1. Let $X_1, X_2, ...$ be a sequence of random variables. Each X_n takes two values, \sqrt{n} and (n+1)/n, with probabilities

$$P(X_n = (n+1)/n) = 1 - \frac{1}{n}, \ P(X_n = \sqrt{n}) = \frac{1}{n}.$$

Does the sequence $\{X_n\}$ converge

- a) in probability?
- b) in L^1 ?
- c) in L^2 ?
- **2.** Let $X_1, X_2, ...$ be iid random variables with the density

$$f(x) = 2(1-x)I_{[0,1]}(x).$$

Define

$$Y_n = \prod_{k=1}^n X_k.$$

Prove that the series

$$\sum_{n=1}^{\infty} Y_n$$

a.s. converges.

3. $X_1, X_2, ...$ are independent random variables, and

$$X_n \xrightarrow{\text{a.s.}} X, \ n \to \infty.$$

Denote the characteristic function of X by $\varphi_X(t)$. Prove that $|\varphi_X(t)| \equiv 1$.

4. Give an example of dependent random variables $X_1, X_2, ...$ such that $\{X_n\}$ satisfies the central limit theorem, i.e.

$$\frac{S_n - ES_n}{\sqrt{VarS_n}} \stackrel{\mathrm{d}}{\longrightarrow} N(0, 1), \quad n \to \infty,$$

where $S_n = X_1 + ... + X_n$.