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Before we start
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Literature
There is a long list of references in the end of this document, but
for our reading list this document will suffice.
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Evaluating and comparing results from prediction models

We will only consider using one data set. For comparing methods
across many data sets see Boulesteix et al (2015).
We are not interesting in general “unconditional” results (for all
possible training sets from some distribution) - and not to know if
method A in general is better than method B in situations similar
to ours.
We also have the “No free lunch theorem” of Wolpert (1996)
stating that there is no such thing as the “best” learning algorithm.

I
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We consider two different set-ups:
Data rich situation:▶ We have used our training set to tune our model (choosing

hyperparameters) - possibly by using cross-validation or some
other technique.▶ Then we have fitted the finally chosen model to the full
training set, and used this final model to make predictions on
the independent test set.▶ If we want to compare results from two or more prediction
models (A and B), when the same test set is used for all the
models.
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Data poor situation:▶ We don´t have enough data to set aside observations for a
test set.▶ We need to use some type of resampling to evaluate and
compare prediction models - the “common” choice is 𝑘-fold
cross-validation.▶ This is more difficult than for the data rich situation, because
now independence of observations for testing cannot be
assumed (more below).
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What do we want to report?
Classification
We will only look at binary classification, but parts of the results
may be used for each of the categories (vs the rest) for more than
two classes.▶ Estimate and confidence interval for misclassification rate or

ROC-AUC (or other) on test observations for one prediction
model.▶ Is the misclassification rate (or ROC-AUC, or other) for
prediction method A better than for prediction method B?▶ Can this be extended to more than two methods?

This is by far the most popular situation in the literature.

correct classified



.
.
.

.

.
.
.

.

Regression
Relate to ESL Ch7.1 with Err and Err𝑇 .▶ Estimate and confidence interval for evaluation criterion

(mean square error of predictions) on test observations for one
prediction model.▶ Is prediction model A better than prediction model B?▶ Can this be extended to more than two methods?

Much more difficult to “find” literature with methods here than for
classification - seems to be far less popular.
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Keep in mind that not only error rates govern which prediction
models to use, also aspects like▶ training time and▶ interpretability plays an important role.
There might be▶ controllable and▶ uncontrollable factors
that influence the model fit and add variability to our model
predictions.
It is always wise (helpful) to present results in graphical displays.
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Group discussion
For your data analysis project, which of the above is relevant?
Explain!

Data rich Data poor

Classification
Wine GM lasso reallyexplain

Frana

SparrowJWP nopredictor
explainRegression Supercondich explain a

Robotic arm Iexplain t
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Classification

Example
We will use the classical data set of diabetes from a population of
women of Pima Indian heritage in the US, available in the R MASS
package. The following information is available for each woman:▶ diabetes: 0= not present, 1= present▶ npreg: number of pregnancies▶ glu: plasma glucose concentration in an oral glucose tolerance

test▶ bp: diastolic blood pressure (mmHg)▶ skin: triceps skin fold thickness (mm)▶ bmi: body mass index (weight in kg/(height in m)2)▶ ped: diabetes pedigree function.▶ age: age in years
We will use the default division into training and test in the MASS
library, with 200 observations for training and 332 for testing.
Pima.tr$diabetes=as.numeric(Pima.tr$type)-1
Pima.te$diabetes=as.numeric(Pima.te$type)-1
train=Pima.tr[,c(1:7,9)]
test=Pima.te[,c(1:7,9)]
colnames(test)=colnames(Pima.te)[c(1:7,9)]

r
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Test set classification
223 non-diabetes and 109 diabetes cases
[1] "Lasso"

classlasso
0 1

0 213 10
1 61 48

[1] "Random forest"
classrf

0 1
0 191 32
1 46 63

0.5

d
Yi c then dash
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223 non diaber ache
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A common way to construct a confidence interval for the success
probability is to use the normal approximation𝑍 = ̂𝑝 − 𝑝√�̂�(1−�̂�)𝑀 ∼ 𝑁(0, 1)
which gives the (1 − 𝛼)100‰ confidence interval

̂𝑝 ± 𝑧𝛼/2√ ̂𝑝(1 − ̂𝑝)𝑀
The Agresti-Coull interval adds 4 trials and 2 sucesses for a better
performance (asymptotic method).

D YET
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Exact versions (not using asymptotic normality) are the▶ Clopper-Pearson intervals▶ Blaker intervals by Blaker (2000) as implemented in Klaschka
(2010).

