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TRANSLATOR'S PREFACE.

In 1852, a pamphlet, cntitled The Computation of an Orbit from Three Complete
Observations, was published, under the authority of the Navy Department, for the use
of the American Ephemeris and Nautical Almanac, the object of which was to excerpt
from various parts of Gauss’s Theoria Motus, and to arrange in proper order the numer-
ous details which combine to form this eomplicated problem. To these were added an
Appendix containing the results of Professor ENCKE': investigations, Ueber den Ausnah-
mefall einer doppelten Bahnbestimmang aus denselben drei geocentrischen Oertern (Ab-
handlungen der Akademie der Wissenschaften zu Berlin, 1818), and also Professor PEIRCE’S
Ciraphie Delineations of the Curves showing geometrically the roots of Gatss's Equa-
ton [V. Article 141.

After this pamphlet was completed, the opinion was expressed by scientific friends
that a complete translation of the Theoria Motus should be undertaken, not ouly to meet
the wants of the American Ephemeris, but those also of Astronomers generally, to whom
this work (now become very rare and costly) is a standard and permanent authority.
This undertaking has been particularly encouraged by the Smithsonian Institution,
which ltas signified its high estimate of the importance of the work, by contributing to
its publieation. And by the authority of Hon. J. C. Doss1N, Sceretary of the Navy, this
'T'ranslation is printed by the joint contributions of the Nautical Alinanac and the Sinith-
sonian Institution.

The notation of Gauss has been strictly adhered to throughout, and the translation
has been made as nearly litdral as possible.  No pains have been spared to secure typo-
graphical accuracy.  All the errata that have been noticed in Zaciw’s DMouatliche Corre-

spoadenz, the Berliner dstronondsches Juhrbueh, and the Astronomische Nachrichten, have
(v)



vi TRANSLATOR’S PREFACE.

been corrected, and in addition to these a considerable number, a list of which will be
found in GouLp’s Astromomical Jowrnal, that were discovered by Professor CHAUVENET
of the United States Naval Academy, who has examined the formulas of the body of
the work with great care, not only by comparison with the original, but by independent
verification. The proof-sheets have also been carefully read by Professor PHILLIPS, of
Chapel Hill, North Carolina, and by Mr. RuNKLE and Professor WiNLock of the Nautical
Almanac office. h

The Appendi'x contains the results of the investigations of Professor ENCKE and
Professor PEIRCE, from the Appendix of the pamphlet above referred to, and other mat-
ters which, it is hoped, will be found interesting and useful to the practical computer,
among which are several valuable tables: A Table for the Motion in a Parabola from
LEVERRIER’S Annales de L’ Observatoire Impérial de Paris, BEsSEL’S and PosSELT’S
Tables for Ellipses and Hyperbolas closely resembling the Parabola, and a convenient
Table by Professor HuBBARD for facilitating the use of Gauss’s formulas for Ellipses and
Hyperbolas of which the eccentricities are nearly equal to unity. And in the form of
notes on their appropriate articles, useful formulas by BEsser, NicoLal, ENCKE, GaAUSS,
and PEIRcE, and a summary of the formulas for computing the orbit of a Comet,
with the accompanying Table, from OLBERS’S Abhandlung ueber die leichteste und be-

quemste Methode die Bahn eines Cometen zu berechnem. Weimar, 1847.
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PREFACE.

Arter the laws of planetary motion were discovered, the genius of KEpLEr
was not without resources for deriving from observations the elements of mo-
tion of individual planets. Tvcno Brang, by whom practical astronomy had
been carried to a degree of perfection before unknown, had observed all the
planets through a long series of years with the greatest care, and with so
much perseverance, that there remained to KEepLEr, the most worthy inheritor
of such a repository, the trouble only of selecting what might seem suited
to any special purpose. The mean motions of the planets already deter-
mined with great precision by means of very ancient observations diminished
not a little this labor.

Astronomers who, subsequently to KEPLER, endeavored to determine still
more accurately the orbits of the planets with the aid of more recent or
better observations, enjoyed the same or even greater facilities. For the
problem was no longer to deduce elements wholly unknown, but only
slightly to correct those already known, and to define them within narrower
limits.

The principle of universal gravitation discovered by the illustrious NEwToN
b (ix)



X PREFACE.

opened a field entirely new, and showed that all the heavenly bodies, at
least those the motions of which are regulated by the attraction of the sun,
must necessarily, conform to the same laws, with a slight modification only,
by which KrpLer had found the five planets to be governed. KEeprLER, rely-
ing upon the evidence of observations, had announced that the orbit of every
planet is an ellipse, in which the areas are described uniformly about the
sun occupying one focus of the ellipse, and in such a manner that in differ-
ent ellipses the times of revolution are in the sesquialteral ratio of the semi-
axes-major. On the other hand, NEewrow, starting from the principle of
universal gravitation, demonstrated & prior¢ that all bodies controlled by the
attractive force of the sun must move in conic sections, of which the planets
present one form to us, namely, ellipses, while the remaining forms, parabo-
las and hyperbolas, must be regarded as being equally possible, provided
there may be bodies encountering the force of the sun with the requisite
velocity ; that the sun must always occupy one focus of the conic section;
that the areas which the same body describes in different times about the
sun are proportional to those times; and finally, that the areas described
about the sun by different bodies, in equal times, are in the subduplicate
ratio of the semiparameters of the orbits: the latter of these laws, identical
in elliptic motion with the last law of KzpLER, extends to the parabolic and
hyperbolic motion, to which KepLer's law cannot be applied, because the rev-
olutions are wanting. The clue was now discovered by following which it
became possible to enter the hitherto inaccessible labyrinth of the motions of
the comets. And this was so successful that the single hypothesis, fhat their
orbits were parabolas, sufficed to explain the motions of all the comets which

‘had been accurately observed. Thus the system of universal gravitation had
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paved the way to new and most brilliant triumphs in analysis; and the
comets, up to that time wholly unmanageable, or soon breaking from the
restraints to which they seemed to be subjected, having now submitted to
control, and being transformed from enemies to guests, moved on in the
paths marked out by the calculus, scrupulously conforming to the same eter-
nal laws that govern the planets.

In determining the parabolic orbits of comets from observation, difficul-
ties arose far greater than in determining the elliptic orbits of planets, and
principally from this source, that comets, seen for a brief interval, did not
afford a choice of observations particularly suited to a given object: but the
geometer was compelled to employ those which happened to be furnished
him, so that it became necessary to make use of special methods seldom
applied in planetary calculations. The gredt Newrox himself, the first geome-
ter of his age, did not disguise the difficulty of the problem: as might have
been expected, he came out of this contest also the victor. Since the time
of NEwTON, many geometers have labored zealously on the same problem,
with variou$ success, of course, but still in such a manner as to leave but
little to be desired at the present time.

The truth, however, is not to be overlooked that in this problem the
difficulty is very fortunately lessened by the knowledge of one element of
the conic section, since the major-axis is put equal to infinity by the very
assumption of the parabolic orbit. For, all parabolas, if position is neg-
lected, differ among themselves only by the greater or less distance of the
vertex from the focus; while conic sections, generally considered, admit of
infinitely greater variety. There existed, in point of fact, no sufficient reason

why it should be taken for granted that the paths of comets are exactly
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parabolic: .on the contrary, it must be regarded as in the -highest degree
improbable that-nature should- ever have' favored’ such an hypothesis. Since;
nevertheless, it was known, that the phenomena of .a heavenly body moving
in an ellipse or hyperbola, the major-axis of Which\ is very great relatively to
the parameter, differs very little near the perihelion from the motion in a
_parabola of which the vertex is at the same distance from the focus; and
that 'this ‘difference becomes the more inconsiderable thegreater the ratio of
the axis to the parameter: and since, moreover, experience had shown that
between the observed ‘motion -and the motion computed- in the parabolic
orbit, there remained differences scarcely ever greater than those which might
safely be attributed to errors of observation (errors quite considerable in
most cases): astronomers have thought proper to retain the parabola, and
very properly,  because there are no means whatever of ascertaining satis-
factorily what, if. any, are the diﬁ‘efences from a parabola. We must except
the celebrated comet of HarrEy, which, describing a very elongated ellipse and
frequently observed at its return to the perihelion, revealed to us its ‘periodic
time; but then the major-axis being thus known, the computation of the re-
maining elements is to be considered as hardly more difficult than the determi-
nation of the parabolic orbit. And we must not omit to mention that astrono-
mers, in the case of some other comets observed for a somewhat longer time,
have attempted to determine the deviation from a parabola. However, all
the methods either proposed or used for this object, rest upon the assumption
that the variation from a parabola is inconsiderable, and hence in the trials
referred to, the parabola itself, previously computed, furnished an approximate
idea of the several eléments (except the major-axis, or the time of revolu-

tion depending on it), to be corrected by only slight changes. Besides, it
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must be acknowledged, that the whole of these trials hardly served in any
case to settle any thing .with certainty, if, perhaps, the comet.of the year
1770 is excepted.

As soon as it was ascertained that the motion of the new planet, discov-
ered in ‘1781, could not be reconciled- with the parabolic hypothesis, astrono-
mers undertook to adapt a circular orbit to it, which is a matter of simple
and very easy calculation. By a happy accident the orbit of this planet had
but a small eccentricity, in consequence of which the elements resulting from
the circular hypothesis sufficed at least for an approximation on which could
be based the determination of the elliptic elements. . There was a concur-
rence of several other very favorable circumstances. For, the slow motion of
the planet, and the very small inclination of the orbit to the plane of the
ecliptic, not only rendered the calculations much more simple, and allowed
the use of special methods not suited to other cases; but they removed the
apprehension, lest the planet, lost in the rays of the sun, should subsequently
elude the search of observers, (an apprehension which some astronomers might
have felt, especially if its light had been less brilliant); so that the more
accurate determination of the orbit might be safely deferred, until a selection
could be made from observations more freqﬁent and more remote, such as
seemed best fitted for the end in view.

Thus, in every case in which it was necessary to deduce the orbits of
heavenly bodies from observations, there existed advantages not to be de-
spised, suggesting, or at any rate permitting, the application of special
methods; of which advantages the chief one was, that by means of hypo-

thetical assumptions an approximate knowledge of some elements could be
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obtained before the computation of the elliptic elements was commenced.
Notwithstanding this, it seems somewhat strange that the general problem, —

To determine the orbit of a heavenly body, without any hypothetical assumption,
Jrom observations not embracing a great period of time, and not allowing a selection
with a view to the application of special methods, was almost wholly neglected up
to the beginning of the present century; or, at least, not treated by any one
in a manner worthy of its importance ; since it assuredly commended itself
to mathematicians by its difficulty and elegance, even if its great utility in
practice were not apparent. An opinion had universally prevailed that a
complete determination from observations embracing a short interval of time
was impossible,—an ill-founded opinion,—for it is now clearly shown that
the orbit of a heavenly body may be determined quite nearly from good
observations embracing only a few days; and this without any hypothetical
assumption. |

Some ideas occurred to me in the month of September of the year 1801,
engaged at the time on a very different subject, which seemed to point to
the solution of the great problem of which I have spoken. Under such cir-
cumstances we not unfrequently, for fear of being too much led away by
an attractive investigation, suffer the associations of ideas, which, more atten-
tively considered, might have proved most fruitful in results, to be lost from
neglect. And the same fate might have befallen these conceptions, had they
not happily occurred at the most propitious moment for their preservation
and encouragement that could have been selected. For just about this time
the report of the new planet, discovered on the first day of January of that

year with the telescope at Palermo, was the subject of universal conversation;
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and soon afterwards the observations made by that distinguished astronomer
Prazzr from the above déte to the eleventh of February were published. No-
where in the annals of astronomy do we meet with so great an opportunity,
and a greater: one could hardly be imagined, for sﬁowing most strikingly, the
value of this problem, than in this crisis and urgent necessity, when all hope
of discovering in the heavens this planetary atom, among innumerable small
stars after the lapse of nearly a year, rested solely upon a sufficiently ap-
proximate knowledge of its orbit to be based upon these very few observa-
tions. Could I ever have found a more seasonable opportunity to test the
practical value of my conceptions, than now in employing them for the de-
termination of the orbit of the planet Ceres, which during these forty-one
days had described -a gedcentric arc of only three degrees, and after the
lapse of a year must be looked for in a region of the heavens very remote
from that in which it was last seen? This first application of the method
was made in the month of Oétober, 1801, and the first clear night, when
the planet was sought for* as directed by the numbers deduced from it, re-
stored the fugitive. to observation. Three other new plane;,s, subsequently
discovered, furnished new opportunities for examining and verifying the effi-
ciency and generality of the method.

