1. Let A_1, A_2, \dots be a sequence of events. Is it correct that

$$\liminf_{n \to \infty} P(A_n) > 0$$

implies

$$P(\liminf_n A_n) > 0?$$

Prove or give a counterexample.

2. Let X and Y be independent random variables with continuous distribution functions. Prove that the distribution function of the sum X + Y is also continuous. Moreover, prove that

$$\sup_{x} P(x < X + Y < x + \Delta) \le$$

$$\le \min\{\sup_{x} P(x < X < x + \Delta), \sup_{x} P(x < Y < x + \Delta)\}$$

for any $\Delta > 0$.

3. Let $X_1, X_2, ...$ be a sequence of random variables. Each X_n takes two values, $e^{1/n}$ and e^n , with probabilities

$$P(X_n = e^{1/n}) = 1 - \frac{1}{n}, \quad P(X_n = e^n) = \frac{1}{n}.$$

Does the sequence $\{X_n\}$ converge

- a) in distribution?
- a) in probability?

b) in L^{1} ?

4. X_1, X_2, \dots are independent random variables, and

$$X_n \xrightarrow{\mathrm{P}} X, \ n \to \infty.$$

Find Var(X).

5. Are the following functions characteristic functions?

a)

b)

c)

 $\sin t$

 $e^{2021(e^{it}-1)}$

 $\cos\frac{1}{t}$

6. Let X and Y be iid random variables. Prove that for any $\varepsilon > 0$ and any real c

$$P(|X - Y| \ge \varepsilon) \le 2P(|X - c| \ge \varepsilon/2).$$