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval


Clopper Pearson 1 2 100 CI
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Fig 1.3 from Agresti shown in class
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[1] "lasso"

[1] "Normal approx CI"

[1] 0.7420393 0.8302498

[1] "Clopper Pearson CI"

Exact binomial test

data: X and M
number of successes = 261, number of trials = 332, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.7380713 0.8290302

sample estimates:
probability of success

0.7861446

[1] "Blaker CI"

[1] 0.7386136 0.8276581

Normal

CP

g
coverage bigenough

Blaker valid and most
pgwell Compared

toCP

nottoowide
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[1] "randomforest"

[1] "Normal approx CI"

[1] 0.7194560 0.8106645

[1] "Clopper Pearson CI"

Exact binomial test

data: X and M
number of successes = 254, number of trials = 332, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.7156949 0.8096267

sample estimates:
probability of success

0.7650602

[1] "Blaker CI"

[1] 0.7159697 0.8096206



Next Is method A better than method B

lasso RF

ggg g agg

Plano I pref
interpretshly

For each observation i 1 M Classiferor might not be the

count the nuke of to consider Roc AVC

O fail
1 correct classificationfor both A B

method B

hunk of coved clary
top fo both AandB

A
method

fffjf.gg

mm.aa e



Xor Yo Doo Ku multinomial M for 9 no go 911

Ho gro tofu goat fu I 9 no Fol
t
equally good

terstastic

É M

T

Mcnemar's test



.
.
.

.

.
.
.

.

The sum 𝑋01 + 𝑋10 need to be large (rule of thumb at least 25),
unless a two-sided binomial version of the test is recommended
(with 𝑛 = 𝑋01 + 𝑋10 and 𝑝 = 0.5 and number of successes equal𝑋01). This is a conditional test (conditional tests are valid).
An exact conditional 𝑝-value can also be calculated by
enumeration.
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tab=table(classlasso==test$diabetes,classrf==test$diabetes)
tab

FALSE TRUE
FALSE 52 19
TRUE 26 235

mcnemar.test(tab,correct=FALSE)

McNemar's Chi-squared test

data: tab
McNemar's chi-squared = 1.0889, df = 1, p-value = 0.2967
binom.test(tab[1,2],n=tab[1,2]+tab[2,1],p=0.5)

Exact binomial test

data: tab[1, 2] and tab[1, 2] + tab[2, 1]
number of successes = 19, number of trials = 45, p-value = 0.3713
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.2765670 0.5784967

sample estimates:
probability of success

0.4222222

CONCLUSION

Lasso is RF

Ho Lasso ey RF re not so
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Confidence intervals for paired proportions
Confidence interval for the difference between success-proportions
can be calculated using for example an asymptotic Wald interval or
by inverting hypotheses tests 𝑝-values.
See Fagerland et al (2014) for this and other choices, not R
package but see references for R-scripts.
The package ExactCIdiff is presented in the R Journal

https://rjournal.github.io/archive/2013-2/wang-shan.pdf


.
.
.

.

.
.
.

.

ROC-AUC
In a two class problem - assume the classes are labelled “-” (non
disease,0) and “+” (disease,1). In a population setting we define
the following event and associated number of observations.

Predicted - Predicted + Total
True - True Negative TN False Positive FP N
True + False Negative FN True Positive TP P
Total N* P*

(𝑁 in this context not to be confused with our sample size…which
we have called 𝑀)

Remind yourself what is this and how to proceed
to move Roc and calculate Roc Auc
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Below we use:▶ DeLong et al confidence intervals for the ROC and the
ROC-AUC for each prediction method.▶ DeLong et al test for two paired (correlated) ROC curves.
This test is based on asymptotic normal theory for the
U-statistic.

ROC AVC the probability that a randomly selected postwe sample obs

will ran a higher than a randomly selected negativesample

Po flap f x2 I 4 1 42 0 Wilcoxon MW
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[1] "Lasso ROC-AUC with CI"

Area under the curve: 0.8486

95% CI: 0.8054-0.8918 (DeLong)
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[1] "RF ROC-AUC with CI"

95% CI: 0.7709-0.8667 (DeLong)

[1] "Comparing AUC for lasso and RF"

DeLong's test for two correlated ROC curves

data: lassoroc and rfroc
Z = 1.972, p-value = 0.04861
alternative hypothesis: true difference in AUC is not equal to 0
95 percent confidence interval:
0.000181508 0.059472090

sample estimates:
AUC of roc1 AUC of roc2

0.8486033 0.8187765

Lasso better than Rf for Roc Auc
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Regression
For regression we would like to focus on providing an estimate for
the Err𝑇 for a squared error rate.

