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Notice that the integral is the expected value of an exponential random variable
with parameter λ(1 +w), so it equals 1/λ(1 +w) (recall Example 3.5.6). Therefore,

fW (w)= λ2

λ(1 +w)

1

λ(1 +w)
= 1

(1 +w)2
, w ≥ 0

Theorem
3.8.5

Let X and Y be independent continuous random variables with pdfs fX (x) and fY (y),
respectively. Let W = XY . Then

fW (w)=
∫ ∞

−∞
1

|x | fX (x) fY (w/x)dx =
∫ ∞

−∞
1

|x | fX (w/x) fY (x)dx

Proof A line-by-line, straightforward modification of the proof of Theorem 3.8.4
will provide a proof of Theorem 3.8.5. The details are left to the reader. �

Example
3.8.5

Suppose that X and Y are independent random variables with pdfs fX (x) = 1, 0 ≤
x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1, respectively. Find fW (w), where W = XY .

According to Theorem 3.8.5,

fW (w)=
∫ ∞

−∞
1

|x | fX (x) fY (w/x)dx

The region of integration, though, needs to be restricted to values of x for which the
integrand is positive. But fY (w/x) is positive only if 0 ≤ w/x ≤ 1, which implies that
x ≥ w. Moreover, for fX (x) to be positive requires that 0 ≤ x ≤ 1. Any x , then, from
w to 1 will yield a positive integrand. Therefore,

fW (w)=
∫ 1

w

1

x
(1)(2w/x)dx = 2w

∫ 1

w

1

x2
dx = 2 − 2w, 0 ≤w ≤ 1

Comment Theorems 3.8.3, 3.8.4, and 3.8.5 can be adapted to situations where X
and Y are not independent by replacing the product of the marginal pdfs with the
joint pdf.

Questions

3.8.1. Let X and Y be two independent random vari-
ables. Given the marginal pdfs shown below, find the pdf
of X + Y . In each case, check to see if X + Y belongs to the
same family of pdfs as do X and Y .

(a) pX (k)= e−λ
λk

k! and pY (k)= e−μ
μk

k! , k = 0,1,2, . . .

(b) pX (k)= pY (k)= (1 − p)k−1 p, k = 1,2, . . .

3.8.2. Suppose fX (x)= xe−x , x ≥ 0, and fY (y)= e−y , y ≥ 0,
where X and Y are independent. Find the pdf of X + Y .

3.8.3. Let X and Y be two independent random vari-
ables, whose marginal pdfs are given below. Find the pdf of
X + Y . (Hint: Consider two cases, 0 ≤w <1 and 1≤w ≤2.)

fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1

3.8.4. If a random variable V is independent of two
independent random variables X and Y , prove that V is
independent of X + Y .

3.8.5. Let Y be a continuous nonnegative random vari-
able. Show that W = Y 2 has pdf fW (w)= 1

2
√

w
fY (

√
w).

[Hint: First find FW (w).]

3.8.6. Let Y be a uniform random variable over the
interval [0,1]. Find the pdf of W = Y 2.

3.8.7. Let Y be a random variable with fY (y) = 6y(1 − y),
0 ≤ y ≤ 1. Find the pdf of W = Y 2.

3.8.8. Suppose the velocity of a gas molecule of mass m is
a random variable with pdf fY (y) = ay2e−by2

, y ≥ 0, where
a and b are positive constants depending on the gas. Find
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the pdf of the kinetic energy, W = (m/2)Y 2, of such a
molecule.

3.8.9. Given that X and Y are independent random vari-
ables, find the pdf of XY for the following two sets of
marginal pdfs:

(a) fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1
(b) fX (x)= 2x , 0 ≤ x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1

3.8.10. Let X and Y be two independent random
variables. Given the marginal pdfs indicated below, find

the cdf of Y/X . (Hint: Consider two cases, 0 ≤ w ≤ 1 and
1 <w.)

(a) fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1
(b) fX (x)= 2x , 0 ≤ x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1

3.8.11. Suppose that X and Y are two independent ran-
dom variables, where fX (x)= xe−x , x ≥ 0, and fY (y) = e−y ,
y ≥ 0. Find the pdf of Y/X .

3.9 Further Properties of the Mean and Variance
Sections 3.5 and 3.6 introduced the basic definitions related to the expected value
and variance of single random variables. We learned how to calculate E(W ),
E[g(W )], E(aW + b), Var(W ), and Var(aW + b), where a and b are any constants
and W could be either a discrete or a continuous random variable. The purpose of
this section is to examine certain multivariable extensions of those results, based on
the joint pdf material covered in Section 3.7.

We begin with a theorem that generalizes E[g(W )]. While it is stated here for
the case of two random variables, it extends in a very straightforward way to include
functions of n random variables.

Theorem
3.9.1

1. Suppose X and Y are discrete random variables with joint pdf pX,Y (x, y), and
let g(X,Y ) be a function of X and Y . Then the expected value of the random
variable g(X,Y ) is given by

E[g(X,Y )] =
∑
all x

∑
all y

g(x, y) · pX,Y (x, y)

provided
∑
all x

∑
all y

|g(x, y)| · pX,Y (x, y) <∞.

2. Suppose X and Y are continuous random variables with joint pdf fX,Y (x, y),
and let g(X,Y ) be a continuous function. Then the expected value of the random
variable g(X,Y ) is given by

E[g(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) · fX,Y (x, y)dx dy

provided
∫∞
−∞
∫∞
−∞ |g(x, y)| · fX,Y (x, y) dx dy <∞.

Proof The basic approach taken in deriving this result is similar to the method
followed in the proof of Theorem 3.5.3. See (128) for details. �

Example
3.9.1

Consider the two random variables X and Y whose joint pdf is detailed in the 2 × 4
matrix shown in Table 3.9.1. Let

g(X,Y )= 3X − 2XY + Y

Find E[g(X,Y )] two ways—first, by using the basic definition of an expected value,
and second, by using Theorem 3.9.1.

Let Z = 3X − 2XY + Y . By inspection, Z takes on the values 0, 1, 2, and 3
according to the pdf fZ (z) shown in Table 3.9.2. Then from the basic definition
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Theorem
3.9.3

If X and Y are independent random variables,

E(XY )= E(X) · E(Y )

provided E(X) and E(Y ) both exist.

Proof Suppose X and Y are both discrete random variables. Then their joint pdf,
pX,Y (x, y), can be replaced by the product of their marginal pdfs, pX (x) · pY (y), and
the double summation required by Theorem 3.9.1 can be written as the product of
two single summations:

E(XY ) =
∑
all x

∑
all y

xy · pX,Y (x, y)

=
∑
all x

∑
all y

xy · pX (x) · pY (y)

=
∑
all x

x · pX (x) ·
⎡⎣∑

all y

y · pY (y)

⎤⎦
= E(X) · E(Y )

The proof when X and Y are both continuous random variables is left as an
exercise. �

Questions

3.9.1. Suppose that r chips are drawn with replace-
ment from an urn containing n chips, numbered 1
through n. Let V denote the sum of the numbers drawn.
Find E(V ).

3.9.2. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y.
Find E(X + Y ).

3.9.3. Suppose that fX,Y (x, y) = 2
3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤

y ≤ 1 [recall Question 3.7.19(c)]. Find E(X + Y ).

3.9.4. Marksmanship competition at a certain level
requires each contestant to take ten shots with each of two
different handguns. Final scores are computed by taking
a weighted average of 4 times the number of bull’s-eyes
made with the first gun plus 6 times the number gotten
with the second. If Cathie has a 30% chance of hitting
the bull’s-eye with each shot from the first gun and a 40%
chance with each shot from the second gun, what is her
expected score?

3.9.5. Suppose that Xi is a random variable for which
E(Xi ) = μ, i = 1,2, . . . ,n. Under what conditions will the
following be true?

E

(
n∑

i=1

ai Xi

)
=μ

3.9.6. Suppose that the daily closing price of stock goes up
an eighth of a point with probability p and down an eighth
of a point with probability q , where p > q . After n days
how much gain can we expect the stock to have achieved?
Assume that the daily price fluctuations are independent
events.

3.9.7. An urn contains r red balls and w white balls. A
sample of n balls is drawn in order and without replace-
ment. Let Xi be 1 if the ith draw is red and 0 otherwise,
i = 1,2, . . . ,n.

(a) Show that E(Xi )= E(X1), i = 2,3, . . . ,n.
(b) Use the corollary to Theorem 3.9.2 to show

that the expected number of red balls is
nr/(r +w).

3.9.8. Suppose two fair dice are tossed. Find the expected
value of the product of the faces showing.

3.9.9. Find E(R) for a two-resistor circuit similar to the
one described in Example 3.9.2, where fX,Y (x, y) = k(x +
y), 10 ≤ x ≤ 20, 10 ≤ y ≤ 20.

3.9.10. Suppose that X and Y are both uniformly dis-
tributed over the interval [0, 1]. Calculate the expected
value of the square of the distance of the random point
(X,Y ) from the origin; that is, find E(X 2 + Y 2). (Hint: See
Question 3.8.6.)



3.9 Further Properties of the Mean and Variance 189

3.9.11. Suppose X represents a point picked at random
from the interval [0,1] on the x-axis, and Y is a point
picked at random from the interval [0,1] on the y-axis.
Assume that X and Y are independent. What is the
expected value of the area of the triangle formed by the
points (X,0), (0,Y ), and (0, 0)?

3.9.12. Suppose Y1,Y2, . . . ,Yn is a random sample from
the uniform pdf over [0, 1]. The geometric mean of the
numbers is the random variable n

√
Y1Y2 · · · · · Yn . Compare

the expected value of the geometric mean to that of the
arithmetic mean Ȳ .

Calculating the Variance of a Sum of Random Variables

When random variables are not independent, a measure of the relationship between
them, their covariance, enters into the picture.

Definition 3.9.1. Given random variables X and Y with finite variances, define
the covariance of X and Y , written Cov(X,Y ), as

Cov(X,Y )= E(XY )− E(X)E(Y )

Theorem
3.9.4

If X and Y are independent, then Cov(X,Y )= 0.

Proof If X and Y are independent, by Theorem 3.9.3, E(XY )= E(X)E(Y ). Then

Cov(X,Y )= E(XY )− E(X)E(Y )= E(X)E(Y )− E(X)E(Y )= 0

The converse of Theorem 3.9.4 is not true. Just because Cov(X,Y )=0, we cannot
conclude that X and Y are independent. Example 3.9.7 is a case in point. �

Example
3.9.7

Consider the sample space S = {(−2,4), (−1,1), (0,0), (1,1), (2,4)}, where each
point is assumed to be equally likely. Define the random variable X to be the first
component of a sample point and Y , the second. Then X (−2,4) = −2,Y (−2,4) = 4,
and so on.

Notice that X and Y are dependent:

1

5
= P(X = 1,Y = 1) �= P(X = 1) · P(Y = 1)= 1

5
· 2

5
= 2

25
However, the convariance of X and Y is zero:

E(XY ) =[(−8)+ (−1)+ 0 + 1 + 8] · 1

5
= 0

E(X) =[(−2)+ (−1)+ 0 + 1 + 2] · 1

5
= 0

and

E(Y )= (4 + 1 + 0 + 1 + 4) · 1

5
= 2

so

Cov(X,Y )= E(XY )− E(X) · E(Y )= 0 − 0 · 2 = 0

Theorem 3.9.5 demonstrates the role of the covariance in finding the variance
of a sum of random variables that are not necessarily independent.

Theorem
3.9.5

Suppose X and Y are random variables with finite variances, and a and b are
constants. Then

Var(aX + bY )= a2Var(X)+ b2Var(Y )+ 2ab Cov(X,Y )
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From the first corollary to Theorem 3.9.5, then,

Var(X)=
n∑

i=1

Var(Xi )+ 2
∑
j<k

Cov(X j , Xk)

= np(1 − p)− 2

(
n
2

)
p(1 − p) · 1

N − 1

= p(1 − p)

[
n − n(n − 1)

N − 1

]
= np(1 − p) · N − n

N − 1

Example
3.9.11

In statistics, it is often necessary to draw inferences based on W , the average com-
puted from a random sample of n observations. Two properties of W are especially
important. First, if the Wi ’s come from a population where the mean is μ, the corol-
lary to Theorem 3.9.2 implies that E(W ) = μ. Second, if the Wi ’s come from a
population whose variance is σ 2, then Var(W ) = σ 2/n. To verify the latter, we can
appeal again to Theorem 3.9.5. Write

W = 1

n

n∑
i=1

Wi = 1

n
· W1 + 1

n
· W2 + · · ·+ 1

n
· Wn

Then

Var(W ) =
(

1

n

)2

· Var(W1)+
(

1

n

)2

· Var(W2)+ · · · +
(

1

n

)2

· Var(Wn)

=
(

1

n

)2

σ 2 +
(

1

n

)2

σ 2 + · · ·+
(

1

n

)2

σ 2

= σ 2

n

Questions

3.9.13. Suppose that two dice are thrown. Let X be the
number showing on the first die and let Y be the larger of
the two numbers showing. Find Cov(X,Y ).

3.9.14. Show that

Cov(aX + b, cY + d)= acCov(X,Y )

for any constants a,b, c, and d .

3.9.15. Let U be a random variable uniformly distributed
over [0,2π]. Define X = cosU and Y = sinU . Show that X
and Y are dependent but that Cov(X,Y )= 0.

3.9.16. Let X and Y be random variables with

fX,Y (x, y)=
{

1, −y < x < y, 0 < y < 1
0, elsewhere

Show that Cov(X,Y )= 0 but that X and Y are dependent.

3.9.17. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y.
Find Var(X + Y ). (Hint: See Questions 3.6.11 and 3.9.2.)

3.9.18. Suppose that fX,Y (x, y) = 2
3
(x + 2y), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1. Find Var(X + Y ). (Hint: See Question 3.9.3.)

3.9.19. For the uniform pdf defined over [0, 1], find the
variance of the geometric mean when n = 2 (see Ques-
tion 3.9.12).

3.9.20. Let X be a binomial random variable based on
n trials and a success probability of px ; let Y be an inde-
pendent binomial random variable based on m trials and
a success probability of pY . Find E(W ) and Var(W ), where
W = 4X + 6Y .

3.9.21. Let the Poisson random variable U (see p. 227) be
the number of calls for technical assistance received by a
computer company during the firm’s nine normal work-
day hours. Suppose the average number of calls per hour
is 7.0 and that each call costs the company $50. Let V be a
Poisson random variable representing the number of calls
for technical assistance received during a day’s remaining
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fifteen hours. Suppose the average number of calls per
hour is 4.0 for that time period and that each such call costs
the company $60. Find the expected cost and the vari-
ance of the cost associated with the calls received during a
twenty-four-hour day.

3.9.22. A mason is contracted to build a patio retaining
wall. Plans call for the base of the wall to be a row of
fifty 10-inch bricks, each separated by 1

2
-inch-thick mortar.

Suppose that the bricks used are randomly chosen from a
population of bricks whose mean length is 10 inches and
whose standard deviation is 1

32
inch. Also, suppose that the

mason, on the average, will make the mortar 1
2

inch thick,
but that the actual dimension will vary from brick to brick,
the standard deviation of the thicknesses being 1

16
inch.

What is the standard deviation of L , the length of the first
row of the wall? What assumption are you making?

3.9.23. An electric circuit has six resistors wired in series,
each nominally being five ohms. What is the maximum
standard deviation that can be allowed in the manufac-
ture of these resistors if the combined circuit resistance is
to have a standard deviation no greater than 0.4 ohm?

3.9.24. A gambler plays n hands of poker. If he wins the
kth hand, he collects k dollars; if he loses the kth hand,
he collects nothing. Let T denote his total winnings in n
hands. Assuming that his chances of winning each hand
are constant and independent of his success or failure at
any other hand, find E(T ) and Var(T ).

3.10 Order Statistics
The single-variable transformation taken up in Section 3.4 involved a standard linear
operation, Y = aX + b. The bivariate transformations in Section 3.8 were similarly
arithmetic, typically being concerned with either sums or products. In this section
we will consider a different sort of transformation, one involving the ordering of
an entire set of random variables. This particular transformation has wide applica-
bility in many areas of statistics, and we will see some of its consequences in later
chapters.

Definition 3.10.1. Let Y be a continuous random variable for which
y1, y2, . . . , yn are the values of a random sample of size n. Reorder the yi ’s from
smallest to largest:

y′
1 < y′

2 < · · ·< y′
n

(No two of the yi ’s are equal, except with probability zero, since Y is contin-
uous.) Define the random variable Y ′

i to have the value y′
i , 1 ≤ i ≤ n. Then Y ′

i
is called the ith order statistic. Sometimes Y ′

n and Y ′
1 are denoted Ymax and Ymin,

respectively.

Example
3.10.1

Suppose that four measurements are made on the random variable Y : y1 = 3.4, y2 =
4.6, y3 = 2.6, and y4 = 3.2. The corresponding ordered sample would be

2.6 < 3.2 < 3.4 < 4.6

The random variable representing the smallest observation would be denoted Y ′
1,

with its value for this particular sample being 2.6. Similarly, the value for the second
order statistic, Y ′

2, is 3.2, and so on.

The Distribution of Extreme Order Statistics

By definition, every observation in a random sample has the same pdf. For example,
if a set of four measurements is taken from a normal distribution with μ = 80 and
σ = 15, then fY1(y), fY2(y), fY3(y), and fY4(y) are all the same—each is a normal



200 Chapter 3 Random Variables

Questions

3.10.1. Suppose the length of time, in minutes, that you
have to wait at a bank teller’s window is uniformly dis-
tributed over the interval (0, 10). If you go to the bank
four times during the next month, what is the probabil-
ity that your second longest wait will be less than five
minutes?

3.10.2. A random sample of size n = 6 is taken from the
pdf fY (y)= 3y2, 0 ≤ y ≤ 1. Find P(Y ′

5 > 0.75).

3.10.3. What is the probability that the larger of two ran-
dom observations drawn from any continuous pdf will
exceed the sixtieth percentile?

3.10.4. A random sample of size 5 is drawn from the pdf
fY (y) = 2y, 0 ≤ y ≤ 1. Calculate P(Y ′

1 < 0.6 < Y ′
5). (Hint:

Consider the complement.)

3.10.5. Suppose that Y1, Y2, . . ., Yn is a random sample of
size n drawn from a continuous pdf, fY (y), whose median
is m. Is P(Y ′

1 > m) less than, equal to, or greater than
P(Y ′

n > m)?

3.10.6. Let Y1, Y2, . . ., Yn be a random sample from the
exponential pdf fy(y) = e−y , y ≥ 0. What is the smallest n
for which P(Ymin < 0.2)> 0.9?

3.10.7. Calculate P(0.6 < Y ′
4 < 0.7) if a random sample

of size 6 is drawn from the uniform pdf defined over the
interval [0, 1].

3.10.8. A random sample of size n = 5 is drawn from the
pdf fY (y) = 2y, 0 ≤ y ≤ 1. On the same set of axes, graph
the pdfs for Y2, Y ′

1, and Y ′
5.

3.10.9. Suppose that n observations are taken at random
from the pdf

fY (y)= 1√
2π(6)

e− 1
2

(
y−20

6

)2

, −∞ < y <∞

What is the probability that the smallest observation is
larger than twenty?

3.10.10. Suppose that n observations are chosen at ran-
dom from a continuous pdf fY (y). What is the probability
that the last observation recorded will be the smallest
number in the entire sample?

