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More specifically, the median lifetime for these bulbs—according to Defini-
tion 3.5.2—is the value m for which∫ m

0
0.001e−0.001ydy = 0.5

But
∫ m

0 0.001e−0.001ydy = 1 − e−0.001m . Setting the latter equal to 0.5 implies that

m = (1/−0.001) ln(0.5)= 693

So, even though the average life of one of these bulbs is 1000 hours, there is a 50%
chance that the one you buy will last less than 693 hours.

Questions

3.5.1. Recall the game of Keno described in Ques-
tion 3.2.26. The following are all the payoffs on a $1
wager where the player has bet on ten numbers. Calculate
E(X), where the random variable X denotes the amount
of money won.

Number of Correct Guesses Payoff Probability

< 5 −$ 1 .935
5 2 .0514
6 18 .0115
7 180 .0016
8 1,300 1.35 × 10−4

9 2,600 6.12 × 10−6

10 10,000 1.12 × 10−7

3.5.2. The roulette wheels in Monte Carlo typically have
a 0 but not a 00. What is the expected value of betting on
red in this case? If a trip to Monte Carlo costs $3000, how
much would a player have to bet to justify gambling there
rather than Las Vegas?

3.5.3. The pdf describing the daily profit, X , earned by
Acme Industries was derived in Example 3.3.7. Find the
company’s average daily profit.

3.5.4. In the game of redball, two drawings are made
without replacement from a bowl that has four white ping-
pong balls and two red ping-pong balls. The amount won is
determined by how many of the red balls are selected. For
a $5 bet, a player can opt to be paid under either Rule A
or Rule B, as shown. If you were playing the game, which
would you choose? Why?

A B

No. of Red No. of Red
Balls Drawn Payoff Balls Drawn Payoff

0 0 0 0
1 $2 1 $1
2 $10 2 $20

3.5.5. Suppose a life insurance company sells a $50,000,
five-year term policy to a twenty-five-year-old woman. At
the beginning of each year the woman is alive, the com-
pany collects a premium of $P . The probability that the
woman dies and the company pays the $50,000 is given
in the table below. So, for example, in Year 3, the com-
pany loses $50,000 – $P with probability 0.00054 and gains
$P with probability 1 – 0.00054 = 0.99946. If the company
expects to make $1000 on this policy, what should P be?

Year Probability of Payoff

1 0.00051
2 0.00052
3 0.00054
4 0.00056
5 0.00059

3.5.6. A manufacturer has one hundred memory chips
in stock, 4% of which are likely to be defective (based
on past experience). A random sample of twenty chips is
selected and shipped to a factory that assembles laptops.
Let X denote the number of computers that receive faulty
memory chips. Find E(X).

3.5.7. Records show that 642 new students have just
entered a certain Florida school district. Of those 642, a
total of 125 are not adequately vaccinated. The district’s
physician has scheduled a day for students to receive what-
ever shots they might need. On any given day, though,
12% of the district’s students are likely to be absent.
How many new students, then, can be expected to remain
inadequately vaccinated?

3.5.8. Calculate E(Y ) for the following pdfs:

(a) fY (y)= 3(1 − y)2,0 ≤ y ≤ 1
(b) fY (y)= 4ye−2y, y ≥ 0

(c) fY (y)=

⎧⎪⎪⎨⎪⎪⎩
3
4
, 0 ≤ y ≤ 1

1
4
, 2 ≤ y ≤ 3

0, elsewhere
(d) fY (y)= sin y, 0 ≤ y ≤ π

2
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3.5.9. Recall Question 3.4.4, where the length of time Y
(in years) that a malaria patient spends in remission has
pdf fY (y) = 1

9
y2,0 ≤ y ≤ 3. What is the average length of

time that such a patient spends in remission?

3.5.10. Let the random variable Y have the uniform dis-
tribution over [a,b]; that is, fY (y) = 1

b−a
for a ≤ y ≤ b.

Find E(Y ) using Definition 3.5.1. Also, deduce the value
of E(Y ), knowing that the expected value is the center of
gravity of fY (y).

3.5.11. Show that the expected value associated with the
exponential distribution, fY (y)=λe−λy, y >0, is 1/λ, where
λ is a positive constant.

3.5.12. Show that

fY (y)= 1

y2
, y ≥ 1

is a valid pdf but that Y does not have a finite expected
value.

