1. Let X_{1}, X_{2}, \ldots be a sequence of random variables. Each X_{n} takes two values, \sqrt{n} and $(n+1) / n$, with probabilities

$$
P\left(X_{n}=(n+1) / n\right)=1-\frac{1}{n}, \quad P\left(X_{n}=\sqrt{n}\right)=\frac{1}{n} .
$$

Does the sequence $\left\{X_{n}\right\}$ converge
a) in probability?
b) in L^{1} ?
c) in L^{2} ?
2. Let X_{1}, X_{2}, \ldots be iid random variables with the density

$$
f(x)=2(1-x) I_{[0,1]}(x) .
$$

Define

$$
Y_{n}=\prod_{k=1}^{n} X_{k}
$$

Prove that the series

$$
\sum_{n=1}^{\infty} Y_{n}
$$

a.s. converges.
3. X_{1}, X_{2}, \ldots are independent random variables, and

$$
X_{n} \xrightarrow{\text { a.s. }} X, n \rightarrow \infty .
$$

Denote the characteristic function of X by $\varphi_{X}(t)$. Prove that $\left|\varphi_{X}(t)\right| \equiv 1$.
4. Give an example of dependent random variables X_{1}, X_{2}, \ldots such that $\left\{X_{n}\right\}$ satisfies the central limit theorem, i.e.

$$
\frac{S_{n}-E S_{n}}{\sqrt{\operatorname{Var} S_{n}}} \xrightarrow{\mathrm{~d}} N(0,1), \quad n \rightarrow \infty
$$

where $S_{n}=X_{1}+\ldots+X_{n}$.