3.10.11. In a certain large metropolitan area, the pro-
portion, Y , of students bused varies widely from school
to school. The distribution of proportions is roughly
described by the following pdf:

0
y

1

1

2

f  (y)Y

Suppose the enrollment figures for five schools selected
at random are examined. What is the probability that the
school with the fourth highest proportion of bused chil-
dren will have a Y value in excess of 0.75? What is the
probability that none of the schools will have fewer than
10% of their students bused?

3.10.12. Consider a system containing n components,
where the lifetimes of the components are indepen-
dent random variables and each has pdf fY (y) = λe−λy ,
y > 0. Show that the average time elapsing before the first
component failure occurs is 1/nλ.

3.10.13. Let Y1, Y2, . . ., Yn be a random sample from a
uniform pdf over [0, 1]. Use Theorem 3.10.2 to show that∫ 1

0 yi−1(1 − y)n−i dy = (i − 1)!(n − i)!
n! .

3.10.14. Use Question 3.10.13 to find the expected value
of Y ′

i , where Y1, Y2, . . ., Yn is a random sample from a
uniform pdf defined over the interval [0, 1].

3.10.15. Suppose three points are picked randomly from
the unit interval. What is the probability that the three are
within a half unit of one another?

3.10.16. Suppose a device has three independent compo-
nents, all of whose lifetimes (in months) are modeled by
the exponential pdf, fY (y)= e−y , y > 0. What is the proba-
bility that all three components will fail within two months
of one another?

3.11 Conditional Densities
We have already seen that many of the concepts defined in Chapter 2 relating to the
probabilities of events—for example, independence—have random variable coun-
terparts. Another of these carryovers is the notion of a conditional probability, or,
in what will be our present terminology, a conditional probability density function.
Applications of conditional pdfs are not uncommon. The height and girth of a tree,
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Suppose z = 2. Then

pZ (2)= P(Z = 2) = P[(2,1,2)∪ (1,2,2)∪ (2,2,2)]

= 2 · 1

18
+ 1 · 2

18
+ 2 · 2

18

= 8

18

so

pX,Y |2(x, y) = pX,Y,Z (x, y,2)

pZ (2)

= x · y/18
8

18

= xy

8
for (x, y)= (2,1), (1,2), and (2,2)

Questions

3.11.1. Suppose X and Y have the joint pdf pX,Y (x, y) =
x+y+xy

21
for the points (1, 1), (1, 2), (2, 1), (2, 2), where X

denotes a “message” sent (either x = 1 or x = 2) and Y
denotes a “message” received. Find the probability that
the message sent was the message received—that is, find
pY |x(y).

3.11.2. Suppose a die is rolled six times. Let X be the total
number of 4’s that occur and let Y be the number of 4’s in
the first two tosses. Find pY |x(y).

3.11.3. An urn contains eight red chips, six white chips,
and four blue chips. A sample of size 3 is drawn with-
out replacement. Let X denote the number of red chips
in the sample and Y , the number of white chips. Find an
expression for pY |x(y).

3.11.4. Five cards are dealt from a standard poker deck.
Let X be the number of aces received, and Y the number
of kings. Compute P(X = 2|Y = 2).

3.11.5. Given that two discrete random variables X and Y
follow the joint pdf pX,Y (x, y)= k(x + y), for x =1,2,3 and
y = 1,2,3,

(a) Find k.
(b) Evaluate pY |x(1) for all values of x for which px(x)>0.

3.11.6. Let X denote the number on a chip drawn at ran-
dom from an urn containing three chips, numbered 1, 2,
and 3. Let Y be the number of heads that occur when a
fair coin is tossed X times.

(a) Find pX,Y (x, y).

(b) Find the marginal pdf of Y by summing out the x
values.

3.11.7. Suppose X , Y , and Z have a trivariate distribution
described by the joint pdf

pX,Y,Z (x, y, z)= xy + xz + yz

54

where x , y, and z can be 1 or 2. Tabulate the joint condi-
tional pdf of X and Y given each of the two values of z.

3.11.8. In Question 3.11.7 define the random variable
W to be the “majority” of x , y, and z. For example,
W (2,2,1)= 2 and W (1,1,1)= 1. Find the pdf of W |x .

3.11.9. Let X and Y be independent random variables
where px(k) = e−λ λk

k! and pY (k) = e−μ μk

k! for k = 0, 1, . . . .
Show that the conditional pdf of X given that X + Y = n
is binomial with parameters n and λ

λ+μ
. (Hint: See Ques-

tion 3.8.1.)

3.11.10. Suppose Compositor A is preparing a manuscript
to be published. Assume that she makes X errors on a
given page, where X has the Poisson pdf, pX (k)= e−22k/k!,
k = 0,1,2, . . . . A second compositor, B, is also work-
ing on the book. He makes Y errors on a page, where
pY (k) = e−33k/k!, k = 0,1,2, . . . . Assume that Composi-
tor A prepares the first one hundred pages of the text
and Compositor B, the last one hundred pages. After the
book is completed, reviewers (with too much time on their
hands!) find that the text contains a total of 520 errors.
Write a formula for the exact probability that fewer than
half of the errors are due to Compositor A.
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a. From Theorem 3.7.2,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 4

2

(
1

8

)
(6 − x − y) dy

=
(

1

8

)
(6 − 2x), 0 ≤ x ≤ 2

b. Substituting into the “continuous” statement of Definition 3.11.1, we can write

fY |x (y)= fX,Y (x, y)

fX (x)
=
(

1
8

)
(6 − x − y)(

1
8

)
(6 − 2x)

= 6 − x − y

6 − 2x
, 0 ≤ x ≤ 2, 2 ≤ y ≤ 4

c. To find P(2<Y <3|x =1), we simply integrate fY |1(y) over the interval 2<Y <3:

P(2 < Y < 3|x = 1) =
∫ 3

2
fY |1(y) dy

=
∫ 3

2

5 − y

4
dy

= 5

8

[A partial check that the derivation of a conditional pdf is correct can be performed
by integrating fY |x (y) over the entire range of Y . That integral should be 1. Here, for
example, when x = 1,

∫∞
−∞ fY |1(y) dy = ∫ 4

2 [(5 − y)/4] dy does equal 1.]

Questions

3.11.11. Let X be a nonnegative random variable. We say
that X is memoryless if

P(X > s + t |X > t)= P(X > s) for all s, t ≥ 0

Show that a random variable with pdf fX (x) =
(1/λ)e−x/λ, x > 0, is memoryless.

3.11.12. Given the joint pdf

fX,Y (x, y)= 2e−(x+y), 0 ≤ x ≤ y, y ≥ 0

find

(a) P(Y < 1|X < 1).
(b) P(Y < 1|X = 1).
(c) fY |x(y).
(d) E(Y |x).

3.11.13. Find the conditional pdf of Y given x if

fX,Y (x, y)= x + y

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

3.11.14. If

fX,Y (x, y)= 2, x ≥ 0, y ≥ 0, x + y ≤ 1

show that the conditional pdf of Y given x is uniform.

3.11.15. Suppose that

fY |x(y)= 2y + 4x

1 + 4x
and fX (x)= 1

3
· (1 + 4x)

for 0 < x < 1 and 0 < y < 1. Find the marginal pdf for Y .

3.11.16. Suppose that X and Y are distributed according
to the joint pdf

fX,Y (x, y)= 2

5
· (2x + 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Find

(a) fX (x).
(b) fY |x(y).
(c) P

(
1
4
≤ Y ≤ 3

4
|X = 1

2

)
.

(d) E(Y |x).
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3.11.17. If X and Y have the joint pdf

fX,Y (x, y)= 2, 0 ≤ x < y ≤ 1

find P
(
0 < X < 1

2
|Y = 3

4

)
.

3.11.18. Find P
(
X < 1|Y = 1 1

2

)
if X and Y have the

joint Pdf

fX,Y (x, y)= xy/2, 0 ≤ x < y ≤ 2

3.11.19. Suppose that X1, X2, X3, X4, and X5 have the
joint pdf

fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5)= 32x1x2x3x4x5

for 0 < xi < 1, i = 1,2, . . . ,5. Find the joint conditional pdf
of X1, X2, and X3 given that X4 = x4 and X5 = x5.

3.11.20. Suppose the random variables X and Y are
jointly distributed according to the Pdf

fX,Y (x, y)= 6

7

(
x2 + xy

2

)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

Find

(a) fX (x).
(b) P(X > 2Y ).
(c) P

(
Y > 1|X > 1

2

)
.

3.12 Moment-Generating Functions
Finding moments of random variables directly, particularly the higher moments
defined in Section 3.6, is conceptually straightforward but can be quite problematic:
Depending on the nature of the pdf, integrals and sums of the form

∫∞
−∞ yr fY (y)dy

and
∑
all k

kr pX (k) can be very difficult to evaluate. Fortunately, an alternative method is

available. For many pdfs, we can find a moment-generating function (or mgf), MW (t),
one of whose properties is that the r th derivative of MW (t) evaluated at zero is equal
to E(W r ).

Calculating a Random Variable’s Moment-Generating Function

In principle, what we call a moment-generating function is a direct application of
Theorem 3.5.3.

Definition 3.12.1. Let W be a random variable. The moment-generating func-
tion (mgf) for W is denoted MW (t) and given by

MW (t)= E(etW )=

⎧⎪⎪⎨⎪⎪⎩
∑
all k

etk pW (k) if W is discrete∫ ∞

−∞
etw fW (w) dw if W is continuous

at all values of t for which the expected value exists.

Example
3.12.1

Suppose the random variable X has a geometric pdf,

pX (k)= (1 − p)k−1 p, k = 1,2, . . .

[In practice, this is the pdf that models the occurrence of the first success in a series
of independent trials, where each trial has a probability p of ending in success (recall
Example 3.3.2)]. Find MX (t), the moment-generating function for X .

Since X is discrete, the first part of Definition 3.12.1 applies, so

MX (t)= E(et X ) =
∞∑

k=1

etk(1 − p)k−1 p

= p

1 − p

∞∑
k=1

etk(1 − p)k = p

1 − p

∞∑
k=1

[(1 − p)et ]k (3.12.1)
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Questions

3.12.1. Let X be a random variable with pdf pX (k) = 1/n,
for k =0,1,2, . . . ,n −1 and 0 otherwise. Show that MX (t)=

1−ent

n(1−et )
.

3.12.2. Two chips are drawn at random and without
replacement from an urn that contains five chips, num-
bered 1 through 5. If the sum of the chips drawn is
even, the random variable X equals 5; if the sum of the
chips drawn is odd, X = −3. Find the moment-generating
function for X .

3.12.3. Find the expected value of e3X if X is a binominal
random variable with n = 10 and p = 1

3
.

3.12.4. Find the moment-generating function for the dis-
crete random variable X whose probability function is
given by

pX (k)=
(

3

4

)k (1

4

)
, k = 0,1,2, . . .

3.12.5. Which pdfs would have the following moment-
generating functions?

(a) MY (t)= e6t2

(b) MY (t)= 2/(2 − t)
(c) MX (t)= ( 1

2
+ 1

2
et
)4

(d) MX (t)= 0.3et/(1 − 0.7et)

3.12.6. Let Y have pdf

fY (y)=

⎧⎪⎨⎪⎩
y, 0 ≤ y ≤ 1

2 − y, 1 ≤ y ≤ 2

0, elsewhere

Find MY (t).

3.12.7. A random variable X is said to have a Poisson
distribution if pX (k) = P(X = k) = e−λλk/k!, k = 0,1,2, . . . .
Find the moment-generating function for a Poisson ran-
dom variable. Recall that

er =
∞∑

k=0

r k

k!
3.12.8. Let Y be a continuous random variable with
fY (y)= ye−y , 0 ≤ y. Show that MY (t)= 1

(1−t)2 .

Using Moment-Generating Functions to Find Moments

Having practiced finding the functions MX (t) and MY (t), we now turn to the theorem
that spells out their relationship to Xr and Y r .

Theorem
3.12.1

Let W be a random variable with probability density function fW (w). [If W is con-
tinuous, fW (w) must be sufficiently smooth to allow the order of differentiation and
integration to be interchanged.] Let MW (t) be the moment-generating function for W .
Then, provided the r th moment exists,

M (r)
W (0)= E(W r )

Proof We will verify the theorem for the continuous case where r is either 1 or 2.
The extensions to discrete random variables and to an arbitrary positive integer r
are straightforward.

For r = 1,

M (1)
Y (0) = d

dt

∫ ∞

−∞
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
d

dt
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
yety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
ye0·y fY (y)dy

=
∫ ∞

−∞
y fY (y)dy = E(Y )
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Questions

3.12.9. Calculate E(Y 3) for a random variable whose
moment-generating function is MY (t)= et2/2.

3.12.10. Find E(Y 4) if Y is an exponential random vari-
able with fY (y)= λe−λy , y > 0.

3.12.11. The form of the moment-generating function
for a normal random variable is MY (t) = eat+b2 t2/2 (recall
Example 3.12.4). Differentiate MY (t) to verify that a =
E(Y ) and b2 = Var(Y ).

3.12.12. What is E(Y 4) if the random variable Y has
moment-generating function MY (t)= (1 −αt)−k?

3.12.13. Find E(Y 2) if the moment-generating function
for Y is given by MY (t) = e−t+4t2

. Use Example 3.12.4 to
find E(Y 2) without taking any derivatives. (Hint: Recall
Theorem 3.6.1.)

3.12.14. Find an expression for E(Y k) if MY (t) = (1 −
t/λ)−r , where λ is any positive real number and r is a
positive integer.

3.12.15. Use MY (t) to find the expected value of the
uniform random variable described in Question 3.12.1.

3.12.16. Find the variance of Y if MY (t)= e2t/(1 − t2).

Using Moment-Generating Functions to Identify Pdfs

Finding moments is not the only application of moment-generating functions. They
are also used to identify the pdf of sums of random variables—that is, finding fW (w),
where W = W1 + W2 +· · ·+ Wn . Their assistance in the latter is particularly important
for two reasons: (1) Many statistical procedures are defined in terms of sums, and
(2) alternative methods for deriving fW1+W2+···+Wn (w) are extremely cumbersome.

The next two theorems give the background results necessary for deriving
fW (w). Theorem 3.12.2 states a key uniqueness property of moment-generating
functions: If W1 and W2 are random variables with the same mgfs, they must nec-
essarily have the same pdfs. In practice, applications of Theorem 3.12.2 typically
rely on one or both of the algebraic properties cited in Theorem 3.12.3.

Theorem
3.12.2

Suppose that W1 and W2 are random variables for which MW1(t) = MW2(t) for some
interval of t ’s containing 0. Then fW1(w)= fW2(w).

Proof See (95). �

Theorem
3.12.3

a. Let W be a random variable with moment-generating function MW (t). Let V =
aW + b. Then

MV (t)= ebt MW (at)

b. Let W1, W2, . . . , Wn be independent random variables with moment-generating
functions MW1(t), MW2(t), . . . , and MWn (t), respectively. Let W = W1 + W2 +· · ·+
Wn . Then

MW (t)= MW1(t) · MW2(t) · · · MWn (t)

Proof The proof is left as an exercise. �

Example
3.12.10

Suppose that X1 and X2 are two independent Poisson random variables with
parameters λ1 and λ2, respectively. That is,

pX1(k)= P(X1 = k)= e−λ1λ1k

k! , k = 0,1,2, . . .
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But MZ (t) = et2/2 so it follows from Theorem 3.12.2 that the pdf for Y−μ

σ
is the same

as the pdf for fz(z). (We call Y−μ

σ
a Z transformation. Its importance will become

evident in Chapter 4.)

Questions

3.12.17. Use Theorem 3.12.3(a) and Question 3.12.8 to
find the moment-generating function of the random vari-
able Y , where fY (y)= λye−λy , y ≥ 0.

3.12.18. Let Y1, Y2, and Y3 be independent random vari-
ables, each having the pdf of Question 3.12.17. Use The-
orem 3.12.3(b) to find the moment-generating function
of Y1 + Y2 + Y3. Compare your answer to the moment-
generating function in Question 3.12.14.

3.12.19. Use Theorems 3.12.2 and 3.12.3 to determine
which of the following statements is true:

(a) The sum of two independent Poisson random vari-
ables has a Poisson distribution.

(b) The sum of two independent exponential random
variables has an exponential distribution.

(c) The sum of two independent normal random vari-
ables has a normal distribution.

3.12.20. Calculate P(X ≤ 2) if MX (t)= ( 1
4
+ 3

4
et
)5

.

3.12.21. Suppose that Y1, Y2, . . ., Yn is a random sample
of size n from a normal distribution with mean μ and
standard deviation σ . Use moment-generating functions

to deduce the pdf of Ȳ = 1

n

n∑
i=1

Yi .

3.12.22. Suppose the moment-generating function for a
random variable W is given by

MW (t)= e−3+3et ·
(

2

3
+ 1

3
et

)4

Calculate P(W ≤ 1). (Hint: Write W as a sum.)

3.12.23. Suppose that X is a Poisson random variable,
where pX (k)= e−λλk/k!, k = 0,1, . . . .

(a) Does the random variable W = 3X have a Poisson
distribution?

(b) Does the random variable W = 3X + 1 have a Poisson
distribution?

3.12.24. Suppose that Y is a normal variable, where

fY (y)= (1/
√

2πσ) exp
[
− 1

2

(
y−μ

σ

)2]
, −∞ < y <∞.

(a) Does the random variable W = 3Y have a normal
distribution?

(b) Does the random variable W = 3Y + 1 have a normal
distribution?

3.13 Taking a Second Look at Statistics
(Interpreting Means)
One of the most important ideas coming out of Chapter 3 is the notion of the
expected value (or mean) of a random variable. Defined in Section 3.5 as a number
that reflects the “center” of a pdf, the expected value (μ) was originally introduced
for the benefit of gamblers. It spoke directly to one of their most fundamental
questions—How much will I win or lose, on the average, if I play a certain game?
(Actually, the real question they probably had in mind was “How much are you
going to lose, on the average?”) Despite having had such a selfish, materialis-
tic, gambling-oriented raison d’etre, the expected value was quickly embraced by
(respectable) scientists and researchers of all persuasions as a preeminently useful
descriptor of a distribution. Today, it would not be an exaggeration to claim that the
majority of all statistical analyses focus on either (1) the expected value of a sin-
gle random variable or (2) comparing the expected values of two or more random
variables.
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(Case Study 4.2.1 continued)

P(X ≥ 8) = 1 − P(X ≤ 7)

=̇1 −
7∑

k=0

e−1.75(1.75)k

k!
= 1 − 0.99953

= 0.00047

How close can we expect 0.00047 to be to the “true” binomial sum? Very
close. Considering the accuracy of the Poisson limit when n is as small as one
hundred (recall Table 4.2.2), we should feel very confident here, where n is 7076.

Interpreting the 0.00047 probability is not nearly as easy as assessing its
accuracy. The fact that the probability is so very small tends to denigrate the
hypothesis that leukemia in Niles occurred at random. On the other hand, rare
events, such as clusters, do happen by chance. The basic difficulty of putting
the probability associated with a given cluster into any meaningful perspective
is not knowing in how many similar communities leukemia did not exhibit a
tendency to cluster. That there is no obvious way to do this is one reason the
leukemia controversy is still with us.

About the Data Publication of the Niles cluster led to a number of research efforts
on the part of biostatisticians to find quantitative methods capable of detecting
clustering in space and time for diseases having low epidemicity. Several tech-
niques were ultimately put forth, but the inherent “noise” in the data—variations in
population densities, ethnicities, risk factors, and medical practices—often proved
impossible to overcome.

Questions

4.2.1. If a typist averages one misspelling in every 3250
words, what are the chances that a 6000-word report is
free of all such errors? Answer the question two ways—
first, by using an exact binomial analysis, and second, by
using a Poisson approximation. Does the similarity (or
dissimilarity) of the two answers surprise you? Explain.