Several astronomers wished me to publish the methods employed in these
calculations immediately after the second discovery of Ceres; but many
things — other occupations, the desire of treating the subject more fully at
some subsequent period, and, especially, the hope that a further prosecution

of this investigation would raise various parts of the solution to a greater

* By de ZacH, December 7, 1801.
9 .
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degree of generality, simplicity, and elegance,— prevented my complying at
the time with these friendly solicitations. I was not disappointed in this ex-
pectation, -and have no cause to regret the delay. For, the methods first
employed have undergone so many and such great changes, that scarcely
any trace of resemblance remains between the method in which the orbit of
Ceres was first computed, and the form given in this work. Although it
would be foreign to my purpose, to narrate in detail all the steps by
which these investigations have been gradually perfected, still, in several
instances, particularly when the problem was one of more importance than
usual, I have thought that the earlier methods ought not to be wholly sup-
pressed. But in this work, besides the solutions of the principal problems,
I have .given many things which, during the long time I have been en-
gaged- upon the motions of the heavenly bodies in conic sections, struck
me as worthy of attention, either on account of their analytical elegance,
or more especially on account of their practical utility. But in every case

I have devoted greater care both to the subjects and methods which are

peculiar to myself, touching.lightly and so far only as the.connection seemed
to require, on those previously known.

The whole work is divided into two parts. In the First Book are de-
veloped the relations between the quantities on which the motion of the
heavenly bodies about the sun, according to the laws of KerLEr, depends;
the two first sections comprise those relations in which one place only is
considered, and the third and fourth sections those in which the relations
between several places are considered. The two latter contain an explanation
of the common methods, and also, and more particularly, of other methods,

greatly preferable to ‘them in practice if I am not mistaken, by means of
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which we pass from the known elements to the phenomena; the former treat
of many most important problems which prepare the way to inverse pro-
cesses. Since these very phenomena result from a certain artificial and intri-
cate complication of the elements, the nature of this texture must be thor-
oughly examined before we can undertake with hope of success to disentangle
the threads and to resolve the fabric into its constituent parts. Accordingly,
in the First Book, the means and appliances are provided, by means of which,
in the second, this difficult task is accomplished; the chief part of the labor,
therefore, consists in this, that these means should be properly collected to-
gether, should be suitably arranged, and directed to the proposed end.

The more important problems are, for the most part, illustrated by appro-
priate examples, taken, wherever it was possible, from actual observations.
In this way not only is the efficacy of the methods more fully established
and their use more clearly shown, but also, care, I hope, has been taken that
inexperienced computers should not be deterred from the study of these sub-
Jjects, which undoubtedly constitute the richest and most attractive part of
theoretical astronomy.

GorriNgEN, March 28, 1809.






FIRST BOOK.

GENERAL RELATIONS BETWEEN THOSE QUANTITIES BY WHICH THE
MOTIONS OF HEAVENLY BODIES ABOUT THE SUN ARE DEFINED.

FIRST SECTION.

RELATIONS PERTAINING SIMPLY TO POSITION IN THE ORBIT.

1.

In this work we shall consider the motions of the heavenly bodies so far only
as they are controlled by the attractive force of the sun. All the secondary
planets are therefore excluded from our plan, the perturbations which the
primary planets exert upon each other are excluded, as is also all motion of
rotation. We regard the moving bodies themselves as mathematical points, and
we assume that all motions are performed in obedience to the following laws,
which are to be received as the basis of all discussion in this work.

I. The motion of every heavenly. body takes place in the same fixed
plane in which the centre of the sun is situated.

II. The path described by a body is a conic section having its focus in the
centre of the sun.

ITII. The motion in this path is such that the areas of the spaces described
about the sun in different intervals of time are proportional to those intervals.
Accordingly, if the times and spaces are expressed in numbers, any space what-
ever divided by the time in which it is described gives a constant quotient.

1
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IV. For different bodies moving about the sun, the squares of these quotients
are in the compound ratio of the parameters of their orbits, and of the sum of the
masses of the sun and the moving bodies.
Denoting, therefore, the parameter of the orbit in which the body moves by
2p, the mass of this body by u (the mass of the sun being put =1), the area it

describes about the sun in the time ¢ by #g, then W%l-l-—#) will be a constant

for all heavenly bodies. Since then it is of no importance which body we use
for determining this number, we will derive it from the motion of the earth, the
mean distance of which from the sun we shall adopt for the unit of distance ; the
mean solar day will always be our unit of time. Denoting, moreover, by 7 the
ratio of the circumference of the circle to the diameter, the area of the entire
ellipse described by the earth will evidently be my/p, which must therefore be
put = 4 g, if by 7 is understood the sidereal year; whence, our constant becomes

2n

— W (IFw
after to be denoted by %, we will put, according to the latest determination, the

sidereal year or 7= 366.2563835, the mass of the earth, or y:——l——-

354710 —
0.0000028192, whence results
log2n . . . . . « .« . 07981798684

Compl. log? . . . . . . T.A374021852
Compl. log. /(1 4p) . . . 9.9999993878

logk. . . . . . . . . 82355814414
b= 001720209895,

In order to ascertain the numerical value of this constant, here-

2.

The laws above stated differ from those discovered by our own KEPLER
1n no other respect than this, that they are given in a form applicable to all kinds
of conic sections, and that the action of the-moving body on the sun, on which
depends the factor y/ (1 4 ), is taken into account. If we regard these laws as
phenomena derived from innumerable and indubitable observations, geometry
shows what action ought in consequence to be exerted upon bodies moving about
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the sun, in order that these phenomena may be continually produced. In this
way it is found that the action of the sun upon the bodies moving about it is
exerted just as if an attractive force, the intensity of which is reciprocally
proportional to the square of the distance, should urge the bodies towards the
centre of the sun. If now, on the other hand, we set out with the assumption of
such an attractive force, the phenomena are deduced from it as necessary
consequences. It is sufficient here merely to have recited these laws, the con-
nectjon of which with the principle of gravitation it will be the less necessary to
dwell upon in this place, since several authors subsequently to the eminent
Newron have treated this subject, and among them the illustrious La Pracg, in
that most perfect work the Mécanique Céleste, in such a manner as to leave
nothing further to be desired.

3.

Inquiries into the motions of the heavenly bodies,so far as they take place in
conic sections, by no means demand a complete theory of this class of curves;
but a single general equation rather, on which all others can be based, will answer
our purpose. And it appears to be particularly advantageous to select that one
to which, while investigating the curve described according to the law of attrac-
tion, we are conducted as a characteristic equation. If we determine any place
of a body in its orbit by the distances z, y, from two right lines drawn in the
plane of the orbit intersecting each other at right angles in the centre of the
sun, that is, in one of the foci of the curve, and further, if we denote the distance
of the body from the sun by » (always positive), we shall have between r, , 7,
the linear equation » ++ a2z 4 8y =1y, in° which e, 8, y represent constant quan-
tities,  being from the nature of the case always positive. By changing the
position of the right lines to which #,7, are referred, this position being essentially
arbitrary provided only the lines continue to intersect each other at right angles,
the form of the equation and also the value of y will not be changed, but the
values of & and §# will vary, and it is plain that the position may be so determined
that 8 shall become — 0, and «, at least, not negative. In this way by putting for
e, 7, respectively e, p, our equation takes the form » 4 ex=p. The right line to
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which the distances y are referred in this case, is called the Zne of apsides, p is the
semi-parameter, e the eccentricity ; finally the conic section is distinguished by the
name of ellipse, parabola, or hyperbola, according as e is less than unity, equal to
unity, or greater than unity.

It is readily perceived that the position of the line of apsides would be
fully determined by the conditions mentioned, with the exception of the single
case where both ¢ and # were = 0; in which case » is always = p, whatever the
right lines to which 2, 7, are referred. Accordingly, since we have ¢=0, the
curve (which will be a circle) is according to our definition to be assigned to
the class of ellipses, but it has this peculiarity, that the position of the apsides
remains wholly arbitrary, if indeed we choose to extend that idea to such a case.

4.

Instead of the distance # let us introduce the angle v, contained between the
line of apsides and a straight line drawn from the sun to the place of the body
(the radius vector), and this angle may commence at that part of the line of apsides
at which the distances z are positive, and may be supposed to increase in the
direction of the motion of the body. In this way we have 2 =7 cosv, and thus
our formula becomes r = ]:[-_—gav_’ from which immediately result the following

conclusions : —

I For »=0, the value of the radius vector » becomes a minimum, that is,

- _L_ . . . . . .
= 1, this point is called the perihelion.

II. For opposite values of », there are corresponding equal values of »; con-
sequently the line of apsides divides the conic section into two equal parts.
III. "In the ellipse, v increases continuously from » =0, until it attains its

maximum value,

3 L_ in aphelion, corresponding to »=180°; after aphelion, it
decreases in the same manner as it had increased, until it reaches the perihelion,
corresponding to #=23860°. That portion of the line of apsides terminated at one

extremity by the perihelion and at the other by the aphelion is called the major
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azis ; hence the semi-axis major, called also the mwan distance, == ILM; the dis-

tance of the middle point of the axis (¢&e centre of the ellipse) from the focus will

e . . . .
be —£_ — ¢a, denoting by « the semi-axis major.
1—ce ? S

IV. On the other hand, the aphelion in its proper sense is wanting in the
parabola, but 7 is increased indefinitely as » approaches + 180°, or — 180°. For
» =+ 180° the value of » becomes infinite, which shows that the curve is not cut
by the line of apsides at a point opposite the perihelion. Wherefore, we cannot,
with strict propriety of language, speak of the major axis or of the centre of the
curve ; but by an extension of the formulas found in the ellipse, according to the
established usage of analysis, an infinite value is assigned to the major axis, and
the centre of the curve is placed at an infinite distance from the focus.

V. In the hyperbola, lastly, » is confined within still narrower limits, in fact
between » —=—(180°— ), and v = -+ (180° — ), denoting by w the angle of

: . 1 : 5 o 0
which the cosine =>. For whilst » approaches these limits, » increases to

infinity ; if] in fact, one of these two limits should be taken for v, the value of »
would result infinite, which shows that the hyperbola is not cut at all by a right
line inclined to the line of apsides above or below by an angle 180°—+. For
the values thus excluded, that is to say, from 180° — 1y to 180° 4, our formula
assigns to » a negative value. The right line inclined by such an angle to the
line of apsides does not indeed cut the hyperbola, but if produced reversely,
meets the other branch of the hyperbola, which, as is known, is wholly sepa-
rated from the first branch and is convex towards that focus, in which the sun is
situated. DBut in our investigation, which, as we have already said, rests upon the
assumption that » is taken positive, we shall pay no regard to that other branch
of the hyperbola in which no heavenly body could move, except one on which
the sun should, according to the same laws, exert not an attractive but a repulsive
force. Accordingly, the aphelion does not exist, properly speaking, in the hyper-
bola also; that point of the reverse branch which lies in the line of apsides,

and which corresponds to the values »=180°, r:—:pl, might be consid-

ered as analogous to the aphelion. If now, we choose after the manner of the



6 RELATIONS PERTAINING SIMPLY [Boox L

ellipse to call the value of the expression Tpe'e , even here where it becomes

negative, the semi-axis major of the hypelrbola, then this quantity indicates
the distance of the point just mentioned from the perihelion, and at the
same time the position opposite to that which occurs in the ellipse. In the
°P_ that is, the distance from the focus to the middle point between

1L—ee’
these two points (the centre of the hyperbola), here obtains a negative value on

same way

account of its opposite direction.

5.

We call the angle v the #rue anomaly of the moving body, which, in the
parabola is confined within the limits — 180° and +-180°, in the hyperbola
between — (180° — ) and -} (180° — ), but which in the ellipse runs through
the whole circle in périods constantly renewed. Hitherto, the greater number of
astronomers have been accustomed to count the true anomaly in the ellipse not
from the perihelion but from the aphelion, contrary to the analogy of the parabola
and hyperbola, where, as the aphelion is wanting, it is necessary to begin from the
perihelion: we have the less hesitation in restoring the analogy among all classes
of conic sections, that the most recent French astronomers have by their example
led the way.

It is frequently expedient to change a little the form of the expression

r—= 1—+§m3 the fgllowing forms will be especially observed : —

prp— P = P
14 e—2esin®tv  1—e-2ecos’}v

r= P
(1 +e) cos’Lv (1 —e)sin*s o’
Accordingly, we have in the parabola

r

'S cos"’{;p;
in the hyperbola the following expression is particularly convenient,

pp— pcosy
~ Zeos} (vt p)coske—y)°
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6.