3.5.13. Based on recent experience, ten-year-old passen-
ger cars going through a motor vehicle inspection station
have an 80% chance of passing the emissions test. Suppose
that two hundred such cars will be checked out next week.
Write two formulas that show the number of cars that are
expected to pass.

3.5.14. Suppose that fifteen observations are chosen at
random from the pdf fY (y) = 3y2,0 ≤ y ≤ 1. Let X denote
the number that lie in the interval

(
1
2
,1
)
. Find E(X).

3.5.15. A city has 74,806 registered automobiles. Each is
required to display a bumper decal showing that the owner
paid an annual wheel tax of $50. By law, new decals need
to be purchased during the month of the owner’s birth-
day. How much wheel tax revenue can the city expect to
receive in November?

3.5.16. Regulators have found that twenty-three of the
sixty-eight investment companies that filed for bankruptcy
in the past five years failed because of fraud, not for rea-
sons related to the economy. Suppose that nine additional
firms will be added to the bankruptcy rolls during the
next quarter. How many of those failures are likely to be
attributed to fraud?

3.5.17. An urn contains four chips numbered 1 through 4.
Two are drawn without replacement. Let the random
variable X denote the larger of the two. Find E(X).

3.5.18. A fair coin is tossed three times. Let the random
variable X denote the total number of heads that appear
times the number of heads that appear on the first and
third tosses. Find E(X).

3.5.19. How much would you have to ante to make the
St. Petersburg game “fair” (recall Example 3.5.5) if the

most you could win was $1000? That is, the payoffs are $2k

for 1 ≤ k ≤ 9, and $1000 for k ≥ 10.

3.5.20. For the St. Petersburg problem (Example 3.5.5),
find the expected payoff if

(a) the amounts won are ck instead of 2k , where 0<c < 2.

(b) the amounts won are log 2k . [This was a modi-
fication suggested by D. Bernoulli (a nephew of
James Bernoulli) to take into account the decreasing
marginal utility of money—the more you have, the
less useful a bit more is.]

3.5.21. A fair die is rolled three times. Let X denote
the number of different faces showing, X = 1,2,3.

Find E(X).

3.5.22. Two distinct integers are chosen at random from
the first five positive integers. Compute the expected
value of the absolute value of the difference of the two
numbers.

3.5.23. Suppose that two evenly matched teams are play-
ing in the World Series. On the average, how many games
will be played? (The winner is the first team to get four
victories.) Assume that each game is an independent
event.

3.5.24. An urn contains one white chip and one black
chip. A chip is drawn at random. If it is white, the “game”
is over; if it is black, that chip and another black one are
put into the urn. Then another chip is drawn at random
from the “new” urn and the same rules for ending or con-
tinuing the game are followed (i.e., if the chip is white, the
game is over; if the chip is black, it is placed back in the
urn, together with another chip of the same color). The
drawings continue until a white chip is selected. Show that
the expected number of drawings necessary to get a white
chip is not finite.

3.5.25. A random sample of size n is drawn without
replacement from an urn containing r red chips and w

white chips. Define the random variable X to be the num-
ber of red chips in the sample. Use the summation tech-
nique described in Theorem 3.5.1 to prove that E(X) =
rn/(r +w).

3.5.26. Given that X is a nonnegative, integer-valued
random variable, show that

E(X)=
∞∑

k=1

P(X ≥ k)

3.5.27. Find the median for each of the following pdfs:

(a) fY (y)= (θ + 1)yθ , 0 ≤ y ≤ 1, where θ > 0
(b) fY (y)= y + 1

2
, 0 ≤ y ≤ 1
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Questions

3.5.28. Suppose X is a binomial random variable with
n = 10 and p = 2

5
. What is the expected value of 3X − 4?

3.5.29. A typical day’s production of a certain electronic
component is twelve. The probability that one of these
components needs rework is 0.11. Each component need-
ing rework costs $100. What is the average daily cost for
defective components?

3.5.30. Let Y have probability density function

fY (y)= 2(1 − y), 0 ≤ y ≤ 1

Suppose that W = Y 2, in which case

fW (w)= 1√
w

− 1, 0 ≤w ≤ 1

Find E(W ) in two different ways.