4.2.2. A medical study recently documented that 905 mis-
takes were made among the 289,411 prescriptions written
during one year at a large metropolitan teaching hospi-
tal. Suppose a patient is admitted with a condition serious
enough to warrant 10 different prescriptions. Approxi-
mate the probability that at least one will contain an
error.

4.2.3. Five hundred people are attending the first annual
“I was Hit by Lighting” Club. Approximate the proba-
bility that at most one of the five hundred was born on
Poisson’s birthday.

4.2.4. A chromosome mutation linked with colorblind-
ness is known to occur, on the average, once in every ten
thousand births.

(a) Approximate the probability that exactly three of
the next twenty thousand babies born will have the
mutation.

(b) How many babies out of the next twenty thou-
sand would have to be born with the mutation
to convince you that the “one in ten thousand”
estimate is too low? [Hint: Calculate P(X ≥ k) =
1 − P(X ≤ k − 1) for various k. (Recall Case
Study 4.2.1.)]

4.2.5. Suppose that 1% of all items in a supermarket are
not priced properly. A customer buys ten items. What is
the probability that she will be delayed by the cashier
because one or more of her items require a price check?
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Calculate both a binomial answer and a Poisson answer. Is
the binomial model “exact” in this case? Explain.

4.2.6. A newly formed life insurance company has under-
written term policies on 120 women between the ages of
forty and forty-four. Suppose that each woman has a 1/150
probability of dying during the next calendar year, and
that each death requires the company to pay out $50,000
in benefits. Approximate the probability that the company
will have to pay at least $150,000 in benefits next year.

4.2.7. According to an airline industry report (178),
roughly 1 piece of luggage out of every 200 that are
checked is lost. Suppose that a frequent-flying business-
woman will be checking 120 bags over the course of the
next year. Approximate the probability that she will lose
2 of more pieces of luggage.

4.2.8. Electromagnetic fields generated by power trans-
mission lines are suspected by some researchers to be a
cause of cancer. Especially at risk would be telephone line-
men because of their frequent proximity to high-voltage
wires. According to one study, two cases of a rare form
of cancer were detected among a group of 9500 linemen
(174). In the general population, the incidence of that par-
ticular condition is on the order of one in a million. What
would you conclude? (Hint: Recall the approach taken in
Case Study 4.2.1.)

4.2.9. Astronomers estimate that as many as one hundred
billion stars in the Milky Way galaxy are encircled by plan-
ets. If so, we may have a plethora of cosmic neighbors. Let
p denote the probability that any such solar system con-
tains intelligent life. How small can p be and still give a
fifty-fifty chance that we are not alone?

The Poisson Distribution

The real significance of Poisson’s limit theorem went unrecognized for more than
fifty years. For most of the latter part of the nineteenth century, Theorem 4.2.1
was taken strictly at face value: It provides a convenient approximation for pX (k)

when X is binomial, n is large, and p is small. But then in 1898 a German professor,
Ladislaus von Bortkiewicz, published a monograph entitled Das Gesetz der Kleinen
Zahlen (The Law of Small Numbers) that would quickly transform Poisson’s “limit”
into Poisson’s “distribution.”

What is best remembered about Bortkiewicz’s monograph is the curious set of
data described in Question 4.2.10. The measurements recorded were the numbers of
Prussian cavalry soldiers who had been kicked to death by their horses. In analyzing
those figures, Bortkiewicz was able to show that the function e−λλk/k! is a useful
probability model in its own right, even when (1) no explicit binomial random vari-
able is present and (2) values for n and p are unavailable. Other researchers were
quick to follow Bortkiewicz’s lead, and a steady stream of Poisson distribution appli-
cations began showing up in technical journals. Today the function pX (k)= e−λλk/k!
is universally recognized as being among the three or four most important data
models in all of statistics.

Theorem
4.2.2

The random variable X is said to have a Poisson distribution if

pX (k)= P(X = k)= e−λλk

k! , k = 0,1,2, . . .

where λ is a positive constant. Also, for any Poisson random variable, E(X) = λ and
Var(X)= λ.

Proof To show that pX (k) qualifies as a probability function, note, first of all, that
pX (k)≥ 0 for all nonnegative integers k. Also, pX (k) sums to 1:

∞∑
k=0

pX (k)=
∞∑

k=0

e−λλk

k! = e−λ

∞∑
k=0

λk

k! = e−λ · eλ = 1

since
∞∑

k=0

λk

k! is the Taylor series expansion of eλ. Verifying that E(X) = λ and

Var(X) = λ has already been done in Example 3.12.9, using moment-generating
functions. �
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is equal to k. Formulas (2) and (3) are sometimes confused because both presume to
give the probability that a Poisson random variable equals k. Why are they different?

Actually, all three formulas are the same in the sense that the right-hand sides
of each could be written as

4. e−E(X) [E(X)]k

k!
In formula (1), X is binomial, so E(X)=np. In formula (2), which comes from Theo-
rem 4.2.2, λ is defined to be E(X). Formula (3) covers all those situations where the
units of X and λ are not consistent, in which case E(X) �= λ. However, λ can always
be multiplied by an appropriate constant T to make λT equal to E(X).

For example, suppose a certain radioisotope is known to emit α particles at the
rate of λ = 1.5 emissions/second. For whatever reason, though, the experimenter
defines the Poisson random variable X to be the number of emissions counted in a
given minute. Then T = 60 seconds and

E(X) = 1.5 emissions/second × 60 seconds

= λT = 90 emissions

Example
4.2.4

Entomologists estimate that an average person consumes almost a pound of bug
parts each year (173). There are that many insect eggs, larvae, and miscellaneous
body pieces in the foods we eat and the liquids we drink. The Food and Drug
Administration (FDA) sets a Food Defect Action Level (FDAL) for each product:
Bug-part concentrations below the FDAL are considered acceptable. The legal limit
for peanut butter, for example, is thirty insect fragments per hundred grams. Sup-
pose the crackers you just bought from a vending machine are spread with twenty
grams of peanut butter. What are the chances that your snack will include at least
five crunchy critters?

Let X denote the number of bug parts in twenty grams of peanut butter. Assum-
ing the worst, suppose the contamination level equals the FDA limit—that is, thirty
fragments per hundred grams (or 0.30 fragment/g). Notice that T in this case is
twenty grams, making E(X)= 6.0:

0.30 fragment

g
× 20 g = 6.0 fragments

It follows, then, that the probability that your snack contains five or more bug parts
is a disgusting 0.71:

P(X ≥ 5)= 1 − P(X ≤ 4) = 1 −
4∑

k=0

e−6.0(6.0)k

k!
= 1 − 0.29

= 0.71

Bon appetit!

Questions

4.2.10. During the latter part of the nineteenth century,
Prussian officials gathered information relating to the haz-
ards that horses posed to cavalry soldiers. A total of ten
cavalry corps were monitored over a period of twenty
years. Recorded for each year and each corps was X , the

annual number of fatalities due to kicks. Summarized in
the following table are the two hundred values recorded
for X (12). Show that these data can be modeled by
a Poisson pdf. Follow the procedure illustrated in Case
Studies 4.2.2 and 4.2.3.
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Observed Number of Corps-Years
No. of Deaths, k in Which k Fatalities Occurred

0 109
1 65
2 22
3 3
4 1

200

4.2.11. A random sample of 356 seniors enrolled at the
University of West Florida was categorized according to
X , the number of times they had changed majors (110).
Based on the summary of that information shown in the
following table, would you conclude that X can be treated
as a Poisson random variable?

Number of Major Changes Frequency

0 237
1 90
2 22
3 7

4.2.12. Midwestern Skies books ten commuter flights
each week. Passenger totals are much the same from week
to week, as are the numbers of pieces of luggage that are
checked. Listed in the following table are the numbers of
bags that were lost during each of the first forty weeks in
2009. Do these figures support the presumption that the
number of bags lost by Midwestern during a typical week
is a Poisson random variable?

Week Bags Lost Week Bags Lost Week Bags Lost

1 1 14 2 27 1
2 0 15 1 28 2
3 0 16 3 29 0
4 3 17 0 30 0
5 4 18 2 31 1
6 1 19 5 32 3
7 0 20 2 33 1
8 2 21 1 34 2
9 0 22 1 35 0

10 2 23 1 36 1
11 3 24 2 37 4
12 1 25 1 38 2
13 2 26 3 39 1

40 0

4.2.13. In 1893, New Zealand became the first country
to permit women to vote. Scattered over the ensuing 113
years, various countries joined the movement to grant this

right to women. The table below (121) shows how many
countries took this step in a given year. Do these data
seem to follow a Poisson distribution?

Yearly Number of Countries
Granting Women the Vote Frequency

0 82
1 25
2 4
3 0
4 2

4.2.14. The following are the daily numbers of death
notices for women over the age of eighty that appeared
in the London Times over a three-year period (74).

Number of Deaths Observed Frequency

0 162
1 267
2 271
3 185
4 111
5 61
6 27
7 8
8 3
9 1

1096

(a) Does the Poisson pdf provide a good description of
the variability pattern evident in these data?

(b) If your answer to part (a) is “no,” which of the Pois-
son model assumptions do you think might not be
holding?

4.2.15. A certain species of European mite is capable of
damaging the bark on orange trees. The following are the
results of inspections done on one hundred saplings cho-
sen at random from a large orchard. The measurement
recorded, X , is the number of mite infestations found on
the trunk of each tree. Is it reasonable to assume that X
is a Poisson random variable? If not, which of the Poisson
model assumptions is likely not to be true?

No. of Infestations, k No. of Trees

0 55
1 20
2 21
3 1
4 1
5 1
6 0
7 1
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4.2.16. A tool and die press that stamps out cams used
in small gasoline engines tends to break down once every
five hours. The machine can be repaired and put back on
line quickly, but each such incident costs $50. What is the
probability that maintenance expenses for the press will
be no more than $100 on a typical eight-hour workday?

4.2.17. In a new fiber-optic communication system, trans-
mission errors occur at the rate of 1.5 per ten seconds.
What is the probability that more than two errors will
occur during the next half-minute?

4.2.18. Assume that the number of hits, X , that a baseball
team makes in a nine-inning game has a Poisson distribu-
tion. If the probability that a team makes zero hits is 1

3
,

what are their chances of getting two or more hits?

4.2.19. Flaws in metal sheeting produced by a high-
temperature roller occur at the rate of one per ten square
feet. What is the probability that three or more flaws will
appear in a five-by-eight-foot panel?

4.2.20. Suppose a radioactive source is metered for two
hours, during which time the total number of alpha par-
ticles counted is 482. What is the probability that exactly
three particles will be counted in the next two minutes?
Answer the question two ways—first, by defining X to
be the number of particles counted in two minutes, and

second, by defining X to be the number of particles
counted in one minute.

4.2.21. Suppose that on-the-job injuries in a textile mill
occur at the rate of 0.1 per day.

(a) What is the probability that two accidents will occur
during the next (five-day) workweek?

(b) Is the probability that four accidents will occur over
the next two workweeks the square of your answer
to part (a)? Explain.

4.2.22. Find P(X = 4) if the random variable X has a
Poisson distribution such that P(X = 1)= P(X = 2).

4.2.23. Let X be a Poisson random variable with param-
eter λ. Show that the probability that X is even is 1

2
(1 +

e−2λ).

4.2.24. Let X and Y be independent Poisson random
variables with parameters λ and μ, respectively. Example
3.12.10 established that X + Y is also Poisson with param-
eter λ+μ. Prove that same result using Theorem 3.8.3.

4.2.25. If X1 is a Poisson random variable for which
E(X1) = λ and if the conditional pdf of X2 given that
X1 = x1 is binomial with parameters x1 and p, show that
the marginal pdf of X2 is Poisson with E(X2)= λp.

Intervals Between Events: The Poisson/Exponential Relationship

Situations sometimes arise where the time interval between consecutively occurring
events is an important random variable. Imagine being responsible for the main-
tenance on a network of computers. Clearly, the number of technicians you would
need to employ in order to be capable of responding to service calls in a timely
fashion would be a function of the “waiting time” from one breakdown to another.

Figure 4.2.3 shows the relationship between the random variables X and Y ,
where X denotes the number of occurrences in a unit of time and Y denotes the
interval between consecutive occurrences. Pictured are six intervals: X = 0 on one
occasion, X =1 on three occasions, X =2 once, and X =3 once. Resulting from those
eight occurrences are seven measurements on the random variable Y . Obviously, the
pdf for Y will depend on the pdf for X . One particularly important special case of
that dependence is the Poisson/exponential relationship outlined in Theorem 4.2.3.

Figure 4.2.3 y1 y2 y3 y4 y5 y6 y7Y values:

Unit time

X = 1 X = 1 X = 0 X = 3X = 1 X = 2

Theorem
4.2.3

Suppose a series of events satisfying the Poisson model are occurring at the rate of
λ per unit time. Let the random variable Y denote the interval between consecutive
events. Then Y has the exponential distribution

fY (y)= λe−λy, y > 0
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they should come one month apart. But that is simply not the way random events
behave, as Theorem 4.2.3 clearly shows.

Look at the entries in Table 4.2.5. The average of those thirty-six (randomly
occurring) eruption separations was 37.7 months, yet seven of the separations were
extremely short (less than or equal to six months). If two of those extremely short
separations happened to occur consecutively, it would be tempting (but wrong) to
conclude that the eruptions (since they came so close together) were “occurring in
threes” for some supernatural reason.

Using the combinatorial techniques discussed in Section 2.6, we can calculate
the probability that two extremely short intervals would occur consecutively. Think
of the thirty-six intervals as being either “normal” or “extremely short.” There are
twenty-nine in the first group and seven in the second. Using the method described
in Example 2.6.21, the probability that two extremely short separations would occur
consecutively at least once is 61%, which hardly qualifies as a rare event:

P(Two extremely short separations occur consecutively at least once)

=
(30

6

) · (61)+ (30
5

) · (52)+ (30
4

) · (43)(36
29

) = 0.61

So, despite what our intuitions might tell us, the phenomenon of bad things coming
in threes is neither mysterious nor uncommon or unexpected.

Example
4.2.5

Among the most famous of all meteor showers are the Perseids, which occur each
year in early August. In some areas the frequency of visible Perseids can be as high as
forty per hour. Given that such sightings are Poisson events, calculate the probability
that an observer who has just seen a meteor will have to wait at least five minutes
before seeing another one.

Let the random variable Y denote the interval (in minutes) between consecu-
tive sightings. Expressed in the units of Y , the forty-per-hour rate of visible Perseids
becomes 0.67 per minute. A straightforward integration, then, shows that the proba-
bility is 0.035 that an observer will have to wait five minutes or more to see another
meteor:

P(Y > 5) =
∫ ∞

5
0.67e −0.67y dy

=
∫ ∞

3.35
e−u du (where u = 0.67y)

= −e−u
∣∣∞
3.35 = e−3.35

= 0.035

Questions

4.2.26. Suppose that commercial airplane crashes in a
certain country occur at the rate of 2.5 per year.

(a) Is it reasonable to assume that such crashes are
Poisson events? Explain.

(b) What is the probability that four or more crashes will
occur next year?

(c) What is the probability that the next two crashes will
occur within three months of one another?

4.2.27. Records show that deaths occur at the rate of 0.1
per day among patients residing in a large nursing home.
If someone dies today, what are the chances that a week
or more will elapse before another death occurs?
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4.2.28. Suppose that Y1 and Y2 are independent exponen-
tial random variables, each having pdf fY (y)=λe−λy , y >0.
If Y = Y1 + Y2, it can be shown that

fY1+Y2(y)= λ2 ye−λy, y > 0

Recall Case Study 4.2.4. What is the probability that the
next three eruptions of Mauna Loa will be less than forty
months apart?

4.2.29. Fifty spotlights have just been installed in an out-
door security system. According to the manufacturer’s

specifications, these particular lights are expected to burn
out at the rate of 1.1 per one hundred hours. What is the
expected number of bulbs that will fail to last for at least
seventy-five hours?

4.2.30. Suppose you want to invent a new superstition
that “Bad things come in fours.” Using the data given
in Case Study 4.2.4 and the type of analysis described
on p. 238, calculate the probability that your superstition
would appear to be true.

4.3 The Normal Distribution
The Poisson limit described in Section 4.2 was not the only, or the first, approx-
imation developed for the purpose of facilitating the calculation of binomial
probabilities. Early in the eighteenth century, Abraham DeMoivre proved that
areas under the curve fz(z) = 1√

2π
e−z2/2, −∞ < z < ∞, can be used to estimate

P

[
a ≤ X −n

(
1
2

)
√

n
(

1
2

)(
1
2

) ≤ b

]
, where X is a binomial random variable with a large n and

p = 1
2 .
Figure 4.3.1 illustrates the central idea in DeMoivre’s discovery. Pictured is a

probability histogram of the binomial distribution with n = 20 and p = 1
2 . Super-

imposed over the histogram is the function fY (y) = 1√
2π ·√5

e− 1
2

(y−10)2

5 . Notice how
closely the area under the curve approximates the area of the bar, even for this rela-
tively small value of n. The French mathematician Pierre-Simon Laplace generalized
DeMoivre’s original idea to binomial approximations for arbitrary p and brought
this theorem to the full attention of the mathematical community by including it in
his influential 1812 book, Theorie Analytique des Probabilities.
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Theorem
4.3.1

Let X be a binomial random variable defined on n independent trials for which p =
P(success). For any numbers a and b,

lim
n→∞ P

[
a ≤ X − np√

np(1 − p)
≤ b

]
= 1√

2π

∫ b

a
e−z2/2 dz



4.3 The Normal Distribution 245

About the Data This is a good set of data for illustrating why we need formal math-
ematical methods for interpreting data. As we have seen on other occasions, our
intuitions, when left unsupported by probability calculations, can often be deceived.
A typical first reaction to the Pratt-Woodruff results is to dismiss as inconsequen-
tial the 489 additional correct answers. To many, it seems entirely believable that
sixty thousand guesses could produce, by chance, an extra 489 correct responses.
Only after making the P(X ≥12,489) computation do we see the utter implausibility
of that conclusion. What statistics is doing here is what we would like it to do in
general—rule out hypotheses that are not supported by the data and point us in the
direction of inferences that are more likely to be true.

Questions

4.3.1. Use Appendix Table A.1 to evaluate the following
integrals. In each case, draw a diagram of fZ (z) and shade
the area that corresponds to the integral.

(a)
∫ 1.33

−0.44
1√
2π

e−z2/2 dz

(b)
∫ 0.94

−∞
1√
2π

e−z2/2 dz

(c)
∫ ∞

−1.48
1√
2π

e−z2/2 dz

(d)
∫ −4.32

−∞
1√
2π

e−z2/2 dz

4.3.2. Let Z be a standard normal random variable. Use
Appendix Table A.1 to find the numerical value for each
of the following probabilities. Show each of your answers
as an area under fZ (z).

(a) P(0 ≤ Z ≤ 2.07)

(b) P(−0.64 ≤ Z <−0.11)

(c) P(Z >−1.06)

(d) P(Z <−2.33)

(e) P(Z ≥ 4.61)

4.3.3.

(a) Let 0 < a < b. Which number is larger?∫ b

a

1√
2π

e−z2/2 dz or
∫ −a

−b

1√
2π

e−z2/2 dz

(b) Let a > 0. Which number is larger?∫ a+1

a

1√
2π

e−z2/2 dz or
∫ a+1/2

a−1/2

1√
2π

e−z2/2 dz

4.3.4.