Err𝑇 = E[𝐿(𝑌 , ̂𝑓(𝑋)) ∣ 𝑇 ]
Here the expected value is with respect to (𝑋, 𝑌 ), but the training
set is fixed - so that this is the test set error is for this specific
training set 𝑇 .
In ELS Ch7.1 we saw that the mean squared error on the test set
was a natural estimator.
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In the unconditional version, we take expected value over ALL that
is random - including the training set

Err = E(E[𝐿(𝑌 , ̂𝑓(𝑋)) ∣ 𝑇 ]) = E𝑇 [Err𝑇 ]
However, we did not work to provide an estimate of the variability
of this estimate - or how to provide a confidence interval for Err𝑇 .
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Let the mean squared error on the test set be denoted M̂SEP.
If we can assume that the “residuals” on the test set 𝑦𝑖 − ̂𝑦𝑖 follow
a normal distribution with some mean 𝜇𝑖 and some variance 𝜎2𝑖 ,
then there is a relationship between the M̂SEP and a sum of
non-central 𝜒2 distributions, see Faber (1999). However, it is not
clear how to turn that into a confidence interval for Err𝑇 .
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Not seen in literature: Another possibility is to use bootstrapping
on the “test set residuals”. This can provide a bootstrap confidence
interval for the Err𝑇 . With bootstrapping it would also be possible
to look at randomly flipping the A and B method to get the
distribution of the M̂SEP under the null hypothesis that the two
methods are equal, and use tha percentage of times the bootstrap
samples are larger than the observed M̂SEP to be the 𝑝-value.
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Cross-validation
Remember from ELS Ch 7.10 that with cross-validation the Err
estimate:▶ The allocation of observation {1, … , 𝑁} to folds {1, … , 𝐾} is

done using an indexing function 𝜅 ∶ {1, … , 𝑁} → {1, … , 𝐾},
that for each observation allocate the observation to one of 𝐾
folds.▶ Further, ̂𝑓−𝑘(𝑥) is the fitted function, computed on the
observations except the 𝑘th fold (the observations from the𝑘th fold is removed).▶ The CV estimate of the expected prediction error
Err = E𝑇E𝑋0,𝑌 0[𝐿(𝑌 0, ̂𝑓(𝑋0)) ∣ 𝑇 ] is then

CV( ̂𝑓) = 1𝑁 𝑁∑𝑖=1 𝐿(𝑦𝑖, ̂𝑓−𝜅(𝑖)(𝑥𝑖))

DATA POOR
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Can the validation fold results be handled like the test set?
Question:
Can we handle the predictions in the hold-out folds ̂𝑦𝑖 as
independent predictions at the observations 𝑥𝑖 - as we did in the
data rich situation above (when we had a separate test set and
used the “same” full training set for fitting the model)?
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To address this a simulation study is conducted. Here▶ data are simulated to follow a simple linear regression.▶ 𝑁 = 50.▶ The observations are divided into 5 fold of 10 observations.▶ Then a 5-fold CV is performed where a simple linear
regression is fitted on the training folds and predictions are
performed in the test fold.▶ Residuals are then formed for the test fold.

The simulations are repeated B=1000 times, and correlation
between the N residuals for the test folds are calculated.
The question to be checked is if the residuals for observations in
the same fold are correlated in a different way than residuals in
different folds. If that is the case, then the residuals can not be
seen to be independent, and standard methods to construct CI and
perform a test is not valid.
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K=5
B=1000
N=50
b0=0
b1=2
sigma=0.2
k=rep(1:K,each=N/K)
predmat=matrix(ncol=N,nrow=B)
resmat=matrix(ncol=N,nrow=B)

set.seed(123)
for (b in 1:B)
{

x=runif(N,0,1)
eps=rnorm(N,0,sigma)
y=b0+b1*x+eps
for (i in 1:K)
{

fit=lm(y~x,subset=(k!=i))
predmat[b,k==i]=predict(fit,newdata=data.frame(x=x[k==i]))
resmat[b,k==i]=predmat[b,k==i]-y[k==i]

}
}
#corr=cor(predmat)
#corrincr=6*corr-diag(x=5,N,N)
#corrplot(corrincr)
# correlation between predictions - not seems to be a problem
corr2=cor(resmat)
corr2incr=6*corr2-diag(x=5,N,N)