3.5.31. A tool and die company makes castings for steel
stress-monitoring gauges. Their annual profit, Q, in hun-
dreds of thousands of dollars, can be expressed as a
function of product demand, y:

Q(y)= 2(1 − e−2y)

Suppose that the demand (in thousands) for their castings
follows an exponential pdf, fY (y) = 6e−6y, y > 0. Find the
company’s expected profit.

3.5.32. A box is to be constructed so that its height is
five inches and its base is Y inches by Y inches, where
Y is a random variable described by the pdf, fY (y) =
6y(1 − y),0 < y < 1. Find the expected volume of the box.

3.5.33. Grades on the last Economics 301 exam were not
very good. Graphed, their distribution had a shape similar
to the pdf

fY (y)= 1

5000
(100 − y), 0 ≤ y ≤ 100

As a way of “curving” the results, the professor announces
that he will replace each person’s grade, Y , with a
new grade, g(Y ), where g(Y ) = 10

√
Y . Will the profes-

sor’s strategy be successful in raising the class average
above 60?

3.5.34. If Y has probability density function

fY (y)= 2y, 0 ≤ y ≤ 1

then E(Y) = 2
3
. Define the random variable W to be the

squared deviation of Y from its mean, that is, W =(Y − 2
3

)2
.

Find E(W ).

3.5.35. The hypotenuse, Y , of the isosceles right triangle
shown is a random variable having a uniform pdf over
the interval [6, 10]. Calculate the expected value of the
triangle’s area. Do not leave the answer as a function
of a.

0

Y

a

a

3.5.36. An urn contains n chips numbered 1 through n.
Assume that the probability of choosing chip i is equal
to ki, i = 1,2, . . . ,n. If one chip is drawn, calculate E

(
1
X

)
,

where the random variable X denotes the number show-
ing on the chip selected. [Hint: Recall that the sum of the
first n integers is n(n + 1)/2.]

3.6 The Variance
We saw in Section 3.5 that the location of a distribution is an important characteristic
and that it can be effectively measured by calculating either the mean or the median.
A second feature of a distribution that warrants further scrutiny is its dispersion—
that is, the extent to which its values are spread out. The two properties are totally
different: Knowing a pdf’s location tells us absolutely nothing about its dispersion.
Table 3.6.1, for example, shows two simple discrete pdfs with the same expected
value (equal to zero), but with vastly different dispersions.

Table 3.6.1

k pX1(k) k pX2(k)

−1 1
2

−1,000,000 1
2

1 1
2

1,000,000 1
2
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so

Var(Y ) = E(Y 2)−μ2 = 1

2
−
(

2

3

)2

= 1

18

Then, by Theorem 3.6.2,

Var(3Y + 2) = (3)2 · Var(Y )= 9 · 1

18

= 1

2

which makes the standard deviation of 3Y + 2 equal to
√

1
2 or 0.71.

Questions

3.6.1. Find Var(X) for the urn problem of Example 3.6.1
if the sampling is done with replacement.

3.6.2. Find the variance of Y if

fY (y)=

⎧⎪⎨⎪⎩
3
4
, 0 ≤ y ≤ 1

1
4
, 2 ≤ y ≤ 3

0, elsewhere

3.6.3. Ten equally qualified applicants, six men and four
women, apply for three lab technician positions. Unable to
justify choosing any of the applicants over all the others,
the personnel director decides to select the three at ran-
dom. Let X denote the number of men hired. Compute
the standard deviation of X .

3.6.4. Compute the variance for a uniform random vari-
able defined on the unit interval.

3.6.5. Use Theorem 3.6.1 to find the variance of the
random variable Y , where

fY (y)= 3(1 − y)2, 0 < y < 1

3.6.6. If

fY (y)= 2y

k2
, 0 ≤ y ≤ k

for what value of k does Var(Y )= 2?

3.6.7. Calculate the standard deviation, σ , for the random
variable Y whose pdf has the graph shown below:

1
2

1 2 30

1

y

f  (y)Y

3.6.8. Consider the pdf defined by

fY (y)= 2

y3
, y ≥ 1

Show that (a)
∫ ∞

1 fY (y) dy =1, (b)E(Y )=2, and (c) Var(Y )

is not finite.

3.6.9. Frankie and Johnny play the following game.
Frankie selects a number at random from the interval
[a,b]. Johnny, not knowing Frankie’s number, is to pick
a second number from that same inverval and pay Frankie
an amount, W , equal to the squared difference between
the two [so 0 ≤ W ≤ (b − a)2]. What should be Johnny’s
strategy if he wants to minimize his expected loss?