(a) Evaluate
∫ 1.24

0 e−z2/2 dz.
(b) Evaluate

∫∞
−∞ 6e−z2/2 dz.

4.3.5. Assume that the random variable Z is described by
a standard normal curve fZ (z). For what values of z are
the following statements true?

(a) P(Z ≤ z)= 0.33
(b) P(Z ≥ z)= 0.2236
(c) P(−1.00 ≤ Z ≤ z)= 0.5004
(d) P(−z < Z < z)= 0.80
(e) P(z ≤ Z ≤ 2.03)= 0.15

4.3.6. Let zα denote the value of Z for which P(Z ≥
zα) = α. By definition, the interquartile range, Q, for the
standard normal curve is the difference

Q = z.25 − z.75

Find Q.

4.3.7. Oak Hill has 74,806 registered automobiles. A city
ordinance requires each to display a bumper decal show-
ing that the owner paid an annual wheel tax of $50. By
law, new decals need to be purchased during the month of
the owner’s birthday. This year’s budget assumes that at
least $306,000 in decal revenue will be collected in Novem-
ber. What is the probability that the wheel taxes reported
in that month will be less than anticipated and produce a
budget shortfall?

4.3.8. Hertz Brothers, a small, family-owned radio man-
ufacturer, produces electronic components domestically
but subcontracts the cabinets to a foreign supplier.
Although inexpensive, the foreign supplier has a quality-
control program that leaves much to be desired. On the
average, only 80% of the standard 1600-unit shipment that
Hertz receives is usable. Currently, Hertz has back orders
for 1260 radios but storage space for no more than 1310
cabinets. What are the chances that the number of usable
units in Hertz’s latest shipment will be large enough to
allow Hertz to fill all the orders already on hand, yet small
enough to avoid causing any inventory problems?
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4.3.9. Fifty-five percent of the registered voters in
Sheridanville favor their incumbent mayor in her bid
for re-election. If four hundred voters go to the polls,
approximate the probability that

(a) the race ends in a tie.
(b) the challenger scores an upset victory.

4.3.10. State Tech’s basketball team, the Fighting Loga-
rithms, have a 70% foul-shooting percentage.

(a) Write a formula for the exact probability that out of
their next one hundred free throws, they will make
between seventy-five and eighty, inclusive.

(b) Approximate the probability asked for in part (a).

4.3.11. A random sample of 747 obituaries published
recently in Salt Lake City newspapers revealed that
344 (or 46%) of the decedents died in the three-month
period following their birthdays (123). Assess the sta-
tistical significance of that finding by approximating the
probability that 46% or more would die in that particu-
lar interval if deaths occurred randomly throughout the
year. What would you conclude on the basis of your
answer?

4.3.12. There is a theory embraced by certain parapsy-
chologists that hypnosis can enhance a person’s ESP abil-
ity. To test that hypothesis, an experiment was set up with
fifteen hypnotized subjects (21). Each was asked to make
100 guesses using the same sort of ESP cards and proto-
col that were described in Case Study 4.3.1. A total of 326
correct identifications were made. Can it be argued on the
basis of those results that hypnosis does have an effect on
a person’s ESP ability? Explain.

4.3.13. If pX (k) = ( 10
k

)
(0.7)k(0.3)10−k , k = 0,1, . . . ,10, is it

appropriate to approximate P(4 ≤ X ≤ 8) by computing
the following?

P

[
3.5 − 10(0.7)√

10(0.7)(0.3)
≤ Z ≤ 8.5 − 10(0.7)√

10(0.7)(0.3)

]
Explain.

4.3.14. A sell-out crowd of 42,200 is expected at Cleve-
land’s Jacobs Field for next Tuesday’s game against the
Baltimore Orioles, the last before a long road trip. The
ballpark’s concession manager is trying to decide how
much food to have on hand. Looking at records from
games played earlier in the season, she knows that, on the
average, 38% of all those in attendance will buy a hot dog.
How large an order should she place if she wants to have
no more that a 20% chance of demand exceeding supply?

Central Limit Theorem

It was pointed out in Example 3.9.3 that every binomial random variable X can
be written as the sum of n independent Bernoulli random variables X1, X2, . . . , Xn ,
where

Xi =
{

1 with probability p

0 with probability 1 − p

But if X = X1 + X2 + · · ·+ Xn , Theorem 4.3.1 can be reexpressed as

lim
n→∞ P

[
a ≤ X1 + X2 + · · · + Xn − np√

np(1 − p)
≤ b

]
= 1√

2π

∫ b

a
e−z2/2 dz (4.3.2)

Implicit in Equation 4.3.2 is an obvious question: Does the DeMoivre-Laplace
limit apply to sums of other types of random variables as well? Remarkably, the
answer is “yes.” Efforts to extend Equation 4.3.2 have continued for more than 150
years. Russian probabilists—A. M. Lyapunov, in particular—made many of the key
advances. In 1920, George Polya gave these new generalizations a name that has
been associated with the result ever since: He called it the central limit theorem
(136).

Theorem
4.3.2

(Central Limit Theorem) Let W1, W2, . . .be an infinite sequence of independent ran-
dom variables, each with the same distribution. Suppose that the mean μ and the
variance σ 2 of fW (w) are both finite. For any numbers a and b,
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and

Var(Yi )= E
(
Y 2

i

)= ∫ 50

−50

1

100
y2 dy

= 2500

3

Therefore,

E(S100)= E(Y1 + Y2 + · · · + Y100)= 0

and

Var(S100)= Var(Y1 + Y2 + · · ·+ Y100)= 100

(
2500

3

)
= 250,000

3

Applying Theorem 4.3.2, then, shows that her strategy has roughly an 8% chance of
being in error by more than $500:

P(|S100| > $500) = 1 − P(−500 ≤ S100 ≤ 500)

= 1 − P

(−500 − 0

500/
√

3
≤ S100 − 0

500/
√

3
≤ 500 − 0

500/
√

3

)
= 1 − P(−1.73 < Z < 1.73)

= 0.0836

Questions

4.3.15. A fair coin is tossed two hundred times. Let Xi =1
if the ith toss comes up heads and Xi = 0 otherwise, i =
1,2, . . . ,200; X =

200∑
i=1

Xi . Calculate the central limit theo-

rem approximation for P(|X − E(X)| ≤ 5). How does this
differ from the DeMoivre-Laplace approximation?

4.3.16. Suppose that one hundred fair dice are tossed.
Estimate the probability that the sum of the faces show-
ing exceeds 370. Include a continuity correction in your
analysis.

4.3.17. Let X be the amount won or lost in betting $5
on red in roulette. Then px(5) = 18

38
and px(−5) = 20

38
. If

a gambler bets on red one hundred times, use the cen-
tral limit theorem to estimate the probability that those
wagers result in less than $50 in losses.

4.3.18. If X1, X2, . . . , Xn are independent Poisson
random variables with parameters λ1, λ2, . . . , λn , respec-
tively, and if X = X1 + X2 + · · · + Xn , then X is a

Poisson random variable with parameter λ =
n∑

i=1
λi (recall

Example 3.12.10). What specific form does the ratio
in Theorem 4.3.2 take if the Xi ’s are Poisson random
variables?

4.3.19. An electronics firm receives, on the average, fifty
orders per week for a particular silicon chip. If the com-
pany has sixty chips on hand, use the central limit theorem
to approximate the probability that they will be unable to
fill all their orders for the upcoming week. Assume that
weekly demands follow a Poisson distribution. (Hint: See
Question 4.3.18.)

4.3.20. Considerable controversy has arisen over the pos-
sible aftereffects of a nuclear weapons test conducted
in Nevada in 1957. Included as part of the test were
some three thousand military and civilian “observers.”
Now, more than fifty years later, eight cases of leukemia
have been diagnosed among those three thousand. The
expected number of cases, based on the demographic
characteristics of the observers, was three. Assess the sta-
tistical significance of those findings. Calculate both an
exact answer using the Poisson distribution as well as an
approximation based on the central limit theorem.
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Corollary
4.3.2

Let Y1, Y2, . . ., Yn be any set of independent normal random variables with means
μ1, μ2, . . ., μn and variances σ 2

1 , σ 2
2, . . ., σ 2

n , respectively. Let a1, a2, . . ., an be any
set of constants. Then Y = a1Y1 + a2Y2 + · · · + anYn is normally distributed with mean

μ=
n∑

i=1
aiμi and variance σ 2 =

n∑
i=1

a2
i σ

2
i . �

Example
4.3.8

The elevator in the athletic dorm at Swampwater Tech has a maximum capacity of
twenty-four hundred pounds. Suppose that ten football players get on at the twen-
tieth floor. If the weights of Tech’s players are normally distributed with a mean of
two hundred twenty pounds and a standard deviation of twenty pounds, what is the
probability that there will be ten fewer Muskrats at tomorrow’s practice?

Let the random variables Y1, Y2, . . ., Y10 denote the weights of the ten players.

At issue is the probability that Y =
10∑

i=1
Yi exceeds twenty-four hundred pounds. But

P

(
10∑

i=1

Yi > 2400

)
= P

(
1

10

10∑
i=1

Yi >
1

10
· 2400

)
= P(Ȳ > 240.0)

A Z transformation can be applied to the latter expression using the corollary on
p. 257:

P(Ȳ > 240.0) = P

(
Ȳ − 220

20/
√

10
>

240.0 − 220

20/
√

10

)
= P(Z > 3.16)

= 0.0008

Clearly, the chances of a Muskrat splat are minimal. (How much would the
probability change if eleven players squeezed onto the elevator?)

Questions

4.3.21. Econo-Tire is planning an advertising campaign
for its newest product, an inexpensive radial. Preliminary
road tests conducted by the firm’s quality-control depart-
ment have suggested that the lifetimes of these tires will
be normally distributed with an average of thirty thousand
miles and a standard deviation of five thousand miles. The
marketing division would like to run a commercial that
makes the claim that at least nine out of ten drivers will
get at least twenty-five thousand miles on a set of Econo-
Tires. Based on the road test data, is the company justified
in making that assertion?

4.3.22. A large computer chip manufacturing plant under
construction in Westbank is expected to result in an addi-
tional fourteen hundred children in the county’s public
school system once the permament workforce arrives.
Any child with an IQ under 80 or over 135 will require
individualized instruction that will cost the city an addi-
tional $1750 per year. How much money should Westbank
anticipate spending next year to meet the needs of its
new special ed students? Assume that IQ scores are nor-
mally distributed with a mean (μ) of 100 and a standard
deviation (σ ) of 16.

4.3.23. Records for the past several years show that the
amount of money collected daily by a prominent televan-
gelist is normally distributed with a mean (μ) of $20,000
and a standard deviation (σ ) of $5000. What are the
chances that tomorrow’s donations will exceed $30,000?

4.3.24. The following letter was written to a well-known
dispenser of advice to the lovelorn (171):

Dear Abby: You wrote in your column that a
woman is pregnant for 266 days. Who said so? I
carried my baby for ten months and five days, and
there is no doubt about it because I know the exact
date my baby was conceived. My husband is in the
Navy and it couldn’t have possibly been conceived
any other time because I saw him only once for an
hour, and I didn’t see him again until the day before
the baby was born.

I don’t drink or run around, and there is no way
this baby isn’t his, so please print a retraction about
the 266-day carrying time because otherwise I am in
a lot of trouble.

San Diego Reader
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Whether or not San Diego Reader is telling the truth is
a judgment that lies beyond the scope of any statistical
analysis, but quantifying the plausibility of her story does
not. According to the collective experience of generations
of pediatricians, pregnancy durations, Y , tend to be nor-
mally distributed with μ = 266 days and σ = 16 days. Do a
probability calculation that addresses San Diego Reader’s
credibility. What would you conclude?

4.3.25. A criminologist has developed a questionnaire for
predicting whether a teenager will become a delinquent.
Scores on the questionnaire can range from 0 to 100,
with higher values reflecting a presumably greater crimi-
nal tendency. As a rule of thumb, the criminologist decides
to classify a teenager as a potential delinquent if his or
her score exceeds 75. The questionnaire has already been
tested on a large sample of teenagers, both delinquent and
nondelinquent. Among those considered nondelinquent,
scores were normally distributed with a mean (μ) of 60
and a standard deviation (σ ) of 10. Among those consid-
ered delinquent, scores were normally distributed with a
mean of 80 and a standard deviation of 5.

(a) What proportion of the time will the criminolo-
gist misclassify a nondelinquent as a delinquent?
A delinquent as a nondelinquent?

(b) On the same set of axes, draw the normal curves that
represent the distributions of scores made by delin-
quents and nondelinquents. Shade the two areas
that correspond to the probabilities asked for in
part (a).

4.3.26. The cross-sectional area of plastic tubing for use
in pulmonary resuscitators is normally distributed with
μ= 12.5 mm2 and σ = 0.2 mm2. When the area is less than
12.0 mm2 or greater than 13.0 mm2, the tube does not fit
properly. If the tubes are shipped in boxes of one thou-
sand, how many wrong-sized tubes per box can doctors
expect to find?

4.3.27. At State University, the average score of the enter-
ing class on the verbal portion of the SAT is 565, with a
standard deviation of 75. Marian scored a 660. How many
of State’s other 4250 freshmen did better? Assume that
the scores are normally distributed.

4.3.28. A college professor teaches Chemistry 101 each
fall to a large class of freshmen. For tests, she uses stan-
dardized exams that she knows from past experience pro-
duce bell-shaped grade distributions with a mean of 70 and
a standard deviation of 12. Her philosophy of grading is to
impose standards that will yield, in the long run, 20% A’s,
26% B’s, 38% C’s, 12% D’s, and 4% F’s. Where should
the cutoff be between the A’s and the B’s? Between the
B’s and the C’s?

4.3.29. Suppose the random variable Y can be described
by a normal curve with μ= 40. For what value of σ is

P(20 ≤ Y ≤ 60)= 0.50

4.3.30. It is estimated that 80% of all eighteen-year-
old women have weights ranging from 103.5 to 144.5 lb.
Assuming the weight distribution can be adequately mod-
eled by a normal curve and that 103.5 and 144.5 are
equidistant from the average weight μ, calculate σ .

4.3.31. Recall the breath analyzer problem described in
Example 4.3.5. Suppose the driver’s blood alcohol concen-
tration is actually 0.09% rather than 0.075%. What is the
probability that the breath analyzer will make an error in
his favor and indicate that he is not legally drunk? Sup-
pose the police offer the driver a choice—either take the
sobriety test once or take it twice and average the read-
ings. Which option should a “0.075%” driver take? Which
option should a “0.09%” driver take? Explain.

4.3.32. If a random variable Y is normally distributed
with mean μ and standard deviation σ , the Z ratio Y−μ

σ

is often referred to as a normed score: It indicates the
magnitude of y relative to the distribution from which it
came. “Norming” is sometimes used as an affirmative-
action mechanism in hiring decisions. Suppose a cosmetics
company is seeking a new sales manager. The aptitude test
they have traditionally given for that position shows a dis-
tinct gender bias: Scores for men are normally distributed
with μ = 62.0 and σ = 7.6, while scores for women are
normally distributed with μ = 76.3 and σ = 10.8. Laura
and Michael are the two candidates vying for the posi-
tion: Laura has scored 92 on the test and Michael 75. If
the company agrees to norm the scores for gender bias,
whom should they hire?

4.3.33. The IQs of nine randomly selected people are
recorded. Let Y denote their average. Assuming the
distribution from which the Yi ’s were drawn is normal
with a mean of 100 and a standard deviation of 16,
what is the probability that Y will exceed 103? What
is the probability that any arbitrary Yi will exceed 103?
What is the probability that exactly three of the Yi ’s will
exceed 103?

4.3.34. Let Y1,Y2, . . . ,Yn be a random sample from a nor-
mal distribution where the mean is 2 and the variance is 4.
How large must n be in order that

P(1.9 ≤ Y ≤ 2.1)≥ 0.99

4.3.35. A circuit contains three resistors wired in series.
Each is rated at 6 ohms. Suppose, however, that the true
resistance of each one is a normally distributed random
variable with a mean of 6 ohms and a standard devia-
tion of 0.3 ohm. What is the probability that the combined
resistance will exceed 19 ohms? How “precise” would the
manufacturing process have to be to make the probability
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less than 0.005 that the combined resistance of the circuit
would exceed 19 ohms?

4.3.36. The cylinders and pistons for a certain internal
combustion engine are manufactured by a process that
gives a normal distribution of cylinder diameters with a
mean of 41.5 cm and a standard deviation of 0.4 cm. Sim-
ilarly, the distribution of piston diameters is normal with
a mean of 40.5 cm and a standard deviation of 0.3 cm.
If the piston diameter is greater than the cylinder diam-
eter, the former can be reworked until the two “fit.”

What proportion of cylinder-piston pairs will need to be
reworked?

4.3.37. Use moment-generating functions to prove the
two corollaries to Theorem 4.3.3.

4.3.38. Let Y1,Y2, . . . , Y9 be a random sample of size
9 from a normal distribution where μ = 2 and σ = 2.
Let Y ∗

1 ,Y ∗
2 , . . . , Y ∗

9 be an independent random sample
from a normal distribution having μ = 1 and σ = 1. Find
P(Ȳ ≥ Ȳ ∗).

4.4 The Geometric Distribution
Consider a series of independent trials, each having one of two possible outcomes,
success or failure. Let p = P(Trial ends in success). Define the random variable X to
be the trial at which the first success occurs. Figure 4.4.1 suggests a formula for the
pdf of X :

pX (k)= P(X = k)= P(First success occurs on kth trial)

= P(First k − 1 trials end in failure and kth trial ends in success)

= P(First k − 1 trials end in failure) · P(kth trial ends in success)

= (1 − p)k−1 p, k = 1,2, . . . (4.4.1)

We call the probability model in Equation 4.4.1 a geometric distribution (with
parameter p).

Figure 4.4.1

Independent trials

First success

F
k – 1

F
2

F
1

S
k

k – 1 failures

Comment Even without its association with independent trials and Figure 4.4.1,
the function pX (k) = (1 − p)k−1 p, k = 1,2, . . . qualifies as a discrete pdf because (1)
pX (k)≥ 0 for all k and (2)

∑
all k

pX (k)= 1:

∞∑
k=1

(1 − p)k−1 p = p
∞∑
j=0

(1 − p) j

= p ·
[

1

1 − (1 − p)

]
= 1

Example
4.4.1

A pair of fair dice are tossed until a sum of 7 appears for the first time. What is the
probability that more than four rolls will be required for that to happen?

Each throw of the dice here is an independent trial for which

p = P(sum = 7)= 6

36
= 1

6
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and E(X3) = 6
4 . Continuing in this fashion, we can find the remaining E(Xi )’s. It

follows that a customer will have to make 14.7 trips to the store, on the average, to
collect a complete set of six letters:

E(X) =
6∑

i=1

E(Xi )

= 1 + 6

5
+ 6

4
+ 6

3
+ 6

2
+ 6

1

= 14.7

Questions

4.4.1. Because of her past convictions for mail fraud and
forgery, Jody has a 30% chance each year of having her
tax returns audited. What is the probability that she will
escape detection for at least three years? Assume that she
exaggerates, distorts, misrepresents, lies, and cheats every
year.

4.4.2. A teenager is trying to get a driver’s license. Write
out the formula for the pdf px(k), where the random vari-
able X is the number of tries that he needs to pass the
road test. Assume that his probability of passing the exam
on any given attempt is 0.10. On the average, how many
attempts is he likely to require before he gets his license?

4.4.3. Is the following set of data likely to have come
from the geometric pdf pX (k) = ( 3

4

)k−1 · ( 1
4

)
, k = 1,2, . . .?