Let us proceed now to the comparison of the motion with the time. Putting,
as in Art. 1, the space described about the sun in the time ¢ = 2 g, the mass of the
moving body = p, that of the sun being taken =1, we have g =Z%?¢y/py/ (14 p).
The differential of the space = # 7 dv, from which there results ¢y py/ (1 4 p)
= /rrdv, this integral being so taken that it will vanish for # = 0. _ This integra-
tion must be treated differently for different kinds of conic sections, on which
account, we shall now consider each kind separately, beginning with the ELLIPSE.

Since 7 is determined from » by means of a fraction, the denominator of which
consists of two terms, we will remove this inconvenience by the 1ntr0duct10n of a
new quantity in the place of ». For this purpose we will put tan %v\/ T +
tan 4 Z, by which the last formula for » in the preceding article gives

- pcos"lE . COS”J'-E SlnzlE) |
5 — = 1+e + — 1_M(l—ecosl}')
dE __ de l1—e ‘__ pdE |
MoreoYer we have o 1E = o %v\/ e and consequently dv = YV (i—ee)’
hence . '
o C PP__(1—ecosE)d E,
\/(l_“) (l—ee)%

and integrating,

Etypy(1 —|—p)—( . %(E—esmE) —+ Constant.

Accordingly, if we place the beginning of the time at the perihelion passage, where

» = 0, =0, and thus constant = 0, we shall have, by reason of - _p =

= a,
E— ¢sin E="VAE8
a
In this equation the auxiliary angle Z, which is called the eccentric anomaly,

must be expressed in parts of the radius. This angle, however, may be retained
in degrees, etc,, if e sin ZZ and BV Q41 gre also expressed in the same manner ;

a
these quantities will be expressed in seconds of arc if they are multiplied by the
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number 206264.81. We can dispense with the multiplication by the last quan-
tity, if we employ directly the quantity % expressed in seconds, and thus put,
instead of the value before given, £ = 3548".18761, of which the logarithm —

3.5600066746. The quantity kt—\/%i—”—) expressed in this manner is called the

a
mean anomaly, which therefore increases in the ratio of the time, and indeed every

day by the increment M%Q, called the mean daily motion. We shall denote
a

the mean anomaly by M.

7.

Thus, then, at the perihelion, the true anomaly, the eccentric anomaly, and the
mean anomaly are = 0; after that, the true anomaly increasing, the eccentric
and mean are augmented also, but in such a way that the eccentric continues to
be less than the true, and the mean less than the eccentric up to the aphelion,
where all three become at the same time — 180°; but from this point to
the perihelion, the eccentric is always greater than the true, and the mean
greater than the eccentric, until in the perihelion all three become = 360°, or,
which amounts to the same thing, all are again = 0. And, in general, it is
evident that if the eccentric ZZ and the mean 3/ answer to the true anomaly v,
then the eccentric 860° — % and the mean 360° — A correspond to the true
360°—w. The difference between the true and mean anomalies, v — 2, is called
the equation of the centre, which, consequently, is positive from the perihelion
to the aphelion, is negative from the aphelion to the perihelion, and at the
perihelion and aphelion vanishes. Since, therefore,» and M run through an
entire circle from 0 to 360° in the same time, the time of a single revolution,
which is also called the periodic time, is obtained, expressed in days, by dividing

360° by the mean daily motion I—C\lﬁgi”—), from which it is apparent, that for dif-
a
ferent bodies revolving about the sun, the squares of the periodic times are pro-

portional to the cubes of the mean distances, so far as the masses of the bodies,
or rather the inequality of their masses, can be neglected.
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8.

Let us now collect together those relations between the anomalies and the
radius vector which deserve particular attention, the derivation of which will
present no difficulties to any one moderately skilled in trigonometrical analysis.
Greater elegance is attained in most of these formulas by introducing in the

place of ¢ the angle the sine of which —=e. This angle being denoted by ¢, we
have

V(1 —ee)=cosp, y(1-+e¢)=cos(45°—39)y2,
V(l—e)=cos(45°+ 1 g)y2, |/ }e=tan (45" — )
VA4 FVl—e)=2costg, y(1+e)—y(l—c)=2siniq

The following are the principal relations between a, p, 7, ¢, ¢, v, E, M.

I p=acos’yp
IL. r=i¢f—m—v
III. r=a(l—ecos E)
IV. cosE=i%Hm%
V. sin%E:V%(l—cosE‘)——fSinl}v 1_}_:;5”

.y r(l—e) . r
_smf}v\/—p _smév\/——-—a(l_l_e)
VL cos3 E—=y3(1+4cosE) =costv —i+esv

'=cosév\/r—(1pﬂ=cos&v\/a—(ere)

VIL tan$E— tan $vtan(45°— )

5 __rsinvcosp __ rsinv
VIIL sin F= e — advo
IX. rcosv=a(cosE—e)=2acos(3 £+ 4 ¢+ 45°) cos (3 E— t ¢ — 45°)
. - . I_ . . 9_
sm&(U—E)_sm%(psmv\/p_smf}(psmE\/r

. o r . a
XI. sm&(v—}—E)_cos%cpsmv\/l—,_cos%tpsmE\/-;
XII. M=FE—e¢sinkFE.

b

2
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9.

If a perpendicular let fall from any point whatever of the ellipse upon the
line of apsides is extended in the opposite direction until it meets the circle
described with the radius @ about the centre of the ellipse, then the inclination to
the line of apsides of that radius which corresponds to the point of intersection
(understood in the same way as above, in the case of the true anomaly), will
be equal to the eccentric anomaly, as is inferred without difficulty from equation
IX. of the preceding article. Further, it is evident that »sinw is the distance of
any point of the ellipse from the line of apsides, which, since hy equation VIIL it
= a cos @ sin E, will be greatest for £=— 90°, that is in the centre of the ellipse.

p
cos @

In the focus of the ellipse, that is for » = 90°, this distance is evidently =— p, or

This greatest distance, which —=acosgp =

= \/ap,is called the semi-azis minor.

equal the semi-parameter.

10.

The equations of article 8 comprise all that is requisite for the computation
of the eccentric and mean anomalies from the true, or of the eccentric and true
from the mean. Formula VII is commonly employed for “deriving the eccentric
from the true; nevertheless it is for the most part preferable to make use of
equation X. for this purpose, especially when the eccentricity is not too great, in
which case £ can be computed with greater accuracy by means of X. than of
VII. Moreover, if X. is employed, the logarithm of sine £ required in XII. is
had immediately by means of VIIL: if VIL. were used, it would be neces-
sary to take it out from the tables; if, therefore, this logarithm is also taken
from the tables inr the latter method, a proof is at once obtained that the calcula-
tion has been correctly made. Tests and proofs of this sort are always to be
highly valued, and therefore it will be an object of constant attention with us to
provide for them in all the methods delivered in this work, where indeed it can
be conveniently done. We annex an example completely calculated as a more
perfect illustration.
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Given v = 310° 55’ 29".64, o = 14° 12" 1".87, log » = 0.3307640; p, a, E, M,

are required.
log sin ¢
log cos v

9.3897262
9.8162877

9.2060139 whence e cos v — 0.1606993

log (14e¢cosv). . 0.0647197

log 0.3307640
log p 0.3954837
log cos?¢p . 9.9730448
log a 0.4224389
logsinv . . . 9.8782740 n*
p

log \/ P .. . 003235985

' 9.8459141.57
log sin 4 ¢ 9.0920395

log sin 4 (v—E) . 8.9379536.5%, hence % (v — F) = —4° 58 22".94 ;
v—E=—9°56"45".88; F=320°52"15".562.

Further, we have

log e
log 206264.8

Calculation of log sin E by formula VIIL.

9.3897262

log ¢ in seconds

log sin & .

r .
53144951 log 7 smy . . . . 981356b643n
4.7041513 logcosgp . . . . . 9.9865224
9.8000767 logsinZ . . . . . 9.80007672z

4.5042280 7, hence ¢ sin & in seconds — 31932".14 = 8° 62

12".14 ; and M = 329° 44’ 27".66.
The computation of £ by formula VII. would be as follows: —

39 = 155°27"44".82 logtandw . . . . 9.656945679%
[ 45°— 4 ¢ =237°5359".0656 log tan (45°—4¢) . 9.8912427
logtand & . . . . 9.5507006%

whence 3 £ = 160°26"7".76, and £ — 320°52'15".562, as above.

* The letter # affixed to a logarithm signifies that the number corresponding to it is negative.
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11.

The inverse problem, celebrated under the title of Kepler's problem, that of
finding the true anomaly and the radius vector from the mean anomaly, is much
more frequently used. Astronomers are in the habit of putting the equation of
the centre in the form of an infinite series proceeding according to the sines of the
angles M, 2 M, 3 M, etc., each one of the coefficients of these sines being a series
extending to infinity according to the powers of the eccentricity. We have con-
sidered it the less necessary to dwell upon this formula for the equation of the
centre, which several authors have developed, because, in our opinion, it is by’
no means so well suited to practical use, especially should the eccentricity not be
very small, as the indirect method, which, therefore, we will explain somewhat
more at length in that form which appears to us most convenient.

Equation XII., # = M + esin Z, which is to be referred to the class of tran-
scendental equations, and admits of no solution by means of direct and complete
methods, must be solved by trial, beginning with any approximate value of Z, which
is corrected by suitable methods repeated often enough to satisfy the preceding
equation, that is, either with all the accuracy the tables of sines admit, or at least
with sufficient accuracy for the end in view. If now, these corrections are intro-
duced, not at random, but according to a sgfe and established rule, there is scarcely
any essential distinction between such an indirect method and the solution by
series, except that in the former the first value of the unknown quantity is in a
measure .arbitrary, which is rather to be considered an advantage since a value
suitably chosen allows the corrections to be made with remarkable rapidity. Let
us suppose & to be an approximate value of Z, and z expressed in seconds the cor-
rection to be .added to it, of such a value as will satisfy our equation £'—¢ —+ 2.
Let esin ¢, in seconds, be computed by logarithms, and when this is done, let the
change of the log sin & for the change of 1” in & itself be taken from the tables;
and also the variation of log e sin ¢ for the change of a unit in the number esine;
let these changes, without regard to signs, be respectively A, g, in which it is
hardly necessary to remark that both logarithms are presumed to contain an
equal number of decimals. Now, if ¢ approaches so near the correct value of &
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that the changes of the logarithm of the sine from & to ¢ 4 #, and the changes of
the logarithm of the number from esine to esin(e 4 2), can be regarded as
uniform, we may evidently put

esin(e—|—x)=esinei;—§,

the upper sign belonging to the first and fourth quadrants, and the lower to the
second and third. Whence, since

& -|—x;M-|—esin (¢ -+ 2), we have x:;%r (Jlf—|—esin’a—s),
and the correct value of F,or

a—]—x=_M—|—esinsj-_ﬁ%(M—|— esine — ),

the signs being determined by the above-mentioned condition.

Finally, it is readily perceived that we have, without regard to the signs,
w:d=1:ecose, and.therefore always u>1, whence we infer that in the first and
last quadrant M - e sin ¢ lies between ¢ and &¢ + 2, and in the second and third,
¢+ 2 between ¢ and M 4 e¢sin ¢, which rule dispenses with paying attention to the
signs. If the assumed value & differs too much from the truth to render the fore-
going considerations admissible, at least a much more suitable value will be found
by this method, with which the same operation can be repeated, once, or several
times if it should appear necessary. It is.very apparent, that if the difference
of the first value & from the truth is regarded as a quantity of the first order, the
error of the new value would be referred to the second order, and if the operation
were further repeated, it would be reduced to the fourth order, the eighth order,
etc. 'Moreover, the less the eccentricity, the more rapidly will the successive
corrections converge.

12.

The approximate value of Z, with which to begin the calculation, will,in most
cases, be obvious enough, particularly where the problem is to be solved for
several values of M of which some have been already found. In the absence
of other helps, it is at least evident that £ must fall between M and M =+ e, (the
eccentricity e being expressed in seconds, and the upper sign being used in the
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first and second quadrants, the lower in the third and fourth), wherefore, either
M, or its value increased or diminished by any estimate whatever, can be taken
for the first value of £. It is hardly necessary to observe, that the first calcu-
lation, when it is commenced with a value having no pretension to accuracy, does
not require to be strictly exact, and that the smaller tables * are abundantly suffi-
cient. Moreover, for the sake of convenience, the values selected for & should be
such that their sines can be taken from the tables without interpolation; as, for
example, values to minutes or exact tens of seconds, according as the tables
used proceed by differences of minutes or tens of seconds. Every one will be
able to determine without assistance the modifications these precepts undergo if

the angles are expressed according to the new decimal division.
\

13.