3.6.10. Let Y be a random variable whose pdf is given by
fY (y)= 5y4,0 ≤ y ≤ 1. Use Theorem 3.6.1 to find Var(Y ).

3.6.11. Suppose that Y is an exponential random variable,
so fY (y)=λe−λy, y ≥0. Show that the variance of Y is 1/λ2.

3.6.12. Suppose that Y is an exponential random variable
with λ = 2 (recall Question 3.6.11). Find P[Y > E(Y ) +
2
√

Var(Y )].
3.6.13. Let X be a random variable with finite mean μ.
Define for every real number a, g(a) = E[(X − a)2]. Show
that

g(a)= E[(X −μ)2]+ (μ− a)2.

What is another name for min g(a)?

3.6.14. Let Y have the pdf given in Question 3.6.5. Find
the variance of W , where W =−5Y + 12.

3.6.15. If Y denotes a temperature recorded in degrees
Fahrenheit, then 5

9
(Y − 32) is the corresponding tempera-

ture in degrees Celsius. If the standard deviation for a set
of temperatures is 15.7◦F, what is the standard deviation
of the equivalent Celsius temperatures?
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3.6.16. If E(W )=μ and Var(W )= σ 2, show that

E

(
W −μ

σ

)
= 0 and Var

(
W −μ

σ

)
= 1

3.6.17. Suppose U is a uniform random variable over
[0,1].

(a) Show that Y = (b − a)U + a is uniform over [a,b].
(b) Use part (a) and Question 3.6.4 to find the variance

of Y .

3.6.18. Recovering small quantities of calcium in the pres-
ence of magnesium can be a difficult problem for an
analytical chemist. Suppose the amount of calcium Y to
be recovered is uniformly distributed between 4 and 7 mg.

The amount of calcium recovered by one method is the
random variable

W1 = 0.2281 + (0.9948)Y + E1

where the error term E1 has mean 0 and variance 0.0427
and is independent of Y .

A second procedure has random variable

W2 =−0.0748 + (1.0024)Y + E2

where the error term E2 has mean 0 and variance 0.0159
and is independent of Y .

The better technique should have a mean as close as
possible to the mean of Y (=5.5), and a variance as small as
possible. Compare the two methods on the basis of mean
and variance.

Higher Moments

The quantities we have identified as the mean and the variance are actually spe-
cial cases of what are referred to more generally as the moments of a random
variable. More precisely, E(W ) is the first moment about the origin and σ 2 is the
second moment about the mean. As the terminology suggests, we will have occasion
to define higher moments of W . Just as E(W ) and σ 2 reflect a random variable’s
location and dispersion, so it is possible to characterize other aspects of a distri-
bution in terms of other moments. We will see, for example, that the skewness of a
distribution—that is, the extent to which it is not symmetric around μ—can be effec-
tively measured in terms of a third moment. Likewise, there are issues that arise in
certain applied statistics problems that require a knowledge of the flatness of a pdf,
a property that can be quantified by the fourth moment.

Definition 3.6.2. Let W be any random variable with pdf fW (w). For any
positive integer r ,

1. The r th moment of W about the origin, μr , is given by

μr = E(W r )

provided
∫∞
−∞ |w|r · fW (w) dw < ∞ (or provided the analogous condition

on the summation of |w|r holds, if W is discrete). When r = 1, we usually
delete the subscript and write E(W ) as μ rather than μ1.

2. The r th moment of W about the mean, μ′
r , is given by

μ′
r = E[(W −μ)r ]

provided the finiteness conditions of part 1 hold.

Comment We can express μ′
r in terms of μ j , j = 1,2, . . . , r , by simply writing out

the binomial expansion of (W −μ)r :

μ′
r = E[(W −μ)r ] =

r∑
j=0

(
r

j

)
E(W j )(−μ)r− j
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First, assume that the player is required to stand far enough away that no skill is
involved and the ring is falling at random on the grid. From Figure 3.7.4, we see that
in order for the ring not to touch any side of the square, the ring’s center must be
somewhere in the interior of a smaller square, each side of which is a distance d/2
from one of the grid lines.

