e�cient:

1. Sparsity of e�ects principle: only a small number of e�ects are
signi�cant and the �nal model is composed of low order terms.

2. Projection property: a design can be projected into a lower dimension
using a subset of factors.

3. Fold over: FFDOE can be combined to form designs of higher resolution
Helps in isolating main e�ects.

Serious disadvantage of FFDOE: unable to detect quadratic e�ects.

9



Background - Response Surface Methodology

RSM: Procedure used to model a surface using statistical techniques for the
purpose of optimizing a response.

Objective: Find value of x that maximizes response y , with

y = f (x) + ",

where " is the error and the response surface is ⌘ = f (x).

Challenge: a priori f is an unknown function.

11
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Background - Response Surface Methodology

Methodology: �nd a model which �ts the relationship between the
predictors and the response using a polynomial function.

Popular choices:
I First-order model:

y = �0 +
kX

i=1

�ixi + "

I Second-order model:

y = �0 +
kX

i=1

�ixi +
kX

i=1

�jjx
2
j +

X

i<j

�ijxixj + "

12



Background - Response Surface Methodology

Main e�ects
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Background - Response Surface Methodology

Interaction
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Background - Response Surface Methodology

Quadratic
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Background - Response Surface Methodology

I RSM is sequential procedure where at each step, we move in a direction
of improvement for our objective.

I Steepest ascent or ridge analysis is used to move to optimal region or
the response surface.

I The procedure is repeated until no more improvements are found in a
local neighborhood.

Most popular RSM designs: Central Composite designs (CCD) , Box-Behnken
(BBD)

16



Background - Performance metrics

Balanced accuracy (BACC):

BACC = (TPR + TNR)/2, (1)

where TPR = TP/(TP + FN) and TNR = TN/(TN + FP).
Good metric for highly unbalanced data

17



Background - Random forest

Bagging: create B bootstrap samples and �t a decision tree to each sample
Random forest: in each split, we are only allowed to consider m of the p
predictors
Use fully-grown trees rather than pruned ones
=) Less correlated

18



Background - The RandomForest package in R

Hyperparameters in RandomForest:
1. ntree: number of trees to grow
2. mtry: number of predictors m allowed to be considered at each split
3. replace: should sampling be done with our without replacement?
4. nodesize: minimum size of leaf nodes
5. classwt: prior probability for each of the classes
6. cuto�: threshold for binary classi�cation
7. maxnodes: maximum number of leaf nodes a tree can have

19



Experiments - The dataset

Aim: classifying whether a person makes over 50 000 USD per year
32561 observations, 14 covariates
Some of the covariates:
1. age
2. marital status
3. race
4. sex
5. education

20



Experiments - General procedure for hypertuning using DOE and RSM
Procedure
1. Choose a machine learning algorithm and decide on the response

variable to tune (accuracy, TPR, F1-score, etc.)
2. Select the hyperparameters to tune as well as their ranges
3. Perform a screening design and identify the important hyperparameters
4. Reduce the model and, depending on the number of experiments that are

feasible to run, perform either a full or fractional 2k factorial design
5. Fit a second-order model using RSM (CCD, BBD), selecting the

hyperparameter con�guration with the best performance from the
previous step as the center of the design

6. Recursively optimize the second-order model until the change in the
response is  ✏.

21
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Experiments - Comments to the procedure

I Throughout each of these steps, the response variable should be
estimated using n-fold cross-validation.

I The result of the procedure will be compared to the default settings
I The data set is small enough to accommodate a full factorial as the �rst

run, but they choose to pretend that initial screening is needed
I The initial screening is performed using a 27�2 design, so some two-factor

interactions are confounded

22



Experiments - Initial levels for screening

Table: Factors and levels in the initial screening

Factor Low factor level (-) High factor level (+)
ntree 100 500
mtry 2 4
replace FALSE TRUE
nodesize 1 3256
classwt 1 10
cuto� 0.2 0.8
maxnodes 5 NULL

23
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Experiments - Analysis of �rst screening

I Confounded e�ects signi�cant, need follow-up. Use fold over design.

24



Experiments - Analysis of second screening

I Signi�cant two-factor interactions: The hierarchy and heredity dilemma
25



Main results - Initial screening

I ntree not signi�cant - saving computations by setting it low
I Note: A hyperparameter not being signi�cant in this particular case can

matter in other settings
I Having identi�ed the active factors, a full factorial experiment was

conducted
I Results analyzed, maxnodes removed, new full factorial with factors

nodesize, classwt and cuto�

26



Main results - RSM for optimization

I Having completed the screening phase, it was time to optimize
I Used Box Behnken design, suited for �tting second-order models (several

levels for each factor)
I Fitted model, found the signi�cant terms, �tted reduced model
I Steepest ascent, but not outside the experimental region
I New experiment, new model and new steepest ascent
I Satisfying results - 0.81 in BACC compared to the default 0.64

27



Discussion and conclusion - part 1

I Saving computations by using low levels of hyperparameters that are not
signi�cant

I Some parameter can compensate for each other
I Method allows us to understand which hyperparameters matter and how

they impact the result - but the spesi�cs do not necessarily generalize
I Convexity unrealistic - probably found local maximum

28



Discussion and conclusion - part 2: Our comments

I Advantages of the method: Can save computation and gain information
about which hyperparameters matter

I Disadvantage: Not possible to use this if very many hyperparameters
must be tuned. Requires a lot of domain knowledge. Should probably be
automated to achieve popularity

I Would have been interesting: Comparison with grid search and Bayesian
optimization

I More information about computational demands
I Con�dence intervals for BACC

29
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Before we start
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