Ezample.— Let the eccentricity be the same as in article 10. M= 332°28
54".77. There the log e in seconds is 4.7041613, therefore e= 50600" = 14° 3’ 20".
Now since £ here must be less than M let us in the first calculation put e = 326° _
‘then we have by the smaller tables

IOg sing . . . . . 974756% Change for I/ . . . 19, whence 4 = 0.82.
log ¢ in seconds . . 4.70415

| 4451710 ;

hence e sin § =— 28295” =— 7°51"35". Change of logarithm for a unit of the table which is here
M+ esing. . . . . . 824 3720 equal to 10 seconds . . . 16; whence ££=1.6.
differing frome . . . . 1 22 40 =4960". Hence,

X 33 % 4960”7 = 1240” — 20’ 40",

Wherefore, the corrected value of E becomes 324°37' 20" — 20’ 40" = 324°16'40”,
with which we repeat the calculation, making use of larger tables.

logsine . . . . 9.7663058x A =29.25
loge . . . . . 47041513
4.4704571n p =147

* Such as those which the illustrious LALANDE furnished.
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esin e =— 29543”.18 = — 8°12'23".18
M-4esine . . . . 324 16 31 .69
differing frome . . . 8 41.

2925 . .,
1775 ives 27.09, whence, finally, the

corrected value of 7/ = 324°16"81".69 — 2”.09 = 324°16’29”.50, which is exact
within 0”.01.

This difference being multiplied by L} —

14.

The equations of article 8 furnish several methods for deriving the true
anomaly and the radius vector from the eccentric anomaly, the best of which we
will explain.

I. By the common method » is determined by equation VII, and afterwards
r by equation IL; the example of the preceding article treated in this way
is as follows, retaining for p the value given in article 10.

} E—162°8'14".75 loge . . . . . 98897262
logtan ¢ 2 . . . . 9.5082198% logcosy . . . . 9.8496597
log tan (45°—4¢) . 9.8912427 9.2393859
logtando . . . . 9.6169771n  ecoso — 0.1735345
to = 157°30/41".50 logp . . . . . 0.3954837
»=315 123.00 log (1 4-ecosv). . 0.0694959

logr . . . . . 0.3259878.

II. The following method is shorter if several places are to be computed,
for which the constant logarithms of the quantities y'a (1 4-¢), y a(1 —¢) should
be computed once for all. By equations V. and VI. we have

sinjo\r=sini Eya(l-+Fe¢)

cos vy r=rcos$ Lya(l—c¢)
from which 4 » and log \/ r are easily determined. It is true in.general that if we
have Psin Q = A, Pcos Q = B, @ is obtained by means of the formula tan

@ =%: and then P by this, = WAQ, or by P= E£Q: it is preferable to use
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the former when sin @ is greater than cos @ ; the latter when cos @ is greater than
sin . Commonly, the problems in which equations of this kind occur (such as
present themselves most frequently in this work), involve the condition that P
should be a positive quantity ; in this case, the doubt whether @ should be taken
between 0 and 180°, or between 180° and 360°, is at once removed. But if such
a condition does not exist, this decision is left to our judgment.

We have in our example ¢ = 0.2453162.

log sin YE . . . 94867632 ‘ logcosd &/ . . . 9.9785434n
logya(l-4e) . . 0.2588593 - logya(l—e) . . 0.1501020.
Hence '

log sindoyr . . 97456225 } whence, log tan 4 » = 9.6169771 %
log cosdvyr . . 0.1286454n 30 =157°30"41".50
logcosdw . . . 9.9656516% v=2315 123.00
logyr . . . . 01629939

logr . . . . . 03259878

ITII. To these methods we add a third which is almost equally easy and expe-
ditious, and is much to be preferred to the former if the greatest accuracy should
be required. Thus, 7is first determined by means of equation IIL,and after that,
v by X. Below is our example treated in this manner.

loge . . . . . 93897262 logsinZ . . . . 9.7663366n
logeosZ . . . 9.9094637. log y/(1—ecosE) . 9.9517744
2.2991899 9.8145622n
ecos/= . . . 01991544 logsindp . . . . 9.0920395
loga. . . . . 04224389 logsind(v—E). . 8.9066017x
log(1—ecosZ). 9.9085488 $(v—E)=—4°37'33"24
logr . . . . . 03259877 v—E =—9 15 6 .48

v=2316 1 23 .02

Formula VIII, or XI,is very convenient for verifying the calculation, par-
ticularly if » and » have been determined by the third method. Thus;
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logZsin® . . . 9.8627878n logsinE\/; . . . 9.8145622a
logcosg . . . . 9.9865224 logcosdg . . . . 99966567

0.84931027 9.81121897
logsine . . . . 9.8493102z logsin}(v+ F). . 9.8112189xn

15.

Since, as we have seen, the mean anomaly M is completely determined by
means of » and ¢, in the same manner as » by M and ¢, it is evident, that if all
these quantities are regarded as variable together, an equation of condition ought
to exist between their differential variations, the investigation of which will not
be superfluous: By differentiating first, equation VII, article 8, we obtain

dE _ dv 49
sinZ ~ sinw  cosg’

by differentiating likewise equation XII, it becomes
dM=(1—ecosE)dL—sin Fcosgdg.
If we eliminate d Z' from these differential equations we have

AM— sin B (1 — ecos ) do— (SinECOS(p _{_sinE(lco:;cosE))dq),

sin v

or by substituting for sin %, 1 — e cos F, their values from equations VIIL, III,,

AM— rr do r (r-+p) smvdq),

aacos ¢ aacos’p

or lastly, if we express both coeflicients by means of » and ¢ only,

___ cos’g (2 + e cosv) sinvcos®
dM= (14 ecosv)? L (1 + e cosv)* dg.

Inversely, if we consider  as a function of the quantities M, ¢, the equa,tidn has

this form : —

dv:aa:25¢dM+ (24 ecosv) sinvdq)

Cos @ J
or by introducing Z' instead of v
dv=($;J dM—|—aT—(: (2—ecosZ—ee)sin Ldg.
3
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16.

The radius vector » is not fully determined by » and ¢, or by M and ¢, but
depends, besides these, upon p or a; its differential, therefore,will consist of three
parts. By differentiating equation IL of article 8, we obtain

g_'_r.'_d_p_l_ esin® __Cospcosv,
r p | 14ecosv IJ-ecosv
By putting here
dp__de
?_;—2tanq;d(p

(which follows from the differentiation of equation I.), and expressing, in con-
formity with the preceding article, d» by means of d J/ and d ¢, we have, after
making the proper reductions, '

dr  da | a . a
—=—+;tangsinod M —_cosgcosvdy,

dr=g da—+atan g sined M — a cosg cosvd g.

Finally, these formulas, as well as those which we developed in the preceding
article, rest upon the supposition that v, ¢, and A/ or rather do, d¢, and d M,
are expressed in parts of the radius. If, therefore, we choose to express the vari-
ations of the angles v, ¢, and 2 in seconds, we must either divide those parts of
the formulas which contain d#, d ¢, or d M; by 206264.8, or multiply those which
contain dr, d p, d @, by the same number. Conse.quently, the formulas of the pre-
ceding article, which in this respect are homogeneous, will require no change.

17.

It will be satisfactory to add a few words concerning the investigation of the
greatest equation of the centre. In the first place, it is evident in itself that the dif-
ference between the eccentric and mean anomaly is a maximum for £ = 90°,
where it becomes = e (expressed in degrees, etc.); the radius vector at this point
= a, whence » = 90° 4 ¢, and thus the whole equation of the centre — ¢ -} ¢,
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which, nevertheless, is not a maximum here, since the difference between » and
L may still increase beyond ¢. 7%:s lust difference becomes a maximum for
d(v—L)=0 or for dv = d F, where the eccentricity is clearly to be regarded
as constant. With this assumption, since in general
Ao _ax
siny ~  sin B’
it is evident that we should have sin » = sin Z' at that point where the difference
between » and Z is a maximum ; whence we have by equations VIII, 1II.,
r =a cos¢, e cos / =1 — cos ¢, or cos [/ = -4 tan 3 ¢.
In like manner cos» = — tan # ¢ is found, for which reason it will follow * that
v=90°+ arcsintan $ ¢, £'= 90°— arcsintan 4 ¢ ;
hence again
sinE’:\/(l—tan2%qJ):V—c°S—¢

cos + ¢’
so that the whole equation of the centre at this point l;ezomes
2 arcsintan $ ¢ 4 2sin 4 ¢ \/ cos ¢,
the second term being expressed in degrees, etc. At thatpoint, finally, where
the whole equation of the centre is a maximum, we must have d v = d A/, and
so according to article 15, 7=ua/ cos ¢ ; hence we have

- l—cos%q) __1—ycosp _ 1—cosqp __ tanig
Cosv=— e-’COSE— € T e(l+eosp) — 1-4ycosg’
by which formula Z can be determined with the greatest accuracy. Z being
found, we shall have, by equations X., XIL,

equation of the centre — 2 arc sin Em-;%—fpin—E—k esin .

. \/ cos ¢

We do not delay here for an expression of the greatest equation of the centre by
means of a series proceeding according to the powers of the eccentricities, which
several authors have given. As an example, we annex a view of the three
maxima which we have been considering, for Juno, of which the eccentricity,
according to the latest elements, is assumed = 0.2554996. ‘

* 1t is not necessary to consider those maxima which lie between the aphelion and perihelion,

because they evidently differ in the signs only from those which are situated between the perihelion and
aphelion.
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‘ Maximum. E E—-M v—E v—M
E—M | 90° 0' 07| 14°88' 20”57 | 14°48’117.48 | 29° 26’ 32".05
v—E |8232 9 |14 30 54.01 | 14 55 41.79 | 29 26 35 .80
v—M |86 1440 | 14 36 27.39 | 14 53 49 .57 | 29 30 16 .96
|
18.

In the PARABOLA, the eccentric anomaly, the mean anomaly, and the mean
motion, become = 0 ; here therefore these ideas cannot aid in the comparison of
the motion with the time. In the parabola, however, there is no necessity for an

auxiliary angle in integrating »»d»; for we have

rrdp= £EIY _ PPNty __ 4,0 (1 1 tan? o) d tan 4 o;

4 costiv 2cos®Lv

and thus,
JSrrdv =4 pp(tan $ v 4 % tan® 4 v) 4 Constant.

If the time is supposed to commence with the perihelion passage, the Constant
= 0; therefore we have

tan 3 v - 4 tan® o= M%ﬁ,
P

by means of which formula, # may be derived from v, and » from #, when p and
p are known. In the parabolic elements it is usual, instead of p, to make use of
the radius vector at the perihelion, which is % p, and to neglect entirely the mass
w. It will scarcely ever be possible to determine the mass of a body, the orbit of
which is computed as a parabola; and indeed all comets appear, according to the
best and most recent observations, to have so little density and mass, that the
latter can be considered insensible and be safely neglected.

- 19.

The solution of the problem, from the true anomaly to find the time, and, in
a still greater degree, the solution of the inverse problem, can be greatly abbrevi-
ated by means of an auxiliary table, such as is found in many astronomical works.
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But the Barkerian is by far the most convenient, ‘and is also annexed to the
admirable work of the celebrated OLBErs, (Abkandlung iiber die leichteste und
bequemste Methode die Balhn eines Cometen zu berechnen: Weimar, 1797.) It contains,
under the title of the mean motion, the value of the expression 75tan v -4 25
tan® 3 9, for all true anomalies for every five minutes from 0 to 180° If
therefore the time corresponding to the true anomaly v is required, it will be
necessary to divide the mean motion, taken from the table with the argument,

by ﬁlg , which quantity is called the mean daily motion ; if on the contrary the
)

true anomaly is.to be computed from the time, the latter expressed in days will
150%

% J
ing anomaly maypbe taken from the table. It is further evident that the same
mean motion and time taken negatively correspond to the negative value of the v;
the same table therefore answers equally for negative and positive anomalies. If
in the place of p,we prefer to use the perihelion distance # p = ¢, the mean daily

k\/28%12'5, in which the constant factor £/ 2812.6 —

q
0.912279061, and its logarithm is 9.9601277069. The anomaly » being found,
the radius vector will be determined by means of the formula already given,

~ be multiplied by in order to get the mean motion, with which the correspond-

motion is expressed by

_ 7
r_cosﬁéwf

20.
By the differentiation of the equation

tan 4 v -} § tan® $ o = 2¢%p 4,

if all the quantities v, 4, p, are regarded as variable, we have

d = - |
__kyYp 3tk
dv=""rdi—oyp dp-
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If the variations of the anomaly » are wanted in seconds, both parts also of
d» must be expressed in this manner, that is, it is necessary to take for £ the value
3548”188 given in article 6. If, moreover, $ p =g is introduced instead of p, the
formula will have the following form:

k\/2q 3kt
dv= dt—r”ﬂqd

in which are to be used the constant logarithms
log £/ 2 =3.7005215724, log 3 %/ $ — 3.8766128315.