Explain.

2 8 1 2 2 5 1 2 8 3
5 4 2 4 7 2 2 8 4 7
2 6 2 3 5 1 3 3 2 5
4 2 2 3 6 3 6 4 9 3
3 7 5 1 3 4 3 4 6 2

4.4.4. Recently married, a young couple plans to continue
having children until they have their first girl. Suppose
the probability that a child is a girl is 1

2
, the outcome of

each birth is an independent event, and the birth at which
the first girl appears has a geometric distribution. What is
the couple’s expected family size? Is the geometric pdf a
reasonable model here? Discuss.

4.4.5. Show that the cdf for a geometric random vari-
able is given by FX (t) = P(X ≤ t) = 1 − (1 − p)[t], where
[t] denotes the greatest integer in t , t ≥ 0.

4.4.6. Suppose three fair dice are tossed repeatedly. Let
the random variable X denote the roll on which a sum of
4 appears for the first time. Use the expression for Fx(t)
given in Question 4.4.5 to evaluate P(65 ≤ X ≤ 75).

4.4.7. Let Y be an exponential random variable, where
fY (y) = λe−λy , 0 ≤ y. For any positive integer n, show
that P(n ≤ Y ≤ n + 1) = e−λn(1 − e−λ). Note that if p =
1 − e−λ, the “discrete” version of the exponential pdf is
the geometric pdf.

4.4.8. Sometimes the geometric random variable is
defined to be the number of trials, X, preceding the first
success. Write down the corresponding pdf and derive the
moment-generating function for X two ways—(1) by eval-
uating E(et X ) directly and (2) by using Theorem 3.12.3.

4.4.9. Differentiate the moment-generating function for
a geometric random variable and verify the expressions
given for E(X) and Var(X) in Theorem 4.4.1.

4.4.10. Suppose that the random variables X1 and X2 have

mgfs MX1(t) = 1
2 et

1−
(

1− 1
2

)
et

and MX2(t) = 1
4 et

1−
(

1− 1
4 t
)

et
, respec-

tively. Let X = X1 + X2. Does X have a geometric distri-
bution? Assume that X1 and X2 are independent.

4.4.11. The factorial moment-generating function for any
random variable W is the expected value of tw. More-
over dr

dtr E(t W ) |t=1 = E[W (W − 1) · · · (W − r + 1)]. Find the
factorial moment-generating function for a geometric ran-
dom variable and use it to verify the expected value and
variance formulas given in Theorem 4.4.1.

4.5 The Negative Binomial Distribution
The geometric distribution introduced in Section 4.4 can be generalized in a very
straightforward fashion. Imagine waiting for the r th (instead of the first) success in
a series of independent trials, where each trial has a probability of p of ending in
success (see Figure 4.5.1).
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is a set of uniform random variables as defined earlier, then Yi = −(1/λ) ln Ui , i =
1,2, . . . , will be the desired set of exponential observations. Why that should be so
is an exercise in differentiating the cdf of Y . By definition,

FY (y) = P(Y ≤ y)= P(ln U >−λy)= P(U > e−λy)

=
∫ 1

e−λy
1 du = 1− e−λy

which implies that

fY (y)= F ′
Y (y)= λe−λy, y ≥ 0

Questions

4.5.1. A door-to-door encyclopedia salesperson is
required to document five in-home visits each day. Sup-
pose that she has a 30% chance of being invited into any
given home, with each address representing an indepen-
dent trial. What is the probability that she requires fewer
than eight houses to achieve her fifth success?

4.5.2. An underground military installation is fortified to
the extent that it can withstand up to three direct hits
from air-to-surface missiles and still function. Suppose an
enemy aircraft is armed with missiles, each having a 30%
chance of scoring a direct hit. What is the probability that
the installation will be destroyed with the seventh missile
fired?

4.5.3. Darryl’s statistics homework last night was to flip
a fair coin and record the toss, X , when heads appeared
for the second time. The experiment was to be repeated
a total of one hundred times. The following are the one
hundred values for X that Darryl turned in this morn-
ing. Do you think that he actually did the assignment?
Explain.

3 7 3 2 9 3 4 3 3 2
7 3 8 4 3 3 3 4 3 3
4 3 2 2 4 5 2 2 2 4
2 5 6 4 2 6 2 8 3 2
8 2 3 2 4 3 2 6 3 3
3 2 5 3 6 4 5 6 5 6
3 5 2 7 2 10 4 3 2 2
4 2 4 5 5 5 6 2 4 3
3 4 4 6 3 4 2 5 5 2
5 7 5 3 2 7 4 4 4 3

4.5.4. When a machine is improperly adjusted, it has
probability 0.15 of producing a defective item. Each day,
the machine is run until three defective items are pro-
duced. When this occurs, it is stopped and checked for
adjustment. What is the probability that an improperly
adjusted machine will produce five or more items before

being stopped? What is the average number of items an
improperly adjusted machine will produce before being
stopped?

4.5.5. For a negative binomial random variable whose pdf
is given by Equation 4.5.1, find E(X) directly by evaluat-

ing
∞∑

k=r
k
(

k−1
r−1

)
pr (1 − p)k−r . (Hint: Reduce the sum to one

involving negative binomial probabilities with parameters
r + 1 and p.)

4.5.6. Let the random variable X denote the number
of trials in excess of r that are required to achieve
the r th success in a series of independent trials, where
p is the probability of success at any given trial.
Show that

pX (k)=
(

k + r − 1

k

)
pr (1 − p)k, k = 0,1,2, . . .

[Note: This particular formula for pX (k) is often used in
place of Equation 4.5.1 as the definition of the pdf for a
negative binomial random variable.]

4.5.7. Calculate the mean, variance, and moment-
generating function for a negative binomial random vari-
able X whose pdf is given by the expression

pX (k)=
(

k + r − 1

k

)
pr (1 − p)k, k = 0,1,2, . . .

(See Question 4.5.6.)

4.5.8. Let X1, X2, and X3 be three independent negative
binomial random variables with pdfs

pXi (k)=
(

k − 1

2

)(
4

5

)3(1

5

)k−3

, k = 3,4,5, . . .

for i = 1,2,3. Define X = X1 + X2 + X3. Find P(10 ≤ X ≤
12). (Hint: Use the moment-generating functions of X1,
X2, and X3 to deduce the pdf of X .)
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4.5.9. Differentiate the moment-generating function

MX (t) =
[

pet

1−(1−p)et

]r
to verify the formula given in Theo-

rem 4.5.1 for E(X).

4.5.10. Suppose that X1, X2, . . . , Xk are independent neg-
ative binomial random variables with parameters r1 and
p, r2 and p, . . ., and rk and p, respectively. Let X = X1 +
X2 + · · · + Xk . Find MX (t), pX (t), E(X), and Var(X).

4.6 The Gamma Distribution
Suppose a series of independent events are occurring at the constant rate of λ per
unit time. If the random variable Y denotes the interval between consecutive occur-
rences, we know from Theorem 4.2.3 that fY (y) = λe−λy , y > 0. Equivalently, Y can
be interpreted as the “waiting time” for the first occurrence. This section gener-
alizes the Poisson/exponential relationship and focuses on the interval, or waiting
time, required for the rth event to occur (see Figure 4.6.1).

Figure 4.6.1

Time
0 First

success

Y

Second
success

rth
success

Theorem
4.6.1

Suppose that Poisson events are occurring at the constant rate of λ per unit time. Let
the random variable Y denote the waiting time for the rth event. Then Y has pdf fY (y),
where

fY (y)= λr

(r − 1)! yr−1e−λy, y > 0

Proof We will establish the formula for fY (y) by deriving and differentiating its cdf,
FY (y). Let Y denote the waiting time to the rth occurrence. Then

FY (y)= P(Y ≤ y) = 1 − P(Y > y)

= 1 − P(Fewer than r events occur in [0, y])

= 1 −
r−1∑
k=0

e−λy (λy)k

k!
since the number of events that occur in the interval [0, y] is a Poisson random
variable with parameter λy.

From Theorem 3.4.1,

fY (y)= F ′
Y (y) = d

dy

[
1 −

r−1∑
k=0

e−λy (λy)k

k!

]

=
r−1∑
k=0

λe−λy (λy)k

k! −
r−1∑
k=1

λe−λy (λy)k−1

(k − 1)!

=
r−1∑
k=0

λe−λy (λy)k

k! −
r−2∑
k=0

λe−λy (λy)k

k!

= λr

(r − 1)! yr−1 e−λy, y > 0 �
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Questions

4.6.1. An Arctic weather station has three electronic wind
gauges. Only one is used at any given time. The life-
time of each gauge is exponentially distributed with a
mean of one thousand hours. What is the pdf of Y , the
random variable measuring the time until the last gauge
wears out?

4.6.2. A service contact on a new university computer
system provides twenty-four free repair calls from a tech-
nician. Suppose the technician is required, on the average,
three times a month. What is the average time it will take
for the service contract to be fulfilled?

4.6.3. Suppose a set of measurements Y1,Y2, . . . ,Y100 is
taken from a gamma pdf for which E(Y ) = 1.5 and
Var(Y ) = 0.75. How many Yi ’s would you expect to find
in the interval [1.0, 2.5]?

4.6.4. Demonstrate that λ plays the role of a scale param-
eter by showing that if Y is gamma with parameters r and
λ, then λY is gamma with parameters r and 1.

4.6.5. Show that a gamma pdf has the unique mode r−1
λ

;
that is, show that the function fY (y)= λr

�(r)
yr−1e−λy takes its

maximum value at ymode = r−1
λ

and at no other point.

4.6.6. Prove that �
(

1
2

) = √
π . [Hint: Consider E(Z 2),

where Z is a standard normal random variable.]

4.6.7. Show that �
(

7
2

)= 15
8

√
π .

4.6.8. If the random variable Y has the gamma pdf with
integer parameter r and arbitrary λ> 0, show that

E(Y m)= (m + r − 1)!
(r − 1)!λm

[Hint: Use the fact that
∫ ∞

0 yr−1e−y dy = (r − 1)! when r is
a positive integer.]

4.6.9. Differentiate the gamma moment-generating func-
tion to verify the formulas for E(Y ) and Var(Y ) given in
Theorem 4.6.3.

4.6.10. Differentiate the gamma moment-generating
function to show that the formula for E(Y m) given in
Question 4.6.8 holds for arbitrary r > 0.

4.7 Taking a Second Look at Statistics (Monte
Carlo Simulations)
Calculating probabilities associated with (1) single random variables and (2) func-
tions of sets of random variables has been the overarching theme of Chapters 3
and 4. Facilitating those computations has been a variety of transformations, sum-
mation properties, and mathematical relationships linking one pdf with another.
Collectively, these results are enormously effective. Sometimes, though, the intrinsic
complexity of a random variable overwhelms our ability to model its probabilis-
tic behavior in any formal or precise way. An alternative in those situations is
to use a computer to draw random samples from one or more distributions that
model portions of the random variable’s behavior. If a large enough number of
such samples is generated, a histogram (or density-scaled histogram) can be con-
structed that will accurately reflect the random variable’s true (but unknown)
distribution. Sampling “experiments” of this sort are known as Monte Carlo
studies.

Real-life situations where a Monte Carlo analysis could be helpful are not
difficult to imagine. Suppose, for instance, you just bought a state-of-the-art, high-
definition, plasma screen television. In addition to the pricey initial cost, an optional
warranty is available that covers all repairs made during the first two years. Accord-
ing to an independent laboratory’s reliability study, this particular television is
likely to require 0.75 service call per year, on the average. Moreover, the costs
of service calls are expected to be normally distributed with a mean (μ) of $100
and a standard deviation (σ ) of $20. If the warranty sells for $200, should you
buy it?
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Moreover,

∂ ln L(μ,σ 2)

∂μ
= 1

σ 2

n∑
i=1

(yi −μ)

and

∂ ln L(μ,σ 2)

∂σ 2
=−n

2
· 1

σ 2
+ 1

2

(
1

σ 2

)2 n∑
i=1

(yi −μ)2

Setting the two derivatives equal to zero gives the equations
n∑

i=1

(yi −μ) = 0 (5.2.1)

and

−nσ 2 +
n∑

i=1

(yi −μ)2 = 0 (5.2.2)

Equation 5.2.1 simplifies to
n∑

i=1

yi = nμ

which implies that μe = 1
n

n∑
i=1

yi = y. Substituting μe, then, into Equation 5.2.2 gives

−nσ 2 +
n∑

i=1

(yi − y)2 = 0

or

σ 2
e = 1

n

n∑
i=1

(yi − y)2

Comment The method of maximum likelihood has a long history: Daniel Bernoulli
was using it as early as 1777 (130). It was Ronald Fisher, though, in the early years
of the twentieth century, who first studied the mathematical properties of likelihood
estimation in any detail, and the procedure is often credited to him.

Questions

5.2.1. A random sample of size 8—X1 = 1, X2 = 0, X3 = 1,

X4 = 1, X5 = 0, X6 = 1, X7 = 1, and X8 = 0—is taken from
the probability function

pX (k; θ)= θ k(1 − θ)1−k, k = 0,1; 0 <θ < 1

Find the maximum likelihood estimate for θ .

5.2.2. The number of red chips and white chips in an urn
is unknown, but the proportion, p, of reds is either 1

3
or 1

2
.

A sample of size 5, drawn with replacement, yields the
sequence red, white, white, red, and white. What is the
maximum likelihood estimate for p?

5.2.3. Use the sample Y1 = 8.2,Y2 = 9.1,Y3 = 10.6, and
Y4 = 4.9 to calculate the maximum likelihood estimate for
λ in the exponential pdf

fY (y;λ)= λe−λy, y ≥ 0

5.2.4. Suppose a random sample of size n is drawn from
the probability model

pX (k; θ)= θ 2ke−θ2

k! , k = 0,1,2, . . .

Find a formula for the maximum likelihood estimator, θ̂ .
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5.2.5. Given that Y1 = 2.3,Y2 = 1.9, and Y3 = 4.6 is a
random sample from

fY (y; θ)= y3e−y/θ

6θ 4
, y ≥ 0

calculate the maximum likelihood estimate for θ .

5.2.6. Use the method of maximum likelihood to estimate
θ in the pdf

fY (y; θ)= θ

2
√

y
e−θ

√
y, y ≥ 0

Evaluate θe for the following random sample of size
4:Y1 = 6.2,Y2 = 7.0,Y3 = 2.5, and Y4 = 4.2.

5.2.7. An engineer is creating a project scheduling pro-
gram and recognizes that the tasks making up the project
are not always completed on time. However, the com-
pletion proportion tends to be fairly high. To reflect this
condition, he uses the pdf

fY (y; θ)= θyθ−1, 0 ≤ y ≤ 1, and 0 <θ

where y is the proportion of the task completed. Sup-
pose that in his previous project, the proportions of tasks
completed were 0.77, 0.82, 0.92, 0.94, and 0.98. Estimate θ .

5.2.8. The following data show the number of occu-
pants in passenger cars observed during one hour at a
busy intersection in Los Angeles (69). Suppose it can
be assumed that these data follow a geometric distribu-
tion, pX (k; p) = (1 − p)k−1 p, k = 1,2, . . .. Estimate p and
compare the observed and expected frequencies for each
value of X .

Number of Occupants Frequency

1 678
2 227
3 56
4 28
5 8
6+ 14

1011

5.2.9. For the Major League Baseball seasons from 1950
through 2008, there were fifty-nine nine-inning games in
which one of the teams did not manage to get a hit. The
data in the table give the number of no-hitters per season
over this period. Assume that the data follow a Poisson
distribution,

pX (k; λ)= e−λ
λk

k! , k = 0,1,2, . . .

(a) Estimate λ and compare the observed and expected
frequencies.

(b) Does the agreement (or lack of agreement) in part
(a) come as a surprise? Explain.

No. of No-Hitters Frequency

0 6
1 19
2 12
3 13
4+ 9

Source: en.wikipedia.org/wiki/List_of_Major_League_
Baseball_no-hitlers.

5.2.10. (a) Based on the random sample Y1 = 6.3,Y2 =
1.8, Y3 = 14.2, and Y4 = 7.6, use the method of maximum
likelihood to estimate the parameter θ in the uniform pdf

fY (y; θ)= 1

θ
, 0 ≤ y ≤ θ

(b) Suppose the random sample in part (a) represents the
two-parameter uniform pdf

fY (y; θ1, θ2)= 1

θ2 − θ1
, θ1 ≤ y ≤ θ2

Find the maximum likelihood estimates for θ1 and θ2.

5.2.11. Find the maximum likelihood estimate for θ in
the pdf

fY (y; θ)= 2y

1 − θ 2
, θ ≤ y ≤ 1

if a random sample of size 6 yielded the measurements
0.70, 0.63, 0.92, 0.86, 0.43, and 0.21.

5.2.12. A random sample of size n is taken from the pdf

fY (y; θ)= 2y

θ 2
, 0 ≤ y ≤ θ

Find an expression for θ̂ , the maximum likelihood estima-
tor for θ .

5.2.13. If the random variable Y denotes an individual’s
income, Pareto’s law claims that P(Y ≥ y)=

(
k
y

)θ

, where k

is the entire population’s minimum income. It follows that

FY (y)= 1 −
(

k
y

)θ

, and, by differentiation,

fY (y; θ)= θkθ

(
1

y

)θ+1

, y ≥ k; θ ≥ 1

Assume k is known. Find the maximum likelihood estima-
tor for θ if income information has been collected on a
random sample of 25 individuals.

5.2.14. The exponential pdf is a measure of lifetimes of
devices that do not age (see Question 3.11.11). However,
the exponential pdf is a special case of the Weibull dis-
tribution, which measures time to failure of devices where
the probability of failure increases as time does. A Weibull
random variable Y has pdf fY (y;α,β)=αβyβ−1e−αyβ

,0≤ y,
0 <α,0 <β.
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(a) Find the maximum likelihood estimator for α assum-
ing that β is known.

(b) Suppose α and β are both unknown. Write down
the equations that would be solved simultaneously
to find the maximum likelihood estimators of α

and β.

5.2.15. Suppose a random sample of size n is drawn from
a normal pdf where the mean μ is known but the variance
σ 2 is unknown. Use the method of maximum likelihood
to find a formula for σ̂ 2. Compare your answer to the
maximum likelihood estimator found in Example 5.2.4.

The Method of Moments

A second procedure for estimating parameters is the method of moments. Proposed
near the turn of the twentieth century by the great British statistician, Karl
Pearson, the method of moments is often more tractable than the method of max-
imum likelihood in situations where the underlying probability model has multiple
parameters.

Suppose that Y is a continuous random variable and that its pdf is a function of
s unknown parameters, θ1, θ2, . . ., θs . The first s moments of Y , if they exist, are given
by the integrals

E(Y j )=
∫ ∞

−∞
y j · fY (y; θ1, θ2, . . . , θs)dy, j = 1,2, . . . , s

In general, each E(Y j ) will be a different function of the s parameters. That is,

E(Y 1) = g1(θ1, θ2, . . . , θs)

E(Y 2) = g2(θ1, θ2, . . . , θs)

...

E(Y s) = gs(θ1, θ2, . . . , θs)

Corresponding to each theoretical moment, E(Y j ), is a sample moment, 1
n

n∑
i=1

y j
i .

Intuitively, the jth sample moment is an approximation to the jth theoretical
moment. Setting the two equal for each j produces a system of s simultaneous
equations, the solutions to which are the desired set of estimates, θ1e, θ2e, . . . , and θse.