Since the area of a grid square is s2 and the area of an interior square is (s − d)2,
the probability of a winning toss can be written as the ratio:

P(Ring touches no lines)= (s − d)2

s2

But the operator requires that

(s − d)2

s2
≤ 0.20

Solving for d/s gives

d

s
≥ 1 −√

0.20 = 0.55

That is, if the diameter of the ring is at least 55% as long as the side of one of the
squares, the player will have no more than a 20% chance of winning.

Questions

3.7.1. If pX,Y (x, y) = cxy at the points (1,1), (2,1), (2,2),
and (3,1), and equals 0 elsewhere, find c.

3.7.2. Let X and Y be two continuous random vari-
ables defined over the unit square. What does c equal if
fX,Y (x, y)= c(x2 + y2)?

3.7.3. Suppose that random variables X and Y vary in
accordance with the joint pdf, fX,Y (x, y)= c(x + y),0< x <

y < 1. Find c.

3.7.4. Find c if fX,Y (x, y) = cxy for X and Y defined over
the triangle whose vertices are the points (0,0), (0,1), and
(1,1).

3.7.5. An urn contains four red chips, three white chips,
and two blue chips. A random sample of size 3 is drawn
without replacement. Let X denote the number of white
chips in the sample and Y the number of blue chips. Write
a formula for the joint pdf of X and Y .

3.7.6. Four cards are drawn from a standard poker deck.
Let X be the number of kings drawn and Y the number of
queens. Find pX,Y (x, y).

3.7.7. An advisor looks over the schedules of his fifty stu-
dents to see how many math and science courses each has
registered for in the coming semester. He summarizes his
results in a table. What is the probability that a student
selected at random will have signed up for more math
courses than science courses?

Number of math courses, X

0 1 2

Number 0 11 6 4
of science
courses, Y 1 9 10 3

2 5 0 2

3.7.8. Consider the experiment of tossing a fair coin three
times. Let X denote the number of heads on the last flip,
and let Y denote the total number of heads on the three
flips. Find pX,Y (x, y).

3.7.9. Suppose that two fair dice are tossed one time. Let
X denote the number of 2’s that appear, and Y the number
of 3’s. Write the matrix giving the joint probability density
function for X and Y . Suppose a third random variable, Z ,
is defined, where Z = X + Y. Use pX,Y (x, y) to find pZ (z).

3.7.10. Suppose that X and Y have a bivariate uniform
density over the unit square:

fX,Y (x, y)=
{

c, 0 < x < 1, 0 < y < 1

0, elsewhere

(a) Find c.
(b) Find P

(
0 < X < 1

2
,0 < Y < 1

4

)
.
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3.7.20. For each of the following joint pdfs, find fX (x) and
fY (y).

(a) fX,Y (x, y)= 1
2
, 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y)= 1
x
, 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y)= 6x , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.21. Suppose that fX,Y (x, y) = 6(1 − x − y) for x and y
defined over the unit square, subject to the restriction that
0 ≤ x + y ≤ 1. Find the marginal pdf for X .

3.7.22. Find fY (y) if fX,Y (x, y) = 2e−x e−y for x and y
defined over the shaded region pictured.

0
x

y

y = x

3.7.23. Suppose that X and Y are discrete random vari-
ables with

pX,Y (x, y)= 4!
x !y!(4 − x − y)!

(
1

2

)x (1

3

)y (1

6

)4−x−y

,

0 ≤ x + y ≤ 4

Find pX (x) and pY (x).

3.7.24. A generalization of the binomial model occurs
when there is a sequence of n independent trials with
three outcomes, where p1 = P(outcome 1) and p2 =
P(outcome 2). Let X and Y denote the number of tri-
als (out of n) resulting in outcome 1 and outcome 2,
respectively.

(a) Show that pX,Y (x, y) = n!
x !y!(n − x − y)! px

1 py
2

(1− p1 − p2)
n−x−y , 0 ≤ x + y ≤ n

(b) Find pX (x) and pY (x).

(Hint: See Question 3.7.23.)

Joint Cdfs

For a single random variable X , the cdf of X evaluated at some point x—that is,
FX (x)—is the probability that the random variable X takes on a value less than or
equal to x . Extended to two variables, a joint cdf [evaluated at the point (u, v)] is
the probability that X ≤ u and, simultaneously, that Y ≤ v.