Moreover the differentiation of the equation

L

=3 cos’}v

furnishes

-d-fz%f-’-{—tanivdv,

. or by expressing d» by means of d¢ and dp,

dr __ (1 . 3kttan§v k\/ptan}v
= (‘—W e L 12

By substituting for ¢ its value in v, the coefficient of d p is changed into

}—1,— 3]’;3::%” Pti’;f" . (& + dtan?$v — sin® o — ¢sin’ dotan’d o =%’;
but the coefficient of d¢ becomes k——i’. From this there results

'
dr=%cosvdp—|-k-%)dt,

or if we introduce ¢ for p

ksmv

dr—cosvdg—+—5— VET;
The constant logarithm to be used here is log 2y # = 8.0850664436.
21. |
In the HYPERBOLA,¢ and £ would become imaginary quantities, to avoid

which, other auxiliary quantities must be introduced in the place of them. We

have already designated by w the angle of which the cosine =%, and we have
found the radius vector
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= - 3
2ecosd (v—1p) cos (V)
For v =0, the factors cos # (v — v), and cos # (» + w), in the denominator of this
fraction become equal, the second vanishes for the greatest positive value of 9,
and the first for the greatest negative value. Putting, therefore,
cos ¥ (v—1v)
sty
we shall have # =1 in perihelion; it will increase to infinity as » approaches its
limit 180° — ; on the other hand it will decrease indefinitely as » is supposed
to return to its other limit — (180° —1v); so that reciprocal values of », or, what
amounts to the same thing, values whose logarithms are complementary, corre-
spond to opposite values of ».
This quotient # is very conveniently used in the hyperbola as an auxiliary
quantity ; the angle, the tangent of which is
e—1
e+ 1°

can be made to render the same service with almost equal elegance ; and in order

tan 4 o \/

to preserve the analogy with the ellipse, we will denote this angle by $ 7. In
this way the following relations between the quantities », », u, #' are easily brought
together, in which we put @ = — 4, so that & becomes a positive quantity.

L b=p cotan’y

IL r=—2 e
* "7 1-4ecosv  2cosi(v—1)cosi(vty)
OL taniF=taniy _l_—l-—tan%vtan%y/ u;Fl

_csy(v—y) 1-4tanlF c
IV. u__cosé(v_*_lp)_l_tan%—7=tan(45 +3F)

1 1y 1 cosp cosv ___ e-cosv
V. cos I 3 (u+u)—2cosl2~(v—1p)cosl2~(v—|—1p) T 1--ecosv’

By subtracting 1 from both sides of equation V. we get,

VL singp\/rzsiniﬁ'\/(e—_ﬁ=sin%F\/(ec—;lﬁ)’b

=t (—1)y/Fy, =1 —1)/ LD




24 RELATIONS PERTAINING SIMPLY [Boox I

In the same manner, by adding 1 to both sides, it becomes

VIL cosdoyr=— cos&F\/WI—%-m,= cosép\/%g%?f

—1)b
=@+ 1)/ ghe =10+ /2
By dividing VI. by VIIL we should reproduce TIL: the multiplication produces
VIII. rsinv = pcotan y tan = tan y tan ¥ '
=% p cotan y (u —%) =4 dtany (u—%)

From the combination of the equations II. V. are easily derived

1 1
IX. rcosv =b(e—a)s—ﬁ,)=%b(2e—u—a),

X r=3(tn—1)=#5(c(u+1)—2).

22,
By the differentiation of the formula IV. (regarding v as a constant quantity)

we get

d—::1}(tan%(v—{—ty)—tan%(v—w))dv:r—taiiudv;

hence,

— D
rrdv_umnwdu,

or by substituting for » the value taken from X.
rrdv==0btany (% e(1 —{-;11-‘) —11—‘)du

Afterwards by integrating in such a manner that the integral may vanish at the
peribelion, it becomes

Srrdv=>2btany (4 é(u—r)—logu)=Eiypy (1 +p) =Fitanpydy (1 4 p).

The logarithm here is the hyperbolic; if we wish to use the logarithm from
Brigg’s system, or in general from the system of which the modulus =1, and
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the mass u (which we can assume to be indeterminable for a body moving in an
hyperbola) is neglected, the equation assumes the following form: —

Akt

=7

or by introducing F,

k
Ao tan F'— log tan (45° + # F) = %,;;t

Supposing Brigg’s logarithms to be used, we have

log A = 9.6377843118, log A k= 7.8733657527 ;

but a little greater precision can be attained by the immediate application of the
hyperbolic logarithms. The hyperbolic logarithms of the tangents are found in
several collections of tablés, in those, for example, which ScruLze edited, and still
more extensively in the Magnus Canon Triangulor. Logaidhmicus of BrNjayin Ursiy,
Cologne, 1624, in which they proceed by tens of seconds.

Finally, formula XI. shows that opposite values of ¢ correspond to reciprocal
values of #, or opposite values of # and v, on which account equal parts of the
hyperbola, at equal distances from the perihelion on both sides, are described in
equal times.

23.

If we should wish to make use of the auxiliary quantity # for finding the
time from the true anomaly, its value is most conveniently determined by means
of equation IV.; afterwards, formnula II. gives directly, without a new calculation,
p by means of 7, or 7 by means of p. IIaving found u, formula XI. will give the

quantlty Whlch is analogous to the mean anomaly in the ellipse and will be

denoted by N, from which will follow the elapsed time after the perihelion transit.

Since the first term of 4, that i 78(“;2 1) may, by means of formula VIIIL. be
made — ;r v , the double computation of this quantity will answer for testing

its accuracy, or, if preferred, V can be expressed without %, as follows : —

r__ Atanysinv cosg (v —)
XL N = 2cost (v w)cosi(v—u) — log cos L (vFw)”
4
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Example. — Let ¢ = 1.2618820, or w = 37°35'0", » = 18°51'0’, log r =

0.0333585. Then the computation for u, p, b, IV, ¢, is as follows:—

log cos # (v — ) . 9.9941706 } hence, log 0.0491129
log cos 3 (v 4 v) . 9.9450577 u= 1.1197289
log » . 0.0333585 wu= 1.2537928
log2e 0.4020488
logp . 0.3746356
log cotan®y 0.2274244
log & . 0.6020600
r The other calculation.
e 94312985 o0 (yu—1) . 9.4044793
log sinv . 9.56093268 Compl. log % . 9.9508871
log A . 9.6377843 log 4 . 9.6377843
Compl. logsiny . 0.2147309 log % e 9.7999888
8.7931395 8.7931395
First term of N = 0.0621069
log u= 0.0491129
N = 0.0129940 log N 8.1137429
log A % 7.87336568 } '
_g_ logb 0.9030900 Difference . 6.9702758
log?¢ . 1.1434671
h—

13.91448

24.

If it has been decided to carry out the calculation with hyperbolic logarithms,
it is best to employ the auxiliary quantity #, which will be determined by equa-
tion III, and thence N by XI.; the semi-parameter will be computed from the
radius vector, or inversely the latter from the former by formula VIIL; the
second part of IV can, if desired, be obtained in two ways, namely, by means of the
formula hyp. log tan (45° + % F'), and by this, hyp. log cos (v — w) — hyp. log
cos 3 (v + ). Moreover it is apparent that here where 2 =1 the quantity V
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will come out greater in the ratio 1 :4, than if Brigg’s logarithms were used.
Our example treated according to this method is as follows: —

logtan 3y . . . . 9.5318179
logtando . . . . . 9.2201009
logtan¢ 7 . . . . 87519188 3 F=3°18'58"12
loge. « % s » @« « 01010188
logtan 77 . . . . . 9.0543366

9.1563564 C.hyp.log cos % (v — 1) = 0.01342266
etan ’'=—= . . . . . 0.14300638 C. hyp. log cos % (v 4 ) = 0.12650930
hyp.log tan (45°+ 3 )= 0.11308666 Difference . . . . =0.11308664
N= . . . . . . 0.02991972 logNV. . « « « » « 84759575
loghe o oow o 8-2355814} Difference . . . . . 7.3324914
§logd . . . . . . 0.9030900 logt . . . . . . . 11434661

= 13.91445
25.

For the solution of the inverse problem, that of determining the true anomaly
and the radius vector from the time, the auxiliary quantity « or #' must be first
derived from N=1%5 ¥t by means of equation XI. The solution of this tran-
scendental equation will be performed by trial, and can be shortened by devices
analogous to those we have described in article 11. But we suffer these to pass
without further explanation; for it does not seem worth while to elaborate as
carefully the precepts for the hyperbolic motion, very rarely perhaps to be exhib-
ited in celestial space, as for the elliptic motion, and besides, all cases that can
possibly occur may be solved by another method to be given below. After-
wards ' or » will be found, thence » by formula III, and subsequently # will be
determined either by II. or VIIIL.; » and » are still more conveniently obtained
by means of formulas VI and VIL.; some one of the remaining formulas can be
called into use at pleasure, for verifying the calculation.
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26.

Example. — Retaining for ¢ and b the same values as in the preceding example,
let #—=65.41236 : » and r are required. Using Briggs’s logarithms we have

logz . . . . . . 181565698
log A\EB-% . . . . 6.9702758
logN . . . . . . 87859356, whence N—0.06108514. From this it is

seen that the equation N — 1etan # — log tan (45° | 4 ¥') is satisfied by
F.—=25°24'27".66, whence we have, by formula IIIL.,

logtan$¢# . . . . 9.3530120
logtandy . . . . 9.56318179
logtando . . . . 9.8211941, and thus 3» = 33°31'29".89, and v =

67°2'59".78. Hence, there follows,

C.logcos 3 (0 +y) - 0-2137476} difference . . . . . . . 01992279
Closewgi(e—g) o COISISTI TR, o & 01992280
logZ . . . . .. 00712588 U ) s e S

logr . . +« « . . 02008541,

27.

If equation IV.is differentiated, considering u, v, v, as variable at the same
time, there results,

du sinydv—sinvdy rmnwd i_rmnv
W T Zeni—p et o) peosy

By differentiating in like manner equation XI., the relation between the
differential variations of the quantities u, v, &V, becomes,

F=(te(1+ 5 —3)dut 5B ay,

or

r 7sinv
1 —Hd“‘l"bcoswd‘f"
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Hence, by eliminating d # by means of the preceding equation we obtain
dNv

TT . TSIHU
T = Sunpd? +(1+ )boob W

or
___bbtanw b b\ sin» tany
d7= Arr dN—(;—}—;) cos P diy
__bdtany P\ sine
= Arr dN— (l—l_ )

28.

By differentiating equation X, all the quantities 7, J, ¢, u, bemg regarded as
variables, by substituting

: il siny

~ cos’y ¥
and eliminating d » with the help of the equation between dV, d«, d v, given in
the preceding article, there results,

v 1y . 1, .
N‘I'Qcosgwg(u—l-a) smy/—(u—i—t) sin v g dy.

The coefficient of d IV is transformed, by means of equation VIIL, into zb Sine ; but
the coefficient of d v, by substituting from equation IV,

d?‘——db—l—bbe(uu—l)

w (sin y — siny) =sin (y — v), % (sin @ 4 sinv) = sin (y - v),
is changed into

bsincosv _ pcosv

cos® ~ sin up
so that we have

_r bsinv pcos v

sin y
So far, moreover, as IV is considered a function of 4 and 7, we have
N N
dN=-dt—§7do,

which value being substituted, we shall have dr, and also dv in the preceding
article, expressed by means of d¢, dd, dy. Finally, we have here to repcat our
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previous injunction, that, if the variations of the angles » and y are conceived to

be expressed, not in parts of the radius, but in seconds, either all the terms con-

taining d », d w, must be divided by 206264.8, or all the remaining terms must be
multiplied by this number.

29.

Since the auxiliary quantities ¢, £, M, employed in the ellipse obtain
imaginary values in the hyperbola, it will not be out of place to investigate their
connection with the real quantities of which we have made use: we add therefore
the principal relations, in which we denote by ¢ the imaginary quantity y — 1.