Definition 5.2.3. Let y1, y2, . . ., yn be a random sample from the continuous
pdf fY (y; θ1, θ2, . . . , θs). The method of moments estimates, θ1e, θ2e, . . ., and θse,
for the model’s unknown parameters are the solutions of the s simultaneous
equations ∫ ∞

−∞
y fY (y; θ1, θ2, . . . , θs) dy =

(
1

n

) n∑
i=1

yi

∫ ∞

−∞
y2 fY (y; θ1, θ2, . . ., θs) dy =

(
1

n

) n∑
i=1

y2
i

...
...∫ ∞

−∞
ys fY (y; θ1, θ2, . . . , θs) dy =

(
1

n

) n∑
i=1

ys
i
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Questions

5.2.16. Let y1, y2, . . . , yn be a random sample of size n
from the pdf fY (y; θ) = 2y

θ2 ,0 ≤ y ≤ θ . Find a formula for
the method of moments estimate for θ . Compare the val-
ues of the method of moments estimate and the maximum
likelihood estimate if a random sample of size 5 consists of
the numbers 17, 92, 46, 39, and 56 (recall Question 5.2.12).

5.2.17. Use the method of moments to estimate θ in the
pdf

fY (y; θ)= (θ 2 + θ)yθ−1(1 − y), 0 ≤ y ≤ 1

Assume that a random sample of size n has been collected.

5.2.18. A criminologist is searching through FBI files
to document the prevalence of a rare double-whorl fin-
gerprint. Among six consecutive sets of 100,000 prints
scanned by a computer, the numbers of persons having the
abnormality are 3, 0, 3, 4, 2, and 1, respectively. Assume
that double whorls are Poisson events. Use the method of
moments to estimate their occurrence rate, λ. How would
your answer change if λ were estimated using the method
of maximum likelihood?

5.2.19. Find the method of moments estimate for λ if a
random sample of size n is taken from the exponential pdf,
fY (y;λ)= λe−λy, y ≥ 0.

5.2.20. Suppose that Y1 = 8.3,Y2 = 4.9,Y3 = 2.6, and Y4 =
6.5 is a random sample of size 4 from the two-parameter
uniform pdf,

fY (y; θ1, θ2)= 1

2θ2
, θ1 − θ2 ≤ y ≤ θ1 + θ2

Use the method of moments to calculate θ1e and θ2e.

5.2.21. Find a formula for the method of moments esti-
mate for the parameter θ in the Pareto pdf,

fY (y; θ)= θkθ

(
1

y

)θ+1

, y ≥ k; θ ≥ 1

Assume that k is known and that the data consist of a
random sample of size n. Compare your answer to the
maximum likelihood estimator found in Question 5.2.13.

5.2.22. Calculate the method of moments estimate for the
parameter θ in the probability function

pX (k; θ)= θ k(1 − θ)1−k, k = 0,1

if a sample of size 5 is the set of numbers 0, 0, 1, 0, 1.

5.2.23. Find the method of moments estimates for μ and
σ 2, based on a random sample of size n drawn from a nor-
mal pdf, where μ = E(Y ) and σ 2 = Var(Y ). Compare your
answers with the maximum likelihood estimates derived
in Example 5.2.4.

5.2.24. Use the method of moments to derive formu-
las for estimating the parameters r and p in the negative
binomial pdf,

pX (k; r, p) =
(

k − 1

r − 1

)
pr (1 − p)k−r , k = r, r + 1, . . .

5.2.25. Bird songs can be characterized by the number
of clusters of “syllables” that are strung together in rapid
succession. If the last cluster is defined as a “success,”
it may be reasonable to treat the number of clusters in
a song as a geometric random variable. Does the model
pX (k) = (1 − p)k−1 p, k = 1,2, . . ., adequately describe the
following distribution of 250 song lengths (100)? Begin
by finding the method of moments estimate for p. Then
calculate the set of “expected” frequencies.

No. of Clusters/Song Frequency

1 132
2 52
3 34
4 9
5 7
6 5
7 5
8 6

250

5.2.26. Let y1, y2, . . . , yn be a random sample from the

continuous pdf fY (y; θ1, θ2). Let σ̂ 2 = 1
n

n∑
i=1

(yi − y)2. Show

that the solutions of the equations

E(Y )= y and Var(Y )= σ̂ 2

for θ1 and θ2 give the same results as using the equations
in Definition 5.2.3.

5.3 Interval Estimation
Point estimates, no matter how they are determined, share the same fundamental
weakness: They provide no indication of their inherent precision. We know, for
instance, that λ̂ = X is both the maximum likelihood and the method of moments
estimator for the Poisson parameter, λ. But suppose a sample of size 6 is taken from
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though, seems to contradict that assumption: Samples used in opinion surveys
are invariably drawn without replacement, in which case X is hypergeometric, not
binomial. The consequences of that particular “error,” however, are easily corrected
and frequently negligible.

It can be shown mathematically that the expected value of X
n is the same

regardless of whether X is binomial or hypergeometric; its variance, though, is
different. If X is binomial,

Var

(
X

n

)
= p(1 − p)

n

If X is hypergeometric,

Var

(
X

n

)
= p(1 − p)

n

(
N − n

N − 1

)
where N is the total number of subjects in the population.

Since N−n
N−1 < 1, the actual variance of X

n is somewhat smaller than the (binomial)
variance we have been assuming, p(1−p)

n . The ratio N−n
N−1 is called the finite correction

factor. If N is much larger than n, which is typically the case, then the magnitude
of N−n

N−1 will be so close to 1 that the variance of X
n is equal to p(1−p)

n for all practical
purposes. Thus the “binomial” assumption in those situations is more than adequate.
Only when the sample is a sizeable fraction of the population do we need to include
the finite correction factor in any calculations that involve the variance of X

n .

Questions

5.3.1. A commonly used IQ test is scaled to have a mean
of 100 and a standard deviation of σ = 15. A school
counselor was curious about the average IQ of the stu-
dents in her school and took a random sample of fifty
students’ IQ scores. The average of these was y = 107.9.
Find a 95% confidence interval for the student IQ in the
school.

5.3.2. The production of a nationally marketed deter-
gent results in certain workers receiving prolonged expo-
sures to a Bacillus subtilis enzyme. Nineteen workers
were tested to determine the effects of those expo-
sures, if any, on various respiratory functions. One such
function, air-flow rate, is measured by computing the
ratio of a person’s forced expiratory volume (FEV1)
to his or her vital capacity (VC). (Vital capacity is
the maximum volume of air a person can exhale after
taking as deep a breath as possible; FEV1 is the max-
imum volume of air a person can exhale in one sec-
ond.) In persons with no lung dysfunction, the “norm”
for FEV1/VC ratios is 0.80. Based on the following data
(164), is it believable that exposure to the Bacillus sub-
tilis enzyme has no effect on the FEV1/VC ratio? Answer
the question by constructing a 95% confidence interval.
Assume that FEV1/VC ratios are normally distributed with
σ = 0.09.

Subject FEV1/VC Subject FEV1/VC

RH 0.61 WS 0.78
RB 0.70 RV 0.84
MB 0.63 EN 0.83
DM 0.76 WD 0.82
WB 0.67 FR 0.74
RB 0.72 PD 0.85
BF 0.64 EB 0.73
JT 0.82 PC 0.85
PS 0.88 RW 0.87
RB 0.82

5.3.3. Mercury pollution is widely recognized as a serious
ecological problem. Much of the mercury released into the
environment originates as a byproduct of coal burning and
other industrial processes. It does not become dangerous
until it falls into large bodies of water, where microor-
ganisms convert it to methylmercury (CH203

3 ), an organic
form that is particularly toxic. Fish are the intermediaries:
They ingest and absorb the methylmercury and are then
eaten by humans. Men and women, however, may not
metabolize CH203

3 at the same rate. In one study investi-
gating that issue, six women were given a known amount
of protein-bound methylmercury. Shown in the follow-
ing table are the half-lives of the methylmercury in their
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systems (114). For men, the average CH203
3 half-life is

believed to be eighty days. Assume that for both genders,
CH203

3 half-lives are normally distributed with a standard
deviation (σ ) of eight days. Construct a 95% confidence
interval for the true female CH203

3 half-life. Based on these
data, is it believable that males and females metabolize
methylmercury at the same rate? Explain.

Females CH203
3 Half-Life

AE 52
EH 69
LJ 73

AN 88
KR 87
LU 56

5.3.4. A physician who has a group of thirty-eight female
patients aged 18 to 24 on a special diet wishes to estimate
the effect of the diet on total serum cholesterol. For this
group, their average serum cholesterol is 188.4 (measured
in mg/100mL). Because of a large-scale government study,
the physician is willing to assume that the total serum
cholesterol measurements are normally distributed with
standard deviation of σ = 40.7. Find a 95% confidence
interval of the mean serum cholesterol of patients on the
special diet. Does the diet seem to have any effect on
their serum cholesterol, given that the national average for
women aged 18 to 24 is 192.0?

5.3.5. Suppose a sample of size n is to be drawn from
a normal distribution where σ is known to be 14.3. How
large does n have to be to guarantee that the length of the
95% confidence interval for μ will be less than 3.06?

5.3.6. What “confidence” would be associated with each
of the following intervals? Assume that the random vari-
able Y is normally distributed and that σ is known.

(a)
(

y − 1.64 · σ√
n
, y + 2.33 · σ√

n

)
(b)
(
−∞, y + 2.58 · σ√

n

)
(c)
(

y − 1.64 · σ√
n
, y
)

5.3.7. Five independent samples, each of size n, are to be
drawn from a normal distribution where σ is known. For
each sample, the interval

(
y − 0.96 · σ√

n
, y + 1.06 · σ√

n

)
will

be constructed. What is the probability that at least four
of the intervals will contain the unknown μ?

5.3.8. Suppose that y1, y2, . . . , yn is a random sam-
ple of size n from a normal distribution where σ

is known. Depending on how the tail-area probabili-
ties are split up, an infinite number of random intervals

having a 95% probability of containing μ can be con-
structed. What is unique about the particular interval(

y − 1.96 · σ√
n
, y + 1.96 · σ√

n

)
?

5.3.9. If the standard deviation (σ) associated with the
pdf that produced the following sample is 3.6, would it be
correct to claim that(

2.61 − 1.96 · 3.6√
20

,2.61 + 1.96 · 3.6√
20

)
= (1.03,4.19)

is a 95% confidence interval for μ? Explain.

2.5 0.1 0.2 1.3
3.2 0.1 0.1 1.4
0.5 0.2 0.4 11.2
0.4 7.4 1.8 2.1
0.3 8.6 0.3 10.1

5.3.10. In 1927, the year he hit sixty home runs, Babe
Ruth batted .356, having collected 192 hits in 540 official
at-bats (140). Based on his performance that season, con-
struct a 95% confidence interval for Ruth’s probability of
getting a hit in a future at-bat.

5.3.11. To buy a thirty-second commercial break dur-
ing the telecast of Super Bowl XXIX cost approxi-
mately $1,000,000. Not surprisingly, potential sponsors
wanted to know how many people might be watch-
ing. In a survey of 1015 potential viewers, 281 said
they expected to see less than a quarter of the adver-
tisements aired during the game. Define the rele-
vant parameter and estimate it using a 90% confidence
interval.

5.3.12. During one of the first “beer wars” in the early
1980s, a taste test between Schlitz and Budweiser was the
focus of a nationally broadcast TV commercial. One hun-
dred people agreed to drink from two unmarked mugs and
indicate which of the two beers they liked better; fifty-four
said, “Bud.” Construct and interpret the corresponding
95% confidence interval for p, the true proportion of
beer drinkers who prefered Budweiser to Schlitz. How
would Budweiser and Schlitz executives each have put
these results in the best possible light for their respective
companies?

5.3.13. The Pew Research Center did a survey of 2253
adults and discovered that 63% of them had broadband
Internet connections in their homes. The survey report
noted that this figure represented a “significant jump”
from the similar figure of 54% from two years earlier. One
way to define “significant jump” is to show that the earlier
number does not lie in the 95% confidence interval. Was
the increase significant by this definition?

Source: http://www.pewinternet.org/Reports/2009/10-Home-Broad
band-Adoption-2009.aspx.
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5.3.14. If (0.57, 0.63) is a 50% confidence interval for
p, what does k

n
equal and how many observations were

taken?

5.3.15. Suppose a coin is to be tossed n times for the pur-
pose of estimating p, where p = P(heads). How large must
n be to guarantee that the length of the 99% confidence
interval for p will be less than 0.02?

5.3.16. On the morning of November 9, 1994—the day
after the electoral landslide that had returned Republicans
to power in both branches of Congress—several key races
were still in doubt. The most prominent was the Washing-
ton contest involving Democrat Tom Foley, the reigning
speaker of the house. An Associated Press story showed
how narrow the margin had become (120):

With 99 percent of precincts reporting, Foley trailed
Republican challenger George Nethercutt by just
2,174 votes, or 50.6 percent to 49.4 percent. About
14,000 absentee ballots remained uncounted, mak-
ing the race too close to call.

Let p = P(Absentee voter prefers Foley). How small
could p have been and still have given Foley a 20% chance
of overcoming Nethercutt’s lead and winning the election?

5.3.17. Which of the following two intervals has
the greater probability of containing the binomial
parameter p?[

X

n
− 0.67

√
(X/n)(1 − X/n)

n
,

X

n
+ 0.67

√
(X/n)(1 − X/n)

n

]

or
(

X

n
,∞
)

5.3.18. Examine the first two derivatives of the func-
tion g(p) = p(1 − p) to verify the claim on p. 305 that
p(1 − p)≤ 1

4
for 0 < p < 1.

5.3.19. The financial crisis of 2008 highlighted the issue
of excessive compensation for business CEOs. In a Gallup
poll in the summer of 2009, 998 adults were asked, “Do
you favor or oppose the federal government taking steps
to limit the pay of executives at major companies?”, with
59% responding in favor. The report of the poll noted a
margin of error of ±3 percentage points. Verify the margin
of error and construct a 95% confidence interval.

Source: http://www.gallup.com/poll/120872/Americans-Favor-Gov-
Action-Limit-Executive-Pay.aspx.

5.3.20. Viral infections contracted early during a
woman’s pregnancy can be very harmful to the fetus. One
study found a total of 86 deaths and birth defects among
202 pregnancies complicated by a first-trimester German
measles infection (45). Is it believable that the true pro-
portion of abnormal births under similar circumstances

could be as high as 50%? Answer the question by cal-
culating the margin of error for the sample proportion,
86/202.

5.3.21. Rewrite Definition 5.3.1 to cover the case where
a finite correction factor needs to be included (i.e., situa-
tions where the sample size n is not negligible relative to
the population size N).

5.3.22. A public health official is planning for the supply
of influenza vaccine needed for the upcoming flu season.
She took a poll of 350 local citizens and found that only
126 said they would be vaccinated.

(a) Find the 90% confidence interval for the true pro-
portion of people who plan to get the vaccine.

(b) Find the confidence interval, including the finite cor-
rection factor, assuming the town’s population is
3000.

5.3.23. Given that n observations will produce a bino-
mial parameter estimator, X

n
, having a margin of error

equal to 0.06, how many observations are required for the
proportion to have a margin of error half that size?

5.3.24. Given that a political poll shows that 52% of the
sample favors Candidate A, whereas 48% would vote for
Candidate B, and given that the margin of error associated
with the survey is 0.05, does it make sense to claim that the
two candidates are tied? Explain.

5.3.25. Assume that the binomial parameter p is to be
estimated with the function X

n
, where X is the number

of successes in n independent trials. Which demands the
larger sample size: requiring that X

n
have a 96% probabil-

ity of being within 0.05 of p, or requiring that X
n

have a
92% probability of being within 0.04 of p?

5.3.26. Suppose that p is to be estimated by X
n

and we are
willing to assume that the true p will not be greater than
0.4. What is the smallest n for which X

n
will have a 99%

probability of being within 0.05 of p?

5.3.27. Let p denote the true proportion of college stu-
dents who support the movement to colorize classic films.
Let the random variable X denote the number of stu-
dents (out of n) who prefer colorized versions to black and
white. What is the smallest sample size for which the prob-
ability is 80% that the difference between X

n
and p is less

than 0.02?

5.3.28. University officials are planning to audit 1586 new
appointments to estimate the proportion p who have been
incorrectly processed by the payroll department.

(a) How large does the sample size need to be in order
for X

n
, the sample proportion, to have an 85% chance

of lying within 0.03 of p?
(b) Past audits suggest that p will not be larger than 0.10.

Using that information, recalculate the sample size
asked for in part (a).
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To “unbias” the maximum likelihood estimator in this case, we need simply mul-
tiply σ̂ 2 by n

n−1 . By convention, the unbiased version of the maximum likelihood
estimator for σ 2 in a normal distribution is denoted S2 and is referred to as the
sample variance:

S2 = sample variance = n

n − 1
· 1

n

n∑
i=1

(Yi − Y )2

= 1

n − 1

n∑
i=1

(Yi − Y )2

Comment The square root of the sample variance is called the sample standard
deviation:

S = sample standard deviation =
√√√√ 1

n − 1

n∑
i=1

(Yi − Y )2

In practice, S is the most commonly used estimator for σ even though E(S) �= σ

[despite the fact that E(S2)= σ 2].

Questions

5.4.1. Two chips are drawn without replacement from an
urn containing five chips, numbered 1 through 5. The aver-
age of the two drawn is to be used as an estimator, θ̂ ,
for the true average of all the chips (θ = 3). Calculate
P(|θ̂ − 3|> 1.0).

5.4.2. Suppose a random sample of size n = 6 is drawn
from the uniform pdf fY (y; θ) = 1/θ,0 ≤ y ≤ θ , for the
purpose of using θ̂ = Ymax to estimate θ .

(a) Calculate the probability that θ̂ falls within 0.2 of θ

given that the parameter’s true value is 3.0.
(b) Calculate the probability of the event asked for in

part (a), assuming the sample size is 3 instead of 6.

5.4.3. Five hundred adults are asked whether they favor
a bipartisan campaign finance reform bill. If the true pro-
portion of the electorate in favor of the legislation is 52%,
what are the chances that fewer than half of those in the
sample support the proposal? Use a Z transformation to
approximate the answer.

5.4.4. A sample of size n = 16 is drawn from a normal dis-
tribution where σ = 10 but μ is unknown. If μ = 20, what
is the probability that the estimator μ̂= Y will lie between
19.0 and 21.0?

5.4.5. Suppose X1, X2, . . . , Xn is a random sample of size n
drawn from a Poisson pdf where λ is an unknown param-
eter. Show that λ̂ = X is unbiased for λ. For what type of
parameter, in general, will the sample mean necessarily be

an unbiased estimator? (Hint: The answer is implicit in the
derivation showing that X is unbiased for the Poisson λ.)

5.4.6. Let Ymin be the smallest order statistic in a random
sample of size n drawn from the uniform pdf, fY (y; θ) =
1/θ,0 ≤ y ≤ θ . Find an unbiased estimator for θ based on
Ymin.

5.4.7. Let Y be the random variable described in
Example 5.2.3, where fY (y, θ) = e−(y−θ), y ≥ θ , θ > 0. Show
that Ymin − 1

n
is an unbiased estimator of θ .

5.4.8. Suppose that 14, 10, 18, and 21 constitute a random
sample of size 4 drawn from a uniform pdf defined over
the interval [0, θ ], where θ is unknown. Find an unbiased
estimator for θ based on Y ′

3, the third order statistic. What
numerical value does the estimator have for these partic-
ular observations? Is it possible that we would know that
an estimate for θ based on Y ′

3 was incorrect, even if we had
no idea what the true value of θ might be? Explain.