Definition 3.7.4. Let X and Y be any two random variables. The joint cumu-
lative distribution function of X and Y (or joint cdf ) is denoted FX,Y (u, v),
where

FX,Y (u, v)= P(X ≤ u and Y ≤ v)

Example
3.7.9

Find the joint cdf, FX,Y (u, v), for the two random variables X and Y whose joint pdf
is given by fX,Y (x, y)= 4

3 (x + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
If Definition 3.7.4 is applied, the probability that X ≤ u and Y ≤ v becomes a

double integral of fX,Y (x, y):

FX,Y (u, v)= 4

3

∫ v

0

∫ u

0
(x + xy)dxdy = 4

3

∫ v

0

[∫ u

0
(x + xy)dx

]
dy

= 4

3

∫ v

0

[
x2

2
(1 + y)

∣∣∣∣u
0

]
dy = 4

3

∫ v

0

u2

2
(1 + y)dy

= 4

3

u2

2

(
y + y2

2

)∣∣∣∣v
0

= 4

3

u2

2

(
v + v2

2

)
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Questions

3.7.25. Consider the experiment of simultaneously toss-
ing a fair coin and rolling a fair die. Let X denote the
number of heads showing on the coin and Y the number
of spots showing on the die.

(a) List the outcomes in S.
(b) Find FX,Y (1,2).

3.7.26. An urn contains twelve chips—four red, three
black, and five white. A sample of size 4 is to be drawn
without replacement. Let X denote the number of white
chips in the sample, Y the number of red. Find FX,Y (1,2).

3.7.27. For each of the following joint pdfs, find FX,Y (u, v).

(a) fX,Y (x, y)= 3
2

y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
(b) fX,Y (x, y)= 2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(c) fX,Y (x, y)= 4xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

3.7.28. For each of the following joint pdfs, find FX,Y (u, v).

(a) fX,Y (x, y)= 1
2
, 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y)= 1
x
, 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y)= 6x , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.29. Find and graph fX,Y (x, y) if the joint cdf for
random variables X and Y is

FX,Y (x, y)= xy, 0 < x < 1, 0 < y < 1

3.7.30. Find the joint pdf associated with two random
variables X and Y whose joint cdf is

FX,Y (x, y)= (1 − e−λy)(1 − e−λx), x > 0, y > 0

3.7.31. Given that FX,Y (x, y) = k(4x2 y2 + 5xy4),0 < x <

1,0 < y < 1, find the corresponding pdf and use it to
calculate P(0 < X < 1

2
, 1

2
< Y < 1).

3.7.32. Prove that

P(a < X ≤ b, c < Y ≤ d)=FX,Y (b,d)− FX,Y (a,d)

− FX,Y (b, c)+ FX,Y (a, c)

3.7.33. A certain brand of fluorescent bulbs will last, on
the average, 1000 hours. Suppose that four of these bulbs
are installed in an office. What is probability that all four
are still functioning after 1050 hours? If Xi denotes the ith
bulb’s life, assume that

fX1,X2,X3,X4(x1, x2, x3, x4)=
4∏

i=1

(
1

1000

)
e−x/1000

for xi > 0, i = 1,2,3,4.

3.7.34. A hand of six cards is dealt from a standard poker
deck. Let X denote the number of aces, Y the number of
kings, and Z the number of queens.

(a) Write a formula for pX,Y,Z (x, y, z).
(b) Find pX,Y (x, y) and pX,Z (x, z).

3.7.35. Calculate pX,Y (0,1) if pX,Y,Z (x, y, z) =
3!

x !y!z!(3−x−y−z)!
(

1
2

)x ( 1
12

)y ( 1
6

)z · ( 1
4

)3−x−y−z
for x, y, z = 0,1,2,3

and 0 ≤ x + y + z ≤ 3.

3.7.36. Suppose that the random variables X , Y , and Z
have the multivariate pdf

fX,Y,Z (x, y, z)= (x + y)e−z

for 0 < x < 1,0 < y < 1, and z > 0. Find (a) fX,Y (x, y), (b)
fY,Z (y, z), and (c) fZ (z).

3.7.37. The four random variables W , X , Y , and Z have
the multivariate pdf

fW,X,Y,Z (w, x, y, z)= 16wxyz

for 0 < w < 1,0 < x < 1,0 < y < 1, and 0 < z < 1. Find the
marginal pdf, fW,X (w, x), and use it to compute P(0 < W <
1
2
, 1

2
< X < 1).