Sin(p':e:

cos P

tan (45— hg)=\/ 1o =i\ /i s =itan 4y

tan ¢ = % cotan (45° — 3 ) — 4 tan (46°— 4 ¢) =—
cosp =14 tany

¢ = 90° -7 log (sin ¢ 47 cos ) = 90° — 7 log tan (45° 4 4 y)

)

sin

tan%E:z’tan%F:i—(f_l_:il—)
ﬁ:%cotan%E—l—%tan&E:—icotsz,
or .
sinE:z'tanF:z(LZ;—l) .
t
cotanE:écotan%E—%tan%E=—Sin—F,
or
e __i(uu—1)
tan £ —17sin F1— wu 1
s 1 uuil
COSE_cosF_ 2u
iE=1log (cos £ +isin ) = log 1,
or
E =ilogu=r1log (45° 4 % F)
u > fe(uu—1) _  §N
M_E—esm_E_zlogu—T_——l.

The logarithms in these formulas are hyperbolic.
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30.

Since none of the numbers which we take out from logarithmic and trigo-
nometrical tables admit of absolute precision, but are all to a certain extent
approximate only, the results of all calculations performed by the aid of these
numbers can only be approximately true. In most cases, indeed, the common
tables, which are exact to the seventh place of decimals, that is, never deviate
from the truth either in excess or defect beyond half of an unit in the seventh
figure, furnish more than the requisite accuracy, so that the unavoidable errors
are evidently of no consequence: nevertheless it may happen, that in special
cases the effect of the errors of the tables is so augmented that we may be
obliged to reject a method, otherwise the best, and substitute another in its place.
Cases of this kind can occur in those computations which we have just explained;
on which account, it will not be foreign to our purpose to introduce here some
inquiries concerning the degree of precision allowed in these computations by
the common tables. Although this is not the place for a thorough examination
of this subject, which is of the greatest importance to the practical computer, yet
we will conduct the investigation sufficiently far for our own object, fron: which
point it may be further perfected and extended to other operations by any one

requiring it.

31.

Any logarithm, sine, tangent, etc. whatever, (or, in general, any irrational
quantity whatever taken from the tables,) is liable to an error which may amount
to a half unit in the last figure : we will designate this limit of error by w, which
therefore is in the common tables = 0.00000005. If now, the logarithm, etc.,
cannot be taken directly from the tables, but must be obtained by means of inter-
polation, this error may be slightly increased from two causes. Jn the first place, it is
usual to take for the proportional part, when (regarding the last figure as unity) it
is not an integer, the next greatest or least integer; and in this way, it is easily
perceived, this error may be increased to just within twice its actual amount. But
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we shall pay no attention to this augmentation of the error, since there is no
objection to our affixing one more than another decimal figure to the propor-
tional part, and it is very evident that, if the proportional part is exact, the inter-
polated logarithm is not liable to a greater error than the logarithms given
directly in the tables, so far indeed as we are authorized to consider the changes
in the latter as uniform. Thence arises anofher increase of the error, that this
last assumption is not rigorously true; but this also we pretermit, because the
effect of the second and higher differences (especially where the superior tables
computed by Tavror are used for trigonometrical functions) is evidently of no
importance, and may readily be taken into account, if it should happen to turn
out a little too great. In all cases, therefore, we will put the maximum unavoid-
able error of the tables — w, assuming that the argument (that is, the number the
logarithm of which, or the angle the sine etc. of which, is sought) is given with
strict accuracy. But if the argument itself is only approximately known, and
the variation o’ of the logarithm, etc. (which may be defined by the method of
differentials) is supposed to correspond to the greatest error to which it is liable,
then the maximum error of the logarithm, computed by means of the tables, can
amount to 0 4 o'.

Inversely, if the argument corresponding to a given logarithm is computed
by the help of the tables, the greatest error is equal to that change in the argu-
ment which corresponds to the variation o in the logarithm, if the latter is cor-
rectly given, or to that which corresponds to the variation 4 o’ in the loga-
rithm, if the logarithm can be erroneous to the extent of w’. It will hardly be
necessary to remark that o and o’ must be affected by the same sign.

If several quantities, correct within certain limits only, are added together,
the greatest error of the sum will be equal to the sum of the greatest individual
errors affected by the same sign; wherefore, in the subtraction also of quantities
approximately correct, the greatest error of the difference will Be equal to the
sum of the greatest individual errors. In the multiplication or division of a
quantity not strictly correct, the maximum error is increased or diminished in the
same ratio as the quantity itself.
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32.

Let us proceed now to the application of these principles to the most useful
of the operations above explained.

I. If ¢ and £ are supposed to be exactly given in using the formula VII,
article 8, for computing the true anomaly from the eccentric anomaly in the
elliptic motion, then in logtan (45°— 4 ¢) and log tan ¢ Z, the error w may be
committed, and thus in the difference —log tan % »,the error 2 v ; therefore the

greatest error in the determination of the angle 4 » will be

Bwdiv Swsinv
p— T ’
dlogtan v 22

A denoting the modulus of the logarithms used in this calculation. The error,
therefore,to which the true anomaly » is liable, expressed in seconds, becomes

_3_“’;“_” 206265 = 0".0712 sin v,

if Brigg’s logarithms to seven places of decimals are employed, so that we may
be assured of the value of » within 0”.07 ; if smaller tables to five places only,are
used, the error may amount to 7”.12.

II. If ¢ cos Z is computed by means of logarithms, an error may be committed
to the extent of

Swecos B
2 3
therefore the quantity

1l—ecosZ, orZ,
a

will be liable to the same error. In computing, accordingly,the logarithm of this
quantity, the error may amount to (1 + 0) w, denoting by J the quantity

3 ecos &

1—ecos &
taken positively : the possible error in log » goes up to the same limit, log @ being
assumed to be correctly given. If the eccentricity is small, the quantity J is
always confined within narrow limits; but when e differs but little from 1,
1 —e¢cosZ remains very small as long as Z is small; consequently,d may

5
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increase to an amount not to be neglected: for this reason formula IIL, article 8,
is less suitable in this case. The quantity & may be expressed thus also,

3 (a—r) - 3e(cosv+e)

[ 1—ee

H

which formula shows still more clearly when the error (1 4-J') @ may be neglected.
III. In the use of formula X, article 8, for the computation of the true from

the mean anomaly, the log \/ g is liable to the error (4 4 30)w, and so the log
sin 3 @ sin &/ \/ ?. to that of (54 + 1 J)w; hence the greatest possible error in the

determination of the angles v — £ or v is
%’(7—[—6)tan t(v—F),
or expressed in seconds, if seven places of decimals are employed,
(0".166 4 0".024 0) tan 4 (v — ).

When the eccentricity is not great, & and tan 4 (v — £) will be small quantities,
on account of which, this method admits of greater accuracy than'that which
we have considered in L: the latter, on the other hand, will be preferable
when the eccentricity is very great and approaches nearly to unity, where d and
tan § (v — £) may acquire very considerable values. It will always be easy to
decide, by means of our formulas, which of the two methods is to be preferred.

IV. In the determination of the mean anomaly from the eccentric by means
of formula XIIL, article 8, the error of the quantity e sin Z, computed by the help
of logarithms, and therefore of the anomaly itself, /4, may amount to

3wesin B
1'___’!

which limit of error is to be multiplied by 206265” if wanted expressed in
seconds. Hence it is readily inferred, that in the inverse problem where % is to
be determined from A/ by trial, Z may be erroneous by the quantity

SwesinE dE y__3measin B v
Suein® 5. 206265"=2222""" . 206265",

even if the equation £ — esin £ — M should be satisfied with all the accuracy
which the tables admit.
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The true anomaly therefore computed from the mean may be incorrect in
two ways, if we consider the mean as given accurately; first, on account of the
error committed in the computation of » from Z, which, as we have seen, is of
slight importance ; second, because the value of the eccentric anomaly itself may
be erroneous. The effect of the latter cause will be expressed by the product of

the error committed in Z into dﬂ% , which product becomes

Swesin# dw 3 weasinv

U4 4 i 3 in 2 "
Soe S T 206268" =200 906965 — (a2 ¢ g7y,

if seven places of decimals are used. This error, always small for small values of
¢, may become very large when e differs but little from unity, as is shown by the
following table, which exhibits the maximum value of the preceding expression
for certain values of e.

e maximum error. e maximum error. e maximum error.
0.90 0”.42 0.94 0".78 0.98 27.28
0.91 0 .48 0.95 0 .89 0.99 4 .59
0.92 0 .54 0.96 1.2 0.999 46 .23
0.93 0 .62 0.97 1.50

V. In the hyperbolic motion, if » is determined by means of formula III,
article 21, from # and y accurately known, the error may amount to

08T 206265";
but if it is computed by means of the formula

(v — 1) tan Ly

ut1 ?
u and w being known precisely, the limit of the error will be one third greater,
that is,

tan 4o =

4 wsinvy
PR

206265” = 0".09 sin »
for seven places.
VI. If the quantity

Akt
-b_%—N

is computed by means of formula XI, article 22, with the aid of Briggs’s loga-
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rithms, assuming ¢ and % or ¢ and # to be known exactly, the first part will be
liable,to the error
5(uu—1)en
2u 4
if it has been computed in the form

le(u—1)(u4-1)
2u ’

or to the error
S(uu-t1)ew
2u )

if computed in the form

le
éleu—m,

or to the error 3 e  tan ¥ if computed in the form 1 e tan F, provided we neglect
the error committed in logX or log-4A. In the first case the error can be

expressed also by 6 e w tan F, in the second by —foiﬁ, , whence it is apparent that
the error is the least of all in the third case, but will be greater in the first or
second, according as # or é> 2 or < 2, or according as 4+ F> 86°62' or < 36° 5.

But, in any case, the second part of 2V will be liable to the error w.
VIL. On the other hand, it is evident that if » or # is derived from N. by

trial, » would be liable to the error

du
(ot dewtan F)37,
or to
Sew, du
Chy cosF) v’
according as the first term in the value of XV is used separated into factors, or into
terms ; F, however, is liable to the error

(wi3ewtanF)§—l-FV.

The upper signs serve after perihelion, the lower before perihelion. Now if

d» . 0 du a7
7 s substituted here for 7 °f for I ‘
the determination of », which therefore will be

the effect of this error appears in
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bbtany (1+3etan F)w . bbtanyw (1 4 3esecF)w

Arr Arr 2

if the auxiliary quantity » has been employed; on the other hand, if 7' has been
used, this effect becomes,

bbtany (1t3etan Mo __ o { (14-ecosv)? | 3esinv(l | ecosv) }
Arr 2 tanfy  — tan?y ’

If the error is to be expressed in seconds, it is necessary to apply the factor

206265". It is evident that this error can only be considerable when v is a small

angle, or e a little greater than 1. The following are the greatest values of this

third expression, for certain values of ¢, if seven places of decimals are employed:

e maximum error.

0”.34
0 .54
1.31
5 3.03
1 i 34 .41
01 | 1064 .65

To this error arising from the erroneous value of F'or # it is necessary to
apply the error determined in V. in order to have the total uncertainty of .

VIII. If the equation XI, article 22, is solved by the use of hyperbolic loga-
rithms, # being employed as an auxiliary quantity, the effect of the possible
error 1n this operation in the determination of »,is found by similar reasoning
to be,

(14-ecosv)?*w’ | 3esinv(l4ecosv)w
tan®y == A tan%y 2

where by o we denote the greatest uncertainty in the tables of hyperbolic loga-
rithms. The second part of this expression is identical with the second part of
the expression given in VIL; but the first part in the latter is less than the first
in the former, in the ratio A ’: w, that is, in the ratio 1: 23, if it be admissible
to assume that the table of Ursin is everywhere exact to eight figures, or

o’ =0.000000005.
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-33.

The methods above treated, both for the determination of the true anomaly
from the time and for the determination of the time from the true anomaly,* do
not admit of all the precision that might be required in those conic sections of
which the eccentricity differs but little from unity, that is, in ellipses and hyper-
bolas which approach very near to the parabola; indeed, unavoidable errors,
increasing as the orbit tends to resemble the parabola, may at length exceed all
limits. Larger tables, constructed to more than seven figures would undoubtedly
diminish this uncertainty, but they would not remove it, nor would they prevent
its surpassing all limits as soon as the orbit approached too near the parabola.
Moreover, the methods given above become in this case Ve;ry troublesome, since a
part of them require the use of indirect trials frequently repeated, of which
the tediousness is even greater if we work with the larger tables. It certainly,
therefore, will not be superfluous, to furnish a peculiar method by means of
which the uncertainty in this case may be avoided, and sufficient precision may
be obtained with the help ofsthe common tables.