Gso Yoo
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There are 50 ∗ 49/2 = 1225 unique pairs of observations
(residuals) for the simulated example. There are 5 folds and the
average correlation for the 5 times 10 ∗ 9/2 = 45 pairs = 225 pairs
within each fold is 0.0253342.
The average correlation for the 1000 pairs between folds is
-0.0304969.
However - testing if the correlation is different from null for all
possible pairs of observation of the residuals (with 50 observation
we have 50 ∗ 49/2 pairs), only gave a significant result for 12 using
FDR cut-off 0.05.
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The boxplot of the correlation between residuals are taken between
two folds, labelled on the horizonal axes.
Most articles state that this is a substantial problem, mainly
because for constructing tests the variance of the test statistics is
underestimated with positively correlated tests. However, other
articles like Wong and Yang (2017) do not consider this a problem.
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What can we present from the CV?
We have now focus on some loss function, like squared loss,
binomial deviance, cross-entropy loss.
When we performed model selection with CV for the lasso we
plotted some mean and standard error. How did we then calculate
the standard error and the mean? Can we use this standard error
to calculate a confidence interval?
We had 𝑁 observations in the training set and choose 𝐾-fold CV:

CV( ̂𝑓) = 1𝑁 𝑁∑𝑖=1 𝐿(𝑦𝑖, ̂𝑓−𝑘(𝑖)(𝑥𝑖))



.
.
.

.

.
.
.

.

Assuming that 𝑁 = 𝐾 ⋅ 𝑁𝐾 so that the number of observations in
each fold 𝑁𝑗 is the same and equal to 𝑁𝐾.

CV( ̂𝑓) = 1𝐾 𝐾∑𝑗=1 1𝑁𝐾 ∑𝑖∈𝑘(𝑖) 𝐿(𝑦𝑖, ̂𝑓−𝑘(𝑖)(𝑥𝑖)) = 1𝐾 𝐾∑𝑗=1 ĈV𝑗
What we plotted was the 1𝐾 ∑𝐾𝑗=1 ĈV𝑗 as the estimator for the
evaluation criterion, and then ±1 standard error of this mean.
The variance of the mean was estimated as

SE2( ̂𝑓) = 1𝐾 ( 1𝐾 − 1 𝐾∑𝑗=1(ĈV𝑗 − CV( ̂𝑓))2)
Since the residuals within a fold are positively correlated and
between folds are negatively correlated, we only present plots of

CV( ̂𝑓) ± SE( ̂𝑓)
and are happy with that.
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ROC-AUC on CV data
For the ROC-AUC two different strategies are possible:▶ For each CV fold separately calculate the ROC-AUC, and then

report average and standard error (as above) over the fold.
This is called average approach.▶ Use all predictions (across all folds) to calculate ROC_AUC.
This is called pooled approach. Then results from the
DeLongi method might not be completely correct due to the
observations being positively correlated within folds and
negatively correlated between folds.

Airola et al (2010) suggest an hybrid combination of the two
methods.
None of these approaches provides CIs or hypothesis tests.
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LeDell (2015, Section 5, page 53,55) develop CIs for
cross-validated AUC.
The starting point is that the ROC-AUC theoretically can be
interpreted as: “the probability that a randomly selected positive
sample will rank higher than a randomly selected negative sample”.𝐴𝑈𝐶(𝑃0, 𝑓) = 𝑃0(𝑓(𝑋1) > 𝑓(𝑋2)|𝑌1 = 1, 𝑌2 = 0)
where (𝑋1, 𝑌1) and (𝑋2, 𝑌2) are samples from 𝑃0.
The empirical AUC can be written

𝐴𝑈𝐶(𝑃𝑛, 𝑓) = 1𝑛0𝑛1
𝑛0∑𝑖=1

𝑛1∑𝑗=1 𝐼(𝑓(𝑋𝑗) > 𝑓(𝑋𝑖))
where 𝑛0 is the number of observations with 𝑌 = 0 and 𝑛1 with𝑌 = 1.
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To arrive at an estimator based on 𝑉 -fold CV the empirical
formula above is used for each fold and then the 𝑉 -fold CV
ROC-AUC is the average of this over the folds.
The influence function (a core idea of the phd of LeDell) is used to
find the variance of the cross-validated ROC-AUC (taking into
account the correlation between folds) and to establish a CI. This
is implemented in the R-package cvAUC.
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$cvAUC
[1] 0.8973285

$se
[1] 0.01651137

$ci
[1] 0.8649668 0.9296902

$confidence
[1] 0.95
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