Independence of Two Random Variables

The concept of independent events that was introduced in Section 2.5 leads quite
naturally to a similar definition for independent random variables.

Definition 3.7.5. Two random variables X and Y are said to be independent
if for every interval A and every interval B, P(X ∈ A and Y ∈ B) = P(X ∈
A)P(Y ∈ B).
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Questions

3.7.38. Two fair dice are tossed. Let X denote the number
appearing on the first die and Y the number on the second.
Show that X and Y are independent.

3.7.39. Let fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y. Show that
X and Y are independent. What are the marginal pdfs in
this case?

3.7.40. Suppose that each of two urns has four chips, num-
bered 1 through 4. A chip is drawn from the first urn and
bears the number X . That chip is added to the second
urn. A chip is then drawn from the second urn. Call its
number Y .

(a) Find pX,Y (x, y).
(b) Show that pX (k)= pY (k)= 1

4
, k = 1,2,3,4.

(c) Show that X and Y are not independent.

3.7.41. Let X and Y be random variables with joint pdf

fX,Y (x, y)= k, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1

Give a geometric argument to show that X and Y are not
independent.

3.7.42. Are the random variables X and Y independent if
fX,Y (x, y)= 2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1?

3.7.43. Suppose that random variables X and Y are inde-
pendent with marginal pdfs fX (x) = 2x , 0 ≤ x ≤ 1, and
fY (y)= 3y2, 0 ≤ y ≤ 1. Find P(Y < X).

3.7.44. Find the joint cdf of the independent random vari-

ables X and Y , where fX (x)= x

2
, 0 ≤ x ≤ 2, and fY (y)= 2y,

0 ≤ y ≤ 1.

3.7.45. If two random variables X and Y are independent
with marginal pdfs fX (x) = 2x , 0 ≤ x ≤ 1, and fY (y) = 1,
0 ≤ y ≤ 1, calculate P

(
Y
X

> 2
)
.

3.7.46. Suppose fX,Y (x, y) = xye−(x+y), x > 0, y > 0. Prove
for any real numbers a, b, c, and d that

P(a < X < b, c < Y < d)= P(a < X < b) · P(c < Y < d)

thereby establishing the independence of X and Y .

3.7.47. Given the joint pdf fX,Y (x, y) = 2x + y − 2xy, 0 <

x < 1, 0 < y < 1, find numbers a, b, c, and d such that

P(a < X < b, c < Y < d) �= P(a < X < b) · P(c < Y < d)

thus demonstrating that X and Y are not independent.

3.7.48. Prove that if X and Y are two independent ran-
dom variables, then U = g(X) and V = h(Y ) are also
independent.

3.7.49. If two random variables X and Y are defined over
a region in the XY -plane that is not a rectangle (possibly
infinite) with sides parallel to the coordinate axes, can X
and Y be independent?

3.7.50. Write down the joint probability density function
for a random sample of size n drawn from the exponential
pdf, fX (x)= (1/λ)e−x/λ, x ≥ 0.

3.7.51. Suppose that X1, X2, X3, and X4 are independent
random variables, each with pdf fXi (xi ) = 4x3

i , 0 ≤ xi ≤ 1.
Find

(a) P
(
X1 < 1

2

)
.

(b) P
(
exactly one Xi < 1

2

)
.

(c) fX1,X2,X3,X4(x1, x2, x3, x4).
(d) FX2,X3(x2, x3).

3.7.52. A random sample of size n = 2k is taken from
a uniform pdf defined over the unit interval. Calculate
P
(
X1 < 1

2
, X2 > 1

2
, X3 < 1

2
, X4 > 1

2
, . . . , X2k > 1

2

)
.

3.8 Transforming and Combining Random
Variables
Transformations

Transforming a variable from one scale to another is a problem that is comfortably
familiar. If a thermometer says the temperature outside is 83◦F, we know that the
temperature in degrees Celsius is 28:

◦C =
(

5

9

)
(◦F − 32)=

(
5

9

)
(83 − 32)= 28

An analogous question arises in connection with random variables. Suppose that
X is a discrete random variable with pdf pX (k). If a second random variable, Y , is
defined to be aX + b, where a and b are constants, what can be said about the pdf
for Y ?