34.

The common method, by which it is usual to remedy these inconveniences,
rests upon the following principles. In the ellipse or hyperbola of which e is the
eccentricity, p the semi-parameter, and therefore the perihelion distance

par.
1+e—g 2
let the true anomaly » correspond to the time ¢ after the perihelion; in the
parabola of which the semi-parameter — 2 ¢, or the perihelion distance = ¢, let

the true anomaly w correspond to the same time, supposing in each case the
mass u to be either neglected or equal. It is evident that we then have

* Since the time contains the factor a? or bg, the greater the values of a = i P — OF = 1)

the more the error in M or IV will be increased.
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ppde . [ 499dw __ ., .
(I Fecosv)?’ (_1—{—cosw)5—\/p'\/2g’

the integrals commencing from » = 0 and w = 0, or
_(1—}—e)gdv_ - 2dw
(1Fecosv)?y2 — J (14 cosw)?

Denoting = by e, tan 4 v by 6, the former integral is found to be

V(+a). (6+ 0 (1—2a)— 4 (2a —3aa) 4 }0(3aa —4a?) — ete),
the latter, tan 4 w + #tan® 4 w. From this equation it is easy to determine w
by @ and », and also » by ¢ and w by means of infinite series: instead of « may
be introduced, if preferred,

2a
T d.
Since evidently for « = 0, or § = 0, we have » — w, these series will have the
following form : —

1l—e=

w=v-+4 8o 4 000 4 03" + ete.

v=w-+0duw 4 00w" 4 Puw” + etc.
where ¢/, 2", v, etc. will be functions of », and «/, »”, w”, functions of w. When
0 is a very small quantity,these series converge rapidly, and few terms suffice for
the determination of w from », or of # from w. ¢ is derived from w, or w» from ¢,
by the method we have explained above for the parabolic motion.

35.

Our BessenL has developed the analytical expressions of the three first coeffi-
cients of the second series o/, w”, w", and at the same time has added a table con-
structed with a single argument w for the numerical values of the two first o
and «”, (Von Zach Monatliche Correspondenz, vol. XIL, p. 197). A table for the
first coefficient #, computed by SivMpsoN, was already in existence, and was
annexed to the work of the illustrious OLBERS above commended. By the use
of this method, with the help of Besser’s table, it is possible in most cases to
determine the true anomaly from the time with sufficient precision; what remains
to be desired is reduced to nearly the following particulars: —
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I. In the inverse problem, the determination of the time, that is, from the
true anomaly, it is requisite to have recourse to a somewhat indirect method, and
to derive w from » by trial. In order to meet this inconvenience, the first series
should be treated in the same manner as the second: and since it may be readily
perceived that — o’ is the same function of v as ' of w, so that the table for »’
might answer for ¢/ the sign only being changed, nothing more is required than
a table for »", by which either problem may be solved with equal precision.

Sometimes, undoubtedly, cases may occur, where the eccentricity differs but
little from unity, such that the general methods above explained may not appear
to afford sufficient precision, not enough at least, to allow the effect of the third
and higher powers of ¢ in the peculiar method just sketched out, to be safely
neglected. Cases of this kind dre possible in the hyperbolic motion especially, in
which, whether the former methods are chosen or the latter one, an error of
several seconds is inevitable, if the common tables, constructed to seven places of
figures only, are employed. Although, in truth, such cases rarely occur in prac--
tice, something might appear to be wanting if it were not possible in af/ cases to
determine the true anomaly within 0”.1, or at least 0”.2, without consulting the
larger tables, which would require a reference to books of the rarer sort. We
hope, therefore, that it will not seem wholly superfluous to proc_eéd to the exposi-
tion of a peculiar method, which we have long had in use, and which will also
commend itself on this account, that it is not limited to eccentricities differing but
little from unity, but in this respect admits of general application.

36.

Before we proceed to explain this method, it will be proper to observe that
the uncertainty of the general methods given above, in orbits approaching the
form of the parabola, ceases of itself, when Z or F increase to considerable mag-
nitude, which indeed can take place only in large distances from the sun. To
show which, we give to

3 ® ;a sin v 206265”
r

the greatest possible error in the ellipse, which we find in article 32, IV., the
following form,
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Smey (1 —ee). sink

T e 206265

from which is evident of itself that the error is always circumscribed within
narrow limits when £ acquires considerable value, or when cos £ recedes further
from unity, however great the eccentricity may be. This will appear still more
distinctly from the following table, in which we have computed the greatest
numerical value of that formula for certain given values of Z, for seven decimal

places.
E=10° maximum error — 3”.04
20 0.76
30 0 .34
40 0.19
50 0.12
60 0 .08

The same thing takes place in the hyperbola, as is immediately apparent, if the
expression obtained in article 32, VIL, is put into this form,

o cos F (cos F+3esinF)y/ (ee—1) ' .
A (e — cos I7)? 206265”.

The following table exhibits the greatest values of this expression for certain
given values of £

F u maximum error.

10° 1.192 | 0.839 8".66
20 1.428 | 0.700 1
30 1.732 | 0.577 0
40 2.144 | 0.466 0
50 2.747 | 0.364 0.11
0
0

60 3.732 0.268
70 5.671 0.176

When, therefore, £ or ' exceeds 40° or 60° (which nevertheless does not easily
occur in orbits differing but little from the parabola, because heavenly bodies
moving in such orbits at such great distances from the sun are for the most part
withdrawn from our sight) there will be no reason for forsaking the general

method. For the rest, in such a case even the series which we treated in article
6
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34 might converge too slowly; and therefore it is by no means to be regarded
as a defect of the method about to be explained, that it is specially adapted
to those cases in which Z or #' has not yet increased beyond moderate values.

_ 37. -
Let us resume in the elliptic motion the equation between the eccentric

anomaly and the time,

E—esinE:Ml—ﬂ,
oF

where we suppose £ to be expressed in parts of the radius. Henceforth, we

shall leave out the factor \/(1 4 u); if a case should occur where it is worth

while to take it into account, the symbol ¢ would not express the time itself after

perihelion, but this time multiplied by /(14 u). We designate in future by ¢ the

perihelion distance, and in the place of £ and sin %, we introduce the quantities
E—sinE and B — J; (F—sin B) =% E+ {;sinE:

the careful reader will readily perceive from what follows,our reason for selecting
particularly these expressions. In this way our equation assumes the following
form: — :

(1—¢) (f B+ f sin B) + (2 + oy o) (E—sin B) = k¢ ().
As long as F is regarded as a quantity of the first order,
15 £+ fosin E=F — 5 B® 4 1555 B° — etc.
will be a quantity of the first order, while
E—sin E=1E°— ;15 B° 4 g5 E" —etc,
will be a quantity of the third order. Putting, therefore,

6(E—sinB) _ 44 f5 B+ dysinE B
B F&sinE — T 2/ 4 ’

4 A = .EZ — -3-10-E4—-5'6;(U EG_ etc.
will be a quantity of the second order, and
.B s 1 —|— -f-gan-o- E‘i_ etc.

will differ from unity by a quantity of the fourth order. But hence our equation
becomes
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B(2 (1—e)A%~+T23(1+9e)A‘5‘)=/c¢(1‘”Te)% : [1]
By means of the common trigonometrical tables, % £ + % sin Z may be com-
puted with sufficient accuracy, but not Z— sin # when Z is a small angle; in this
way therefore it would not be possible to determine correctly enough the quan-
tities 4 and B. A remedy for this difficulty would be furnished by an appro-
priate table, from which we could take out with the argument Z, either B or the
logarithm of B; the means necessary to the construction of such a table will
readily present themselves to any one even moderately versed in analysis. By
the aid of the equation

9E ;(; -SénE — \/ 4,

v 4 can be determined, and hence ¢ by formula [1] with all desirable precision.
The following is a specimen of such a table, which will show the slow increase

of log B ; it would be superfluous to take the trouble to extend this table, for

further on we are about to describe tables of a much more convenient form.

E log B E log B E log B
0° 0.0000000 25° 0.0000168 |. 50° 0.0002675
5 00 30 0349 55 3910

10 04 35 0645 60 5526

15 22 40 1099

20 69 45 1758

38.

It will not be useless to illustrate by an example what has been given in the
preceding article. Let the proposed true anomaly = 100° the eccentricity

= 0.96764567, log ¢ = 9.7656500. The following is the calculation for Z, B,

A, and ¢: —
log tan 3 » 0.0761865
1—e
log y/ e 9.1079927
log tan $ & . 9.1841792, whence 3 F= 8°41'19".32, and £ =
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17°22'38".64. To this value of E corresponds log B = 0.0000040; next is found
in parts of the radius, Z'= 0.3032928, sin £'= 0.2986643, whence 5% Z - % sin &/

= 0.1514150, the logarithm of which = 9.180f689, and so log A% —9.1801649.
Thence is derived, by means of formula [1] of the preceding article,

logz-f(lf—fe). .. 24580614 log2BUAI9( ¢ 6)3. . . 37601038

log4¥ . . . . .°01801649 log4® . . . . . . . . 7.5404947

log4356386 = . . 16391263 log19.98014=". . . . . 13005985.
19.98014 | :
63.54400 = 1.

If the same example is treated according to the common method, ¢sin Z in
seconds is found = 59610".79 — 16°33'30".79, whence the mean anomaly —
49'7".85 =2947"85. And hence from

log £ ()t = 1.6664302

is derived ¢ = 63.54410. The difference, which is here only 15455 part of a day,
might, by the errors concurring, easily come out three or four times greater.
It is further evident, that with-the help of such a table for log B even the inverse
problem can be solved with all accuracy, Z being determined by repeated trials,
so that the value of ¢ calculated from it may agree with the proposed value.
But this operation would be very troublesome: on account of which, we will now
show how an auxiliary table may be much more conveniently arranged, indefinite
_trials be altogether avoided, and the whole calculation reduced to a numerical
operation in the highest degree neat and expeditious, which seems to leave
nothing to be desired.

39.

It is obvious that almost one half the labor which those trials would require,
could be saved, if there were a table so arranged that log B could be immedi-
ately taken out with the argument 4. Three operations would then remain;
the first indirect,' namely, the determination of 4 so as to satisfy the equation



Seer. 1.] TO POSITION IN THE ORBIT. 45

[1], article 37 ; the second, the determination of £ from A4 and B, which may be
done directly, either by means of the equation

=25 (A% + 15 Ag):
or by this,

sin B=2 B(4* — 3 4%);
the third, the determination of » from Z by means of equation VIIL, article 8.
The first operation,we will bring to an easy calculation free from vague trials;
the second and third,we will really abridge into one, by inserting a new quantity
C in our table by which means we shall have no need of %, and at the same
time we shall obtain an elegant and convenient formula for the radius vector.
Each of these subjects we will follow out in its proper order.
First, we will change the form of equation [1] so that the Barkerian table

may be used in the solution of it. TFor this purpose we will put

A% =tan $w \/ i’_*__—g: :

from which comes
__Tokty(3t8e) __ at
75tan%w—|—25tan%uﬁ_7_ =
denoting by a the constant
5ky (3+3e
2 g% ‘
If therefore B should be known, w could be immediately taken from the Barkerian

table containing the true anomaly to which answers the mean motion ;—; ; A will

be deduced from » by means of the formula
A= f tan’® } w,
denoting the constant

5—35e
1+49e¢ b

Now, although B may be finally known from 4 by means of our auxiliary table,
nevertheless it can be foreseen, owing to its differing so little from unity, that if
the divisor B were wholly neglected from the beginning, w and A would be
affected with a slight error only. Therefore, we will first determine roughly
and 4, putting B=1; with the approximate value of 4,we will find B in our
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auxiliary table, with which we will repeat more exactly the same calculation ;
most frequently, precisely the same value of B that had been found from the
approximate value of A will correspond to the value of A4 thus corrected, so that a
second repetition of the operation would be superfluous, those cases excepted in
which the value of £ may have been very considerable.

Finally, it is hardly necessary to observe that, i the approximate value of B
should in any other way whatever be known from the begmnmg, (which may
always occur, when of several places to be computed, not very distant from each
other, some few are already obtained,) it is better to make use of this at once in
the first approximation : in this manner the expert computer will very often not
have occasion for even a single repetition. We have arrived at this most rapid
approximation from the fact that B differs from unity,only by a difference of the
fourth order, and is multiplied by a very small numerical coefficient, which advan-
tage, as will now be perceived, was secured by the introduction of the quantities
E —sin E, % E—+ {%sin E, in the place of Z and sin Z.

