Corrections to Karr: Probability

Chapter 1

page 27, line 12↑ The right hand side of the inequality should be changed from

to

$$\leq \inf_{n \geq k} P(A_n)$$

 $\leq P(A_k)$

Chapter 2

page 44, Example 2.4 The left hand side of the equations should be

 $\{\mathbf{1}_A \in B\}$

page 49, Theorem 2.16 Add that the random values could have values in $\underline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}.$

Chapter 3

- **page 82, line 2** \downarrow Should read: ...1 for each *n*.
- **page 91, Proposition 3.37** One needs to say $t_0 = 0$. In the proof on the next page, $k_0 = 0$.
- **page 93, line 9**^{\uparrow} The function g might better be defined from \mathbb{R}^k to \mathbb{R}^k .

Chapter 4

page 105, lines 3-4 \downarrow **of the proof of Theorem 4.8** Read as: for each *m* and $k \ge m$,

$$X_k \ge Z_m \ge (Y - \epsilon) \cdots$$

page 121, line 2 \downarrow Should be $E[X^2] \ge E[X]^2$

page 121, proof of Theorem 4.38 To prove that $X + Y \in L^p$ when X and Y are in L^p , one may use the inequality (prove it!)

$$|X + Y|^p \le 2^p \left(|X|^p + |Y|^p \right)$$

page 122, line 4↓of the proof of Theorem 4.40 The last part of the line should be

$$\geq g(a)P(X \geq a)$$

Chapter 5

- page 138, line 4↓of the proof of Theorem 5.8 and page 139, line 6↓ "Sufficiency" and "Necessity" should be interchanged. Thus, the first part of the proof proves "⇒", while the second part proves "⇐"
- page 144, last three lines of the proof of Theorem 5.17 These lines should read:

well, choose $\delta > 0$ such that whenever $P(A) < \delta$, $\sup_{n \le N} E[|X_n - X|; A] < \epsilon$ and $E[|X|; A] < \epsilon$. Then, whenever ...

Note that $\sup_n E[|X_n - X|; A] < \epsilon$ because we already have required $E[|X_n - X|] < \epsilon$ for $n \ge N$.

The following Lemma is used in the proof:

Lemma: Let $X \in L^1$. Then for each $\epsilon > 0$ there is a $\delta > 0$ such that

$$P(A) < \delta \Rightarrow E[|X|; A] < \epsilon$$

page 154, line 6\downarrow The line should read:

$$= -x\sqrt{npq} + \frac{1}{2}x^2q - x^2q + \cdots$$

page 154, line $7\downarrow$ The line should read:

$$+x\sqrt{npq} + \frac{1}{2}x^2p - x^2p - \frac{1}{2}x^3p\sqrt{\frac{p}{nq}}$$

page 155, line 5↑ Read: It suffices, by Problem 5.7, to show that...

Chapter 6

page 170, line 5 \uparrow In the second expression should be $d\tilde{G}(x)$ instead of dG(x).

page 172, proof of Sufficiency This proof is not correct. Use instead Theorem 6.17.

page 178, line 2 \uparrow Should read: ...while also $F_{n'}(r') \rightarrow \tilde{G}(r'), F_{n'}(r'') \rightarrow \tilde{G}(r'')$, and...

Chapter 7

page 184, line 9 \downarrow The last part should be

$$\bigcup_{k=1}^{n} \{ |S_k| > \epsilon \}$$

page 185, line 6↓ Should be

$$P(A) \ge \frac{E[S_n^2] - \epsilon^2}{\dots} \ge \dots$$

page 186, Equation (7.5) Should be

$$|\sum_{k=1}^{\infty} E[X_k^c]| < \infty$$

- **page 187, line 10** \downarrow At the end should in the numerator be $(2c + \epsilon)^2$, and the sum in the denominator should go from k = n + 1.
- **page 187, line 15** $\downarrow |S_{n+k} - S_n|$ should be $|S_{n+k}^* - S_n^*|$
- **page 188, line 1-2** \uparrow The two \geq should be >. The +1 at the end should be deleted. Refer to Exercise 4.9.
- **page 192, line 9**^{\uparrow} Should start by $(s_{j_n}^2/\sigma_n^2)^{3/2}$
- page 193, Equation (7.16) Should be $|X_k|$.
- **page 194, Equation (7.19)** The sup should be over $x \in \mathbb{R}$.
- **page 195, lines 6-10** \downarrow Replace these lines by the following: For all h_1, h_2 and all x we have by (7.19),

$$|f(x+h_1) - f(x+h_2) - f'(x)(h_1 - h_2) - \frac{1}{2}f''(x)(h_1^2 - h_2^2)| \le g(h_1) + g(h_2)$$

We will use this with $x = U_n^{(k)}/\sigma_n$, $h_1 = X_k/\sigma_n$, $h_2 = Z_k/\sigma_n$. Note first that by independence of $U_n^{(k)}$, X_k , Z_k we have

$$E\left[f'\left(\frac{U_n^{(k)}}{\sigma_n}\right)\frac{X_k - Z_k}{\sigma_n}\right] = 0$$
$$E\left[f''\left(\frac{U_n^{(k)}}{\sigma_n}\right)\frac{X_k^2 - Z_k^2}{\sigma_n^2}\right] = 0$$

Hence for each term in line $5\downarrow$,

$$\begin{vmatrix} E \left[f \left(\frac{U_n^{(k)} + X_k}{\sigma_n} \right) - f \left(\frac{U_n^{(k)} + Z_k}{\sigma_n} \right) \right] \end{vmatrix} \\ = \left| E \left[f \left(\frac{U_n^{(k)} + X_k}{\sigma_n} \right) - f \left(\frac{U_n^{(k)} + Z_k}{\sigma_n} \right) \right. \\ - \left. f' \left(\frac{U_n^{(k)}}{\sigma_n} \right) \frac{X_k - Z_k}{\sigma_n} - \frac{1}{2} f'' \left(\frac{U_n^{(k)}}{\sigma_n} \right) \frac{X_k^2 - Z_k^2}{\sigma_n^2} \right] \\ \le \left. E \left[g \left(\frac{X_k}{\sigma_n} \right) \right] + E \left[g \left(\frac{X_k}{\sigma_n} \right) \right] \end{aligned}$$

page 197, line 2↑ Should be "equality" instead of "inequality"

page 198, line 2 \downarrow Should be a dx to the left.

- page 198, Equations (7.27) and (7.28) Delete the "a.s."
- **page 199, lines 10-12** \downarrow The right hand sides of the inequalities should all be multiplied by $(1+\epsilon)$

page 199, line 7 \uparrow The expression in [·] is not correct. Instead we have

$$\frac{n_{k+1}}{n_k} \to 1 + \epsilon \text{ as } k \to \infty$$

page 199, line 3↑ Delete the "a.s."

page 200, line 7 \downarrow The lower bound on $P(A_k)$ is not correct (see lecture)