5.4.9. A random sample of size 2,Y1 and Y2, is drawn from
the pdf

fY (y; θ)= 2yθ 2, 0 < y <
1

θ
What must c equal if the statistic c(Y1 + 2Y2) is to be an
unbiased estimator for 1

θ
?

5.4.10. A sample of size 1 is drawn from the uniform pdf
defined over the interval [0, θ ]. Find an unbiased estimator
for θ 2. (Hint: Is θ̂ = Y 2 unbiased?)

5.4.11. Suppose that W is an unbiased estimator for θ .
Can W 2 be an unbiased estimator for θ 2?



5.4 Properties of Estimators 317

5.4.12. We showed in Example 5.4.4 that σ̂ 2 =
1
n

n∑
i=1

(Yi − Y )
2

is biased for σ 2. Suppose μ is known and does

not have to be estimated by Y . Show that σ̂ 2 = 1
n

n∑
i=1

(Yi −μ)2

is unbiased for σ 2.

5.4.13. As an alternative to imposing unbiasedness, an
estimator’s distribution can be “centered” by requiring
that its median be equal to the unknown parameter θ . If it
is, θ̂ is said to be median unbiased. Let Y1,Y2, . . . ,Yn be a
random sample of size n from the uniform pdf, fY (y; θ) =
1/θ,0 ≤ y ≤ θ . For arbitrary n, is θ̂ = n+1

n
· Ymax median

unbiased? Is it median unbiased for any value of n?

5.4.14. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf fY (y; θ) = 1

θ
e−y/θ , y > 0. Let θ̂ = n · Ymin. Is θ̂

unbiased for θ? Is θ̂ = 1
n

n∑
i=1

Yi unbiased for θ?

5.4.15. An estimator θ̂n = h(W1, . . . , Wn) is said to be
asymptotically unbiased for θ if lim

n→∞
E(θ̂n) = θ . Suppose W

is a random variable with E(W ) = μ and with variance
σ 2. Show that W

2
is an asymptotically unbiased estimator

for μ2.

5.4.16. Is the maximum likelihood estimator for σ 2 in a
normal pdf, where both μ and σ 2 are unknown, asymptot-
ically unbiased?

Efficiency

As we have seen, unknown parameters can have a multiplicity of unbiased estima-
tors. For samples drawn from the uniform pdf, fY (y; θ)=1/θ,0≤ y ≤ θ , for example,

both θ̂ = n+1
n · Ymax and θ̂ = 2

n

n∑
i=1

Yi have expected values equal to θ . Does it matter

which we choose?
Yes. Unbiasedness is not the only property we would like an estimator to have;

also important is its precision. Figure 5.4.3 shows the pdfs associated with two hypo-
thetical estimators, θ̂1 and θ̂2. Both are unbiased for θ , but θ̂2 is clearly the better of
the two because of its smaller variance. For any value r ,

P(θ − r ≤ θ̂2 ≤ θ + r)> P(θ − r ≤ θ̂1 ≤ θ + r)

That is, θ̂2 has a greater chance of being within a distance r of the unknown θ than
does θ̂1.

Definition 5.4.2. Let θ̂1 and θ̂2 be two unbiased estimators for a parameter θ . If

Var(θ̂1)<Var(θ̂2)

we say that θ̂1 is more efficient than θ̂2. Also, the relative efficiency of θ̂1 with
respect to θ̂2 is the ratio Var(θ̂2)/Var(θ̂1).

Figure 5.4.3

θ – r θ θ + r

f    (u)θ^2

^P (| θ  – θ | ≤ r)2

^P (| θ  – θ | ≤ r)1

f    (u)θ̂1



5.4 Properties of Estimators 319

Example
5.4.6

Let Y1, . . . ,Yn be a random sample from the pdf fY (y; θ) = 2y
θ2 , 0 ≤ y ≤ θ . We know

from Example 5.4.2 that θ̂1 = 3
2 Y and θ̂2 = 2n+1

2n Ymax are both unbiased for θ . Which
estimator is more efficient?

First, let us calculate the variance of θ̂1 = 3
2 Y . To do so, we need the variance of

Y . To that end, note that

E(Y 2)=
∫ θ

0
y2 · 2y

θ2
dy = 2

θ2

∫ θ

0
y3dy = 2

θ2
· θ4

4
= 1

2
θ2

and

Var(Y )= E(Y 2)− E(Y )2 = 1

2
θ2 −
(

2

3
θ

)2

= θ2

18

Then

Var(θ̂1)= Var

(
3

2
Y

)
= 9

4
Var(Y )= 9

4

Var(Y )

n
= 9

4n
· θ2

18
= θ2

8n

To address the variance of θ̂2 = 2n+1
2n Ymax, we start with finding the variance of

Ymax. Recall that its pdf is

nFY (y)n−1 fY (y)= 2n

θ2n
y2n−1,0 ≤ y ≤ θ

From that expression, we obtain

E(Y 2
max)=

∫ θ

0
y2 · 2n

θ2n
y2n−1dy = 2n

θ2n

∫ θ

0
y2n+1dy = 2n

θ2n
· θ2n+2

2n + 2
= n

n + 1
θ2

and then

Var(Ymax)= E(Y 2
max)− E(Ymax)

2 = n

n + 1
θ2 −
(

2n

2n + 1
θ

)2

= n

(n + 1)(2n + 1)2
θ2

Finally,

Var(θ̂2)= Var

(
2n + 1

2n
Ymax

)
= (2n + 1)2

4n2
Var(Ymax)= (2n + 1)2

4n2
· n

(n + 1)(2n + 1)2
θ2

= 1

4n(n + 1)
θ2

Note that Var(θ̂2)= 1
4n(n+1)

θ2 < 1
8n θ2 = Var(θ̂1) for n > 1, so we say that θ̂2 is more

efficient than θ̂1. The relative efficiency of θ̂2 with respect to θ̂1 is the ratio of their
variances:

Var(θ̂1)

Var(θ̂2)
= 1

8n
θ2 ÷ 1

4n(n + 1)
θ2 = 4n(n + 1)

8n
= (n + 1)

2

Questions

5.4.17. Let X1, X2, . . . , Xn denote the outcomes of a series
of n independent trials, where

Xi =
{

1 with probability p
0 with probability 1 − p

for i = 1,2, . . . ,n. Let X = X1 + X2 + · · · + Xn .

(a) Show that p̂1 = X1 and p̂2 = X
n

are unbiased estima-
tors for p.

(b) Intuitively, p̂2 is a better estimator than p̂1 because
p̂1 fails to include any of the information about the
parameter contained in trials 2 through n. Verify that
speculation by comparing the variances of p̂1 and p̂2.
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5.4.18. Suppose that n = 5 observations are taken from
the uniform pdf, fY (y; θ) = 1/θ,0 ≤ y ≤ θ , where θ is
unknown. Two unbiased estimators for θ are

θ̂1 = 6

5
· Ymax and θ̂2 = 6 · Ymin

Which estimator would be better to use? [Hint: What must
be true of Var(Ymax) and Var(Ymin) given that fY (y; θ) is
symmetric?] Does your answer as to which estimator is
better make sense on intuitive grounds? Explain.

5.4.19. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf fY (y; θ)= 1

θ
e−y/θ , y > 0.

(a) Show that θ̂1 = Y1, θ̂2 = Y , and θ̂3 = n · Ymin are all
unbiased estimators for θ .

(b) Find the variances of θ̂1, θ̂2, and θ̂3.
(c) Calculate the relative efficiencies of θ̂1 to θ̂3 and θ̂2

to θ̂3.

5.4.20. Given a random sample of size n from a Pois-
son distribution, λ̂1 = X1 and λ̂2 = X are two unbiased
estimators for λ. Calculate the relative efficiency of λ̂1

to λ̂2.

5.4.21. If Y1,Y2, . . . ,Yn are random observations from a
uniform pdf over [0, θ ], both θ̂1 = ( n+1

n

) · Ymax and θ̂2 =
(n + 1). Ymin are unbiased estimators for θ . Show that
Var(θ̂2)/Var(θ̂1)= n2.

5.4.22. Suppose that W1 is a random variable with mean
μ and variance σ 2

1 and W2 is a random variable with
mean μ and variance σ 2

2. From Example 5.4.3, we know
that cW1 + (1 − c)W2 is an unbiased estimator of μ for
any constant c > 0. If W1 and W2 are independent, for
what value of c is the estimator cW1 + (1 − c)W2 most
efficient?

5.5 Minimum-Variance Estimators: The Cramér-Rao
Lower Bound
Given two estimators, θ̂1 and θ̂2, each unbiased for the parameter θ , we know from
Section 5.4 which is “better”—the one with the smaller variance. But nothing in that
section speaks to the more fundamental question of how good θ̂1 and θ̂2 are relative
to the infinitely many other unbiased estimators for θ . Is there a θ̂3, for example,
that has a smaller variance than either θ̂1 or θ̂2 has? Can we identify the unbiased
estimator having the smallest variance? Addressing those concerns is one of the
most elegant, yet practical, theorems in all of mathematical statistics, a result known
as the Cramér-Rao lower bound.

Suppose a random sample of size n is taken from, say, a continuous probability
distribution fY (y; θ), where θ is an unknown parameter. Associated with fY (y; θ) is
a theoretical limit below which the variance of any unbiased estimator for θ cannot
fall. That limit is the Cramér-Rao lower bound. If the variance of a given θ̂ is equal
to the Cramér-Rao lower bound, we know that estimator is optimal in the sense that
no unbiased θ̂ can estimate θ with greater precision.

Theorem
5.5.1

(Cramér-Rao Inequality.) Let fY (y; θ) be a continuous pdf with continuous first-order
and second-order derivatives. Also, suppose that the set of y values, where fY (y; θ) �=0,
does not depend on θ .

Let Y1,Y2, . . . ,Yn be a random sample from fY (y; θ), and let θ̂ = h(Y1,Y2, . . . ,Yn)
be any unbiased estimator of θ . Then

Var(θ̂)≥
{

nE

[(
∂ ln fY (Y ; θ)

∂θ

)2
]}−1

=
{
−nE

[
∂2 ln fY (Y ; θ)

∂θ2

]}−1

[A similar statement holds if the n observations come from a discrete pdf, pX (k; θ)].

Proof See (93). �
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b. Let W be any random variable whose mean is μ and whose variance is finite,
and let b be any constant. Then

E[(W − b)2] = E[(W −μ)+ (μ− b)]2

= E[(W −μ)2] + 2(μ− b)E(W −μ)+ (μ− b)2

= Var(W )+ 0 + (μ− b)2

implying that E[(W − b)]2 is minimized when b = μ. It follows that the Bayes
estimate for θ , given a quadratic loss function, is the mean of the posterior
distribution. �

Example
5.8.6

Recall Example 5.8.3, where the parameter in a Poisson distribution was assumed to

have a gamma prior distribution. For a random sample of size n, where W =
n∑

i=1
Xi ,

pW (w|θ)= e−nθ (nθ)w/w!, w = 0,1,2, . . .

f(θ)= μs

�(s)
θ s−1e−μθ

which resulted in the posterior distribution being a gamma pdf with parameters
w + s and μ+ n.

Suppose the loss function associated with θ̂ is quadratic, L(θ̂ , θ) = (θ̂ − θ)2. By
part (b) of Theorem 5.8.1, the Bayes estimate for θ is the mean of the posterior
distribution. From Theorem 4.6.3, though, the mean of g(θ | W = w) is (w + s)/
(μ+ n).

Notice that
w + s

μ+ n
= n

μ+ n

(w
n

)
+ μ

μ+ n

(
s

μ

)
which shows that the Bayes estimate is a weighted average of w

n , the maximum like-
lihood estimate for θ and s

μ
, the mean of the prior distribution. Moreover, as n gets

large, the Bayes estimate converges to the maximum likelihood estimate.

Questions

5.8.1. Suppose that X is a geometric random variable,
where pX (k|θ) = (1 − θ)k−1θ, k = 1,2, . . . . Assume that the
prior distribution for θ is the beta pdf with parameters r
and s. Find the posterior distribution for θ .

5.8.2. Find the squared-error loss [L(θ̂ , θ) = (θ̂ − θ)2]
Bayes estimate for θ in Example 5.8.2 and express it as
a weighted average of the maximum likelihood estimate
for θ and the mean of the prior pdf.

5.8.3. Suppose the binomial pdf described in Example
5.8.2 refers to the number of votes a candidate might
receive in a poll conducted before the general election.
Moreover, suppose a beta prior distribution has been
assigned to θ , and every indicator suggests the election
will be close. The pollster, then, has good reason for con-
centrating the bulk of the prior distribution around the

value θ = 1
2
. Setting the two beta parameters r and s both

equal to 135 will accomplish that objective (in the event
r = s = 135, the probability of θ being between 0.45 and
0.55 is approximately 0.90).

(a) Find the corresponding posterior distribution.
(b) Find the squared-error loss Bayes estimate for θ

and express it as a weighted average of the maxi-
mum likelihood estimate for θ and the mean of the
prior pdf.

5.8.4. What is the squared-error loss Bayes estimate for
the parameter θ in a binomial pdf, where θ has a uniform
distribution—that is, a noninformative prior? (Recall that
a uniform prior is a beta pdf for which r = s = 1.)

5.8.5. In Questions 5.8.2–5.8.4, is the Bayes estimate
unbiased? Is it asymptotically unbiased?
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5.8.6. Suppose that Y is a gamma random variable with
parameters r and θ and the prior is also gamma with
parameters s and μ. Show that the posterior pdf is gamma
with parameters r + s and y +μ.

5.8.7. Let Y1,Y2, . . . ,Yn be a random sample from a
gamma pdf with parameters r and θ , where the prior dis-
tribution assigned to θ is the gamma pdf with parameters
s and μ. Let W = Y1 + Y2 + · · · + Yn . Find the posterior pdf
for θ .

5.8.8. Find the squared-error loss Bayes estimate for θ in
Question 5.8.7.

5.8.9. Consider, again, the scenario described in Exam-
ple 5.8.2—a binomial random variable X has parameters n
and θ , where the latter has a beta prior with integer param-
eters r and s. Integrate the joint pdf pX (k | θ) f(θ) with
respect to θ to show that the marginal pdf of X is given by

pX (k)=
(

k+r−1
k

) (
n−k+s−1

n−k

)(
n+r+s−1

n

) , k = 0,1, . . . ,n

5.9 Taking a Second Look at Statistics (Beyond
Classical Estimation)
The theory of estimation presented in this chapter can properly be called classical.
It is a legacy of the late nineteenth and early twentieth centuries, culminating in the
work of R.A. Fisher, especially his foundational paper published in 1922 (47).

This chapter covers the historical, yet still vibrant, theory and technique of esti-
mation. This material is the basis for many of the modern advances in statistics.
And, these approaches still provide useful methods for estimating parameters and
building models.

But statistics, like every other branch of knowledge, progresses. As is the case
for most sciences, the computer has dramatically changed the landscape. Classi-
cal problems—such as finding maximum likelihood estimators—that were difficult,
if not impossible, to solve in Fisher’s day can now be attacked through computer
approximations.

However, modern computers not only give new methods for old problems,
but they also provide new avenues of approach. One such set of new methods
goes under the general name of resampling. One part of resampling is known as
bootstrapping. This technique is useful when classical inference is impossible.

A general explication of bootstrapping is not possible in this section, but an
example of its application to estimating the standard error should provide a sense of
the idea.

The standard error of an estimator θ̂ is just its standard deviation; that is,√
Var(θ̂). The standard error, or an approximation of it, is an essential part of the

construction of confidence intervals. For the normal case, Y is the basis of the con-
fidence interval, and its standard error is σ/

√
n. If X is a binomial random variable

with parameters n and p, then the standard error
√

p(1−p)

n is readily approximated

by
√

k
n (1− k

n )
n , where k is the observed number of successes.

In general, though, estimating the standard error may not be so straightforward.
As a case in point, consider the gamma pdf with r = 2 and unknown parameter
θ , fY (y; θ) = 1

θ2 ye−y/θ . Recall from Example 5.2.2 that the maximum likelihood
estimator for θ is 1

2 Y . Then its variance is

Var(
1

2
Y )= 1

4
Var(Y )= 1

4

Var(Y )

n
= 1

4n
2θ2 = θ2

2n

and the standard error is the square root of the variance, or θ√
2n

.
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Comment Test statistics that yield small P-values should be interpreted as evidence
against H0. More specifically, if the P-value calculated for a test statistic is less than
or equal to α, the null hypothesis can be rejected at the α level of significance. Or,
put another way, the P-value is the smallest α at which we can reject H0.

Example
6.2.2

Recall Example 6.2.1. Given that H0:μ = 494 is being tested against H1:μ �= 494,
what P-value is associated with the calculated test statistic, z =0.60, and how should
it be interpreted?

If H0:μ = 494 is true, the random variable Z = Y−494
124/

√
86

has a standard normal
pdf. Relative to the two-sided H1, any value of Z greater than or equal to 0.60 or
less than or equal to −0.60 qualifies as being “as extreme as or more extreme than”
the observed z. Therefore, by Definition 6.2.4,

P-value = P(Z ≥ 0.60)+ P(Z ≤−0.60)

= 0.2743 + 0.2743

= 0.5486

(see Figure 6.2.6).

0

0.60

More extreme

– 0.60

More extreme

0.4

Area = 0.2743

P-value  = 0.2743 + 0.2743
= 0.5486

Area = 0.2743

z

Zf   (z)

Figure 6.2.6

As noted in the preceding comment, P-values can be used as decision rules. In
Example 6.2.1, 0.05 was the stated level of significance. Having determined here that
the P-value associated with z = 0.60 is 0.5486, we know that H0:μ = 494 would not
be rejected at the given α. Indeed, the null hypothesis would not be rejected for any
value of α up to and including 0.5486.

Notice that the P-value would have been halved had H1 been one-sided. Sup-
pose we were confident that the new algebra and geometry classes would not
lower a student’s math SAT. The appropriate hypothesis test in that case would be
H0:μ= 494 versus H1:μ> 494. Moreover, only values in the right-hand tail of fZ (z)
would be considered more extreme than the observed z = 0.60, so

P-value = P(Z ≥ 0.60)= 0.2743

Questions

6.2.1. State the decision rule that would be used to test
the following hypotheses. Evaluate the appropriate test
statistic and state your conclusion.

(a) H0:μ = 120 versus H1:μ < 120; y = 114.2,n = 25, σ =
18, α = 0.08
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(b) H0:μ= 42.9 versus H1:μ �= 42.9; y = 45.1,n = 16, σ =
3.2, α = 0.01

(c) H0:μ = 14.2 versus H1:μ > 14.2; y = 15.8,n = 9, σ =
4.1, α = 0.13

6.2.2. An herbalist is experimenting with juices extracted
from berries and roots that may have the ability to affect
the Stanford-Binet IQ scores of students afflicted with
mild cases of attention deficit disorder (ADD). A ran-
dom sample of twenty-two children diagnosed with the
condition have been drinking Brain-Blaster daily for two
months. Past experience suggests that children with ADD
score an average of 95 on the IQ test with a standard devi-
ation of 15. If the data are to be analyzed using the α=0.06
level of significance, what values of y would cause H0 to be
rejected? Assume that H1 is two-sided.

6.2.3. (a) Suppose H0:μ = μo is rejected in favor of
H1:μ �= μo at the α = 0.05 level of significance. Would
H0 necessarily be rejected at the α = 0.01 level of
significance?
(b) Suppose H0:μ = μo is rejected in favor of H1:μ �= μo

at the α = 0.01 level of significance. Would H0 necessarily
be rejected at the α = 0.05 level of significance?

6.2.4. Company records show that drivers get an aver-
age of 32,500 miles on a set of Road Hugger All-Weather
radial tires. Hoping to improve that figure, the company
has added a new polymer to the rubber that should help
protect the tires from deterioration caused by extreme
temperatures. Fifteen drivers who tested the new tires
have reported getting an average of 33,800 miles. Can the
company claim that the polymer has produced a statis-
tically significant increase in tire mileage? Test H0:μ =
32,500 against a one-sided alternative at the α = 0.05
level. Assume that the standard deviation (σ) of the tire
mileages has not been affected by the addition of the
polymer and is still 4000 miles.

6.2.5. If H0:μ = μo is rejected in favor of H1:μ > μo, will
it necessarily be rejected in favor of H1:μ �= μo? Assume
that α remains the same.

6.2.6. A random sample of size 16 is drawn from a nor-
mal distribution having σ = 6.0 for the purpose of testing
H0:μ = 30 versus H1:μ �= 30. The experimenter chooses
to define the critical region C to be the set of sam-
ple means lying in the interval (29.9, 30.1). What level
of significance does the test have? Why is (29.9, 30.1)
a poor choice for the critical region? What range of y
values should comprise C , assuming the same α is to
be used?

6.2.7. Recall the breath analyzers described in Exam-
ple 4.3.5. The following are thirty blood alcohol deter-
minations made by Analyzer GTE-10, a three-year-old

unit that may be in need of recalibration. All thirty
measurements were made using a test sample on which a
properly adjusted machine would give a reading of 12.6%.

12.3 12.7 13.6 12.7 12.9 12.6
12.6 13.1 12.6 13.1 12.7 12.5
13.2 12.8 12.4 12.6 12.4 12.4
13.1 12.9 13.3 12.6 12.6 12.7
13.1 12.4 12.4 13.1 12.4 12.9

(a) If μ denotes the true average reading that Ana-
lyzer GTE-10 would give for a person whose blood
alcohol concentration is 12.6%, test

H0:μ= 12.6

versus

H1:μ �= 12.6

at the α = 0.05 level of significance. Assume that
σ = 0.4. Would you recommend that the machine be
readjusted?

(b) What statistical assumptions are implicit in the
hypothesis test done in part (a)? Is there any rea-
son to suspect that those assumptions may not be
satisfied?

6.2.8. Calculate the P-values for the hypothesis tests indi-
cated in Question 6.2.1. Do they agree with your decisions
on whether or not to reject H0?

6.2.9. Suppose H0:μ = 120 is tested against H1:μ �= 120.
If σ = 10 and n = 16, what P-value is associated with the
sample mean y = 122.3? Under what circumstances would
H0 be rejected?

6.2.10 As a class research project, Rosaura wants to see
whether the stress of final exams elevates the blood pres-
sures of freshmen women. When they are not under any
untoward duress, healthy eighteen-year-old women have
systolic blood pressures that average 120 mm Hg with a
standard deviation of 12 mm Hg. If Rosaura finds that the
average blood pressure for the fifty women in Statistics
101 on the day of the final exam is 125.2, what should she
conclude? Set up and test an appropriate hypothesis.

6.2.11. As input for a new inflation model, economists
predicted that the average cost of a hypothetical “food
basket” in east Tennessee in July would be $145.75. The
standard deviation (σ ) of basket prices was assumed to be
$9.50, a figure that has held fairly constant over the years.
To check their prediction, a sample of twenty-five baskets
representing different parts of the region were checked in
late July, and the average cost was $149.75. Let α =0.05. Is
the difference between the economists’ prediction and the
sample mean statistically significant?
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where

ki =
{

0 if the new drug fails to relieve ith patient’s pain
1 if the new drug does relieve ith patient’s pain

What should the decision rule be if the intention is to keep α somewhere near
10%? [Note that Theorem 6.3.1 does not apply here because Inequality 6.3.1 is not
satisfied—specifically, npo + 3

√
npo(1 − po) = 19(0.85) + 3

√
19(0.85)(0.15) = 20.8 is

not less than n(= 19).]
If the null hypothesis is true, the expected number of successes would be npo =

19(0.85). or 16.2. It follows that values of k to the extreme right or extreme left of
16.2 should constitute the critical region.

MTB > pdf;
SUBC > binomial 19 0.85.

Probability Density Function

Binomial with n = 19 and p = 0.85

x P(X = x)
6 0.000000

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

7 0.000002
8 0.000018
9 0.000123 → P(X ≤ 13) = 0.053696

10 0.000699
11 0.003242
12 0.012246
13 0.037366
14 0.090746
15 0.171409
16 0.242829
17 0.242829
18 0.152892
19 0.045599 → P(X = 19) = 0.045599

Figure 6.3.1

Figure 6.3.1 is a Minitab printout of pX (k)= (19
k

)
(0.85)k(0.15)19−k . By inspection,

we can see that the critical region

C ={k: k ≤ 13 or k = 19}
would produce an α close to the desired 0.10 (and would keep the probabilities
associated with the two sides of the rejection region roughly the same). In random
variable notation,

P(X ∈ C | H0 is true) = P(X ≤ 13 | p = 0.85)+ P(X = 19 | p = 0.85)

= 0.053696 + 0.045599

= 0.099295
.= 0.10

Questions

6.3.1. Commercial fishermen working certain parts of
the Atlantic Ocean sometimes find their efforts hindered
by the presence of whales. Ideally, they would like to
scare away the whales without frightening the fish. One
of the strategies being experimented with is to transmit
underwater the sounds of a killer whale. On the fifty-
two occasions that technique has been tried, it worked
twenty-four times (that is, the whales immediately left

the area). Experience has shown, though, that 40% of
all whales sighted near fishing boats leave of their own
accord, probably just to get away from the noise of the
boat.

(a) Let p = P(Whale leaves area after hearing sounds of
killer whale). Test H0: p = 0.40 versus H1: p > 0.40 at
the α =0.05 level of significance. Can it be argued on



366 Chapter 6 Hypothesis Testing

the basis of these data that transmitting underwater
predator sounds is an effective technique for clearing
fishing waters of unwanted whales?

(b) Calculate the P-value for these data. For what values
of α would H0 be rejected?

6.3.2. Efforts to find a genetic explanation for why
certain people are right-handed and others left-handed
have been largely unsuccessful. Reliable data are diffi-
cult to find because of environmental factors that also
influence a child’s “handedness.” To avoid that compli-
cation, researchers often study the analogous problem
of “pawedness” in animals, where both genotypes and
the environment can be partially controlled. In one such
experiment (27), mice were put into a cage having a feed-
ing tube that was equally accessible from the right or
the left. Each mouse was then carefully watched over a
number of feedings. If it used its right paw more than
half the time to activate the tube, it was defined to be
“right-pawed.” Observations of this sort showed that 67%
of mice belonging to strain A/J are right-pawed. A simi-
lar protocol was followed on a sample of thirty-five mice
belonging to strain A/HeJ. Of those thirty-five, a total of
eighteen were eventually classified as right-pawed. Test
whether the proportion of right-pawed mice found in the
A/HeJ sample was significantly different from what was
known about the A/J strain. Use a two-sided alternative
and let 0.05 be the probability associated with the critical
region.

6.3.3. Defeated in his most recent attempt to win a con-
gressional seat because of a sizeable gender gap, a politi-
cian has spent the last two years speaking out in favor
of women’s rights issues. A newly released poll claims to
have contacted a random sample of 120 of the politician’s
current supporters and found that 72 were men. In the
election that he lost, exit polls indicated that 65% of those
who voted for him were men. Using an α = 0.05 level of
significance, test the null hypothesis that the proportion
of his male supporters has remained the same. Make the
alternative hypothesis one-sided.

6.3.4. Suppose H0: p = 0.45 is to be tested against H1: p >

0.45 at the α = 0.14 level of significance, where p = P(ith
trial ends in success). If the sample size is 200, what is
the smallest number of successes that will cause H0 to be
rejected?

6.3.5. Recall the median test described in Example 5.3.2.
Reformulate that analysis as a hypothesis test rather than
a confidence interval. What P-value is associated with the
outcomes listed in Table 5.3.3?

6.3.6. Among the early attempts to revisit the death post-
ponement theory introduced in Case Study 6.3.2 was an
examination of the birth dates and death dates of 348 U.S.
celebrities (134). It was found that 16 of those individuals
had died in the month preceding their birth month. Set up
and test the appropriate H0 against a one-sided H1. Use
the 0.05 level of significance.

6.3.7. What α levels are possible with a decision rule of
the form “Reject H0 if k ≥ k∗” when H0: p = 0.5 is to be
tested against H1: p > 0.5 using a random sample of size
n = 7?

6.3.8. The following is a Minitab printout
of the binomial pdf pX (k) = ( 9

k

)
(0.6)k(0.4)9−k,

k = 0,1, . . . ,9. Suppose H0: p = 0.6 is to be tested against
H1: p > 0.6 and we wish the level of significance to be
exactly 0.05. Use Theorem 2.4.1 to combine two different
critical regions into a single randomized decision rule for
which α = 0.05.

MTB > pdf;
SUBC > binomial 9 0.6.
Probability Density Function
Binomial with n = 9 and p = 0.6

x P(X = x)
0 0.000262
1 0.003539
2 0.021234
3 0.074318
4 0.167215
5 0.250823
6 0.250823
7 0.161243
8 0.060466
9 0.010078

6.3.9. Suppose H0: p = 0.75 is to be tested against H1: p <

0.75 using a random sample of size n = 7 and the decision
rule “Reject H0 if k ≤ 3.”

(a) What is the test’s level of significance?
(b) Graph the probability that H0 will be rejected as a

function of p.

6.4 Type I and Type II Errors
The possibility of drawing incorrect conclusions is an inevitable byproduct of
hypothesis testing. No matter what sort of mathematical facade is laid atop the
decision-making process, there is no way to guarantee that what the test tells us
is the truth. One kind of error—rejecting H0 when H0 is true—figured prominently
in Section 6.3: It was argued that critical regions should be defined so as to keep the
probability of making such errors small, often on the order of 0.05.
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By inspection, the decision rule “Reject H0:λ = 0.8 if
4∑

i=1
ki ≥ 6” gives an α close to

the desired 0.10.

If H1 is true and λ= 1.2,
4∑

i=1
Xi will have a Poisson distribution with a parameter

equal to 4.8. According to Figure 6.4.10, the probability that the sum of a random
sample of size 4 from such a distribution would equal or exceed 6 (i.e., 1 − β when
λ = 1.2) is 0.348993.

Example
6.4.4

Suppose a random sample of seven observations is taken from the pdf fY (y; θ) =
(θ + 1)yθ , 0 ≤ y ≤ 1, to test

H0: θ = 2

versus

H1: θ > 2

As a decision rule, the experimenter plans to record X , the number of yi ’s that
exceed 0.9, and reject H0 if X ≥4. What proportion of the time would such a decision
rule lead to a Type I error?

To evaluate α = P(Reject H0 | H0 is true), we first need to recognize that X is
a binomial random variable where n = 7 and the parameter p is an area under
fY (y; θ = 2):

p = P(Y ≥ 0.9 | H0 is true)= P[Y ≥ 0.9 | fY (y;2)= 3y2]

=
∫ 1

0.9
3y2 dy

= 0.271

It follows, then, that H0 will be incorrectly rejected 9.2% of the time:

α = P(X ≥ 4 | θ = 2) =
7∑

k=4

(
7
k

)
(0.271)k(0.729)7−k

= 0.092

Comment The basic notions of Type I and Type II errors first arose in a quality-
control context. The pioneering work was done at the Bell Telephone Laboratories:
There the terms producer’s risk and consumer’s risk were introduced for what we
now call α and β. Eventually, these ideas were generalized by Neyman and Pear-
son in the 1930s and evolved into the theory of hypothesis testing as we know it
today.

Questions

6.4.1. Recall the “Math for the Twenty-First Century”
hypothesis test done in Example 6.2.1. Calculate the
power of that test when the true mean is 500.

6.4.2. Carry out the details to verify the deci-
sion rule change cited on p. 371 in connection with
Figure 6.4.6.

6.4.3. For the decision rule found in Question 6.2.2 to
test H0:μ = 95 versus H1:μ �= 95 at the α = 0.06 level of
significance, calculate 1 −β when μ= 90.

6.4.4. Construct a power curve for the α = 0.05 test of
H0:μ=60 versus H1:μ �=60 if the data consist of a random
sample of size 16 from a normal distribution having σ = 4.
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6.4.5. If H0:μ = 240 is tested against H1:μ < 240 at the
α = 0.01 level of significance with a random sample of
twenty-five normally distributed observations, what pro-
portion of the time will the procedure fail to recognize that
μ has dropped to 220? Assume that σ = 50.

6.4.6. Suppose n = 36 observations are taken from a nor-
mal distribution where σ = 8.0 for the purpose of testing
H0:μ= 60 versus H1:μ �= 60 at the α = 0.07 level of signifi-
cance. The lead investigator skipped statistics class the day
decision rules were being discussed and intends to reject
H0 if y falls in the region (60 − y ∗,60 + y ∗).

(a) Find y ∗.
(b) What is the power of the test when μ= 62?
(c) What would the power of the test be when μ = 62 if

the critical region had been defined the correct way?

6.4.7. If H0:μ = 200 is to be tested against H1:μ < 200 at
the α = 0.10 level of significance based on a random sam-
ple of size n from a normal distribution where σ = 15.0,
what is the smallest value for n that will make the power
equal to at least 0.75 when μ= 197?

6.4.8. Will n = 45 be a sufficiently large sample to test
H0:μ = 10 versus H1:μ �= 10 at the α = 0.05 level of signif-
icance if the experimenter wants the Type II error prob-
ability to be no greater than 0.20 when μ = 12? Assume
that σ = 4.

6.4.9. If H0:μ=30 is tested against H1:μ>30 using n =16
observations (normally distributed) and if 1 − β = 0.85
when μ= 34, what does α equal? Assume that σ = 9.

6.4.10. Suppose a sample of size 1 is taken from the pdf
fY (y)= (1/λ)e−y/λ, y > 0, for the purpose of testing

H0:λ= 1
versus

H1:λ> 1

The null hypothesis will be rejected if y ≥ 3.20.

(a) Calculate the probability of committing a Type I
error.

(b) Calculate the probability of committing a Type II
error when λ= 4

3
.

(c) Draw a diagram that shows the α and β calculated in
parts (a) and (b) as areas.

6.4.11. Polygraphs used in criminal investigations typi-
cally measure five bodily functions: (1) thoracic respira-
tion, (2) abdominal respiration, (3) blood pressure and
pulse rate, (4) muscular movement and pressure, and (5)
galvanic skin response. In principle, the magnitude of
these responses when the subject is asked a relevant ques-
tion (“Did you murder your wife?") indicate whether he
is lying or telling the truth. The procedure, of course, is

not infallible, as a recent study bore out (82). Seven expe-
rienced polygraph examiners were given a set of forty
records—twenty were from innocent suspects and twenty
from guilty suspects. The subjects had been asked eleven
questions, on the basis of which each examiner was to
make an overall judgment: “Innocent" or “Guilty." The
results are as follows:

Suspect’s True Status
Innocent Guilty

Examiner’s “Innocent”

Decision “Guilty”
131 15

9 125

What would be the numerical values of α and β in this con-
text? In a judicial setting, should Type I and Type II errors
carry equal weight? Explain.

6.4.12. An urn contains ten chips. An unknown number
of the chips are white; the others are red. We wish to test

H0:exactly half the chips are white

versus

H1:more than half the chips are white

We will draw, without replacement, three chips and reject
H0 if two or more are white. Find α. Also, find β when the
urn is (a) 60% white and (b) 70% white.

6.4.13. Suppose that a random sample of size 5 is drawn
from a uniform pdf:

fY (y; θ)=
{

1
θ
, 0 < y <θ

0, elsewhere

We wish to test

H0: θ = 2
versus

H1: θ > 2

by rejecting the null hypothesis if ymax ≥ k. Find the value
of k that makes the probability of committing a Type I
error equal to 0.05.

6.4.14. A sample of size 1 is taken from the pdf

fY (y)= (θ + 1)yθ , 0 ≤ y ≤ 1

The hypothesis H0: θ =1 is to be rejected in favor of H1: θ >

1 if y ≥ 0.90. What is the test’s level of significance?

6.4.15. A series of n Bernoulli trials is to be observed as
data for testing

H0: p = 1
2

versus
H1: p > 1

2

The null hypothesis will be rejected if k, the observed
number of successes, equals n. For what value of p will
the probability of committing a Type II error equal 0.05?
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6.4.16. Let X1 be a binomial random variable with n = 2
and pX1 = P(success). Let X2 be an independent bino-
mial random variable with n =4 and pX2 = P(success). Let
X = X1 + X2. Calculate α if

H0: pX1 = pX2 = 1
2

versus
H1: pX1 = pX2 > 1

2

is to be tested by rejecting the null hypothesis when k ≥ 5.

6.4.17. A sample of size 1 from the pdf fY (y) = (1 +
θ)yθ ,0 ≤ y ≤ 1, is to be the basis for testing

H0: θ = 1
versus

H1: θ < 1

The critical region will be the interval y ≤ 1
2
. Find an

expression for 1 −β as a function of θ .

6.4.18. An experimenter takes a sample of size 1 from
the Poisson probability model, pX (k) = e−λλk/k!, k =
0,1,2, . . . , and wishes to test

H0:λ= 6
versus

H1:λ< 6

by rejecting H0 if k ≤ 2.

(a) Calculate the probability of committing a Type I
error.

(b) Calculate the probability of committing a Type II
error when λ= 4.

6.4.19. A sample of size 1 is taken from the geometric
probability model, pX (k) = (1 − p)k−1 p, k = 1,2,3, . . . , to
test H0: p = 1

3
versus H1: p > 1

3
. The null hypothesis is to

be rejected if k ≥ 4. What is the probability that a Type II
error will be committed when p = 1

2
?

6.4.20. Suppose that one observation from the exponen-
tial pdf, fY (y) = λe−λy, y > 0, is to be used to test H0:λ =
1 versus H1:λ < 1. The decision rule calls for the null
hypothesis to be rejected if y ≥ ln 10. Find β as a function
of λ.

6.4.21. A random sample of size 2 is drawn from a uni-
form pdf defined over the interval [0, θ ]. We wish to
test

H0: θ = 2
versus

H1: θ < 2

by rejecting H0 when y1 + y2 ≤ k. Find the value for k that
gives a level of significance of 0.05.

6.4.22. Suppose that the hypotheses of Question 6.4.21
are to be tested with a decision rule of the form “Reject
H0: θ =2 if y1 y2 ≤ k∗.” Find the value of k∗ that gives a level
of significance of 0.05 (see Theorem 3.8.5).

6.5 A Notion of Optimality: The Generalized
Likelihood Ratio
In the next several chapters we will be studying some of the particular hypothe-
sis tests that statisticians most often use in dealing with real-world problems. All
of these have the same conceptual heritage—a fundamental notion known as the
generalized likelihood ratio, or GLR. More than just a principle, the generalized
likelihood ratio is a working criterion for actually suggesting test procedures.

As a first look at this important idea, we will conclude Chapter 6 with an appli-
cation of the generalized likelihood ratio to the problem of testing the parameter θ

in a uniform pdf. Notice the relationship here between the likelihood ratio and the
definition of an “optimal” hypothesis test.

Suppose y1, y2, . . . , yn is a random sample from a uniform pdf over the interval
[0, θ ], where θ is unknown, and our objective is to test

H0: θ = θo

versus

H1: θ < θo

at a specified level of significance α. What is the “best” decision rule for choosing
between H0 and H1, and by what criterion is it considered optimal?