40.

Since, for the third operation, that is, the determination of the trué anomaly,
the angle ' is not required, but the tan 4 £ only, or rather the log tan 3 Z, that
operation could be conveniently joined with the second, provided our table sup-
plied directly the logarithm of the quantity

tn} B
V4’
which differs from unity by a quantity of the second order. We have preferred,
however, to arrange our table in a somewhat different manner, by which, not-
withstanding the small extension, we have obtained a much more convenient
interpolation. By writing, for the sake of brevity, 7' instead of the tan®3 Z, the
value of 4, given in article 37,
15 (E —sin E)
9E+sin £ °
is easily changed to

A= T—8T 4§ T°— @ T* 44§ T°— ete.
T I =g T & I —F5 T 2 T — et
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in which the law of progression is obvious. Hence is deduced, by the inversion
of the series,

A
7=1—4%4 + 1%s A+ 535 42+ 53 34s 4"+ 1755 4° + ete.
Putting, therefore,
A
F=1—444-0, <

¢ will be a quantity of the fourth order, which being included in our table, we
can pass directly to » from 4 by means of the formula,

__[1-4-e A _ ytan 3w
Rk ”_\/1—e\/1—%A+ 0 = yaA—44+0)’

denoting by y the constant
: 54 5e
\/ 149¢°

In this way we gain at the same time a very convenient computation for the

radius vector. It becomes, in fact, (article 8, V1.),

. (1—%t440)¢
cos’v T (14 T)cos?iv ~ (143 A4 C)cos’Lo”

r=qcos’§E . q

41.

Nothing now remains but to reduce the inverse problem also, that is, the
determination of the time from the true anomaly, to a more expeditious form of
computation: for this purpose we have added to our table a new column for 7.
7, therefore, will be computed first from » by means of the formula

T=il:tan2%v;
then A and log B are taken from our table with the argument 7} or, (which is
more accurate, and even more convenient also), ' and log B, and hence A by

the formula

L T
e

finally ¢ is derived from A and B by formula [1], article 87. If it 1s desired to
call into use the Barkerian table here also, which however in this inverse problem
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has less effect in facilitating the calculation, it is not necessary to pay any regard
to 4, but we have at once

_ _1+0
tan 3w —tan $ v TR,

and hence the time ¢, by multiplying the mean motion correspondlng to the true

anomaly, w, in the Barkerian table, by =

42,

We have constructed with sufficient fulness a table, such as we have just
described, and have added it to this work, (Table I.). Only the first part pertains
to the ellipse; we will explain, further on, the other part, which includes the
hyperbolic motion. The argument of the table, which is the quantity A, proceeds
by single thousandths from 0 to 0.300; the log B and C follow, which quantities
it must be understood are given in ten millionths, or to seven places of decimals,
the ciphers preceding the significant figures being suppressed; lastly, the fourth
column gives the quantity 7' computed first to five, then to six figures, which
degree of accuracy is quite sufficient, since this column is only needed to get the
values of log B and C corresponding to the argument 7 whenever ¢ is to be
determined from » by the precept of the preceding article. As the inverse prob-
lem which is much more frequently employed, that is, the determination of » and
r from ¢, is solved altogether without the help of 7}, we have preferred the quan-
tity A for the argument of our table rather than 7, which would otherwise have
been an almost equally suitable argument, and would even have facilitated a little
the construction of the table. It will not be unnecessary to mention, that all the
numbers of the table have been calculated from the beginning to ten places, and
that, therefore, the seven places of figures which we give can be safely relied upon;
but we cannot dwell here upon the analytical methods used for this work, by a
full explanation of which we should be too much diverted from our plan.
Finally, the extent of the table is abundantly sufficient for all cases in which it
is advantageous to pursue the method just explained, since beyond the limit
A=0.3, to which answers 7'= 0.392374, or £ =647, we may, as has been
shown before, conveniently dispense with artificial methods. \ |
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43.

We add, for the better illustration of the preceding investigations, an example
of the complete calculation for the true anomaly and radius vector from the time,
for which purpose we will resume the numbers in article 38. We put then e—=
0.96'74567, log ¢ = 9.76566500, ¢ = 63.54400, whence, we first derive the constants
loge =10.030562357, log # = 8.2217364, log y = 0.0028755.

Hence we have log @ { = 2.1083102, to which "corresponds in Barker’s table
the approximate value of w — 99°6" whence is obtained 4 = 0.022926, and from
our table log B = 0.0000040. Hence, the correct argument with which Barker’s

g iBt — 2.1083062, to which answers w — 99° 6

18”.14 ; after this, the subsequent calculation is as follows: —

table must be entered, becomes lo

log tan®’4w . . . 0.1385934 logtandw . . . . . . 0.0692967
logg . . . . . 82217364 logy . . . . . . . . 0.0028755
logd . . . . . 83603298 3 Comp.log(l1 —A-+4C). 0.0040143
A= . . . . . 002292608 logtande . . . . . . 0.0761865
hence log B in the same manner as before; 4= . . . . . 50°0°0”
C= . 0.0000242 = 5 v w « s 10000

1—444C= . 0.9816833 logg . . « « « . . . 9.7656500
1+344C= . 1.0046094 2 Comp.logcostv . . . 0.3838650

log(1—¢A440). . . . 9.9919714

Clog(l4+1t440). . . 9.9980028

logr . . . . . . . . 01394892

If the factor B had been wholly neglected in this calculation, the true anomaly
would have come out affected with a very slight error (in excess) of 0”.1 only.

| 4.

It will be in our power to despatch the hyperbolic motion the more briefly,
because it is to be treated in a manner precisely analogous to that which we
have thus far expounded for the elliptic motion.

7
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We present the equation between the time 7 and the auxiliary quantity » in
the following form : —

1 1 —1
(e—1)(ds (u—3) 5 logu) +(Fs+ g e) (3 (n—3) —logu) =kt (*—7),
in which the logarithms are hyperbolic, and
1
75 (v —3) + 15 logu
is-a quantity of the first order,

f}(u—é)—logu

a quantity of the third order, when log # may be considered as a small quantity
of the first order. Putting,therefore,
K i
6(5(“—%)—108 u) 75 (u—7) + 15 logu
1 =i 24 -
7o (¥ —3)+ Ty logu
A will be a quantity of the second order, but B will differ from unity by a differ-
ence of the fourth order.’ Our equation will then assume the following form: —

B(2(e—1)4 42 (1+ 9e)A%)=/:t(e';l)% N 1
which is entirely analogous to equation [1] of article 37. Putting moreover,
w=—=1)\2
(E?FT =1,

T will be a quantity of the second order, and by the method of infinite series
will be found

A= 1 A oy £ — s £ 3398 A — s A et
Wherefore, putting
7=1+44+0,
C will be a quantity of the fourth order, and

_a+or
A=57
Finally, for the radius vector, there readily follows from equation VIIL, article 21,

g (1+$4+0)g
(I1—T)cos?tv™ (1 —3}A+ C)cos?iv’

r—
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45.

The latter part of the table annexed to this work belongs, as we have remarked
above, to the hyperbolic motion, and gives for the argument A (common to both
parts of the table), the logarithm of B and the quantity C' to seven places of
decimals, (the preceding ciphers being omitted), and the quantity 7' to five and
afterwards to six figures. The latter part is extended in the same manner as
the former to 4 =0.300, corresponding to which is 7'=0.241207, » = 2.930,
or = 0.341, ’=+ 562°19’; to extend it further would have been superfluous,
(article 36).

The following is the arrangement of the calculation,not only for the determi-
nation of the time from the true anomaly, but for the determination of the true
anomaly from the time. In the former problem, 7' will be got by means of the
formula

Tzzzitanzév; _

with 7' our table will give log B and (), whence will follow

1A+ T,
T—37 )

finally ¢ is then found from the formula [2] of the preceding article. In the last
problem,will first be computed, the logarithms of the constants
o— kG2
2 q%
5¢e—5
=11y,

5e+5
r= \/ 1F9e
A will then be determined from ¢ exactly in the same manner as in the elliptic
motion, so that in fact the true anomaly % may correspond in Barker’s table to
the mean motion %‘, and that we may have
A= ptan’iw;

the approximate value of 4 will be of course first obtained, the factor B being
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either neglected, or, if the means are at-hand, being estimated; our table will
then furnish the approximate value of B, with which the work will be repeated;
the new value of B resulting in this manner will scarcely éver suffer sensible cor-
rection, and thus a second repetition of the calculation will not be necessary. €
will be taken from the table with the corrected value of 4, which being done we
shall have,

ytaniw (A+44+O)g

F34F0)° " T @—34AF O)eosFv’

From this it is evident, that no difference can be perceived between the formulas
for elliptic and hyperbolic motions, provided that we consider $8, 4, and 7} in the
hyperbolic motion as negative quantities.

tan&v_v(l

46.

It will not be unprofitable to elucidate the hyperbolic motion also by some
examples, for which purpose we will resume the numbers in articles 23, 26.
I. The data are e = 12618820, logg¢ = 0.0201657, » — 18°51"0": ¢ is
required. We have
2logtande . . . . 84402018 log7 . . . . . 7.6038375

lOg e—1 ) . . . . 9.0636357 log (]. —I— 0) . . . 0.0000002
°o+1 C.log(1—47) . 0.0011099
log7 . . . . . . 75038375 5049470
T— . . . . . 000319034
logB= . . . . . 00000001
C= . . .. . 00000005
2Bq% 2B(1+49¢) ( ¢ 8
log e 23866444 log 22U (_L)" | 98843582
log 4 . . . . . 87524738 log4} . . . . . . . . 62574214
log 1377584 = . . 11391182 log0.138605= . . . . . 9.1417796.
0.13861
13.91445 = ¢.

II. ¢ and ¢ remaining as before, there is given { — 65.41236; » and r are
required. We find the logarithms of the constants,
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log & = 9.9758345
log B =9.0251649
log y = 9.9807646.

Next we have log «?=1.7914943, whence by Barker’s table the approximate
value of w—="70°31"44", and hence 4 =0.052983. To this A in our table

answers log B = 0.0000207 ; from which, log %t = 1.7914736, and the corrected

value of w=1"70°31'36".86. The remaining operations of the calculation are as

follows: —
2logtandw . . . 9.6989398 logtandw . . . . . 9.8494699
logf . . . . . . 9.0251649 logy w - . 9.9807646
logA. . . . . . 87241047 #GClog(l +%A+ 0) - 9.9909602
A= . . . . . . 005297911 logtande . . . . 9.8211947
log B as before, tv= . . . 33° 31'30".02
C= . . 00001252 = . . +» 67 3 0.04
14+444+0C=. . 1.0425085 log g WE®e = « < = » 0.0201667
1—3144+ 0= . . 0.98956294 2C.logcosdv . . . . 01580378
log(1444+4+0) . . 0.0180796
Clog(l—3A440C) . . 0.0045713
log '~ "M, . 0.2008544

Those which we found above (article 26), » = 67°2'59".78, logr— 0.2008541,
are less exact, and » should properly have resulted — 67°3'0".00, with which
assumed value,the value of Z had been computed by means of the larger tables.



SECOND SECTION.

RELATIONS PERTAINING SIMPLY TO POSITION IN SPACE.

- 47.

In the first section, the motion of heavenly bodies in their orbits is treated
without regard to the position of these orbits in'space. For determining this
position, by which the relation of the places of the heavenly body to any other
point of space can be assigned, there is manifestly required, not only the position

]

of the plane in which the orbit lies with reference to a certain known plane (as,
for example, the plane of the orbit of the earth, the ecliptic), but also the position
of the apsides in that plane. Since these things may be referred, most advanta-
geously, to spherical trigonometry, we conceive a spherical surface described
with an arbitrary radius, about the sun as a centre, on which any plane passing
through the sun will mark a great circle, and any right line drawn from the
sun, a point. For planes and right lines not passing through the sun, we draw
through the sun parallel planes and right liﬁes, and we conceive the great circles
and points in the surface of the sphere corresponding to the latter to represent
the former. The sphere may also be supposed to be described with a radius
infinitely great, in which parallel planes, and also parallel right lines, are repre-
sented in the same manner.

Except, therefore, the plane of the orbit coincide with the plane of the ecliptic,
the great circles corresponding to those planes (which we will simply call the orbit
and the ecliptic) cut each other in two points, which are called nodes ; in one of
these nodes, the body, seen from the sun, will pass from the southern, through the
ecliptic, to the northern hemisphere, in the other, it will return from the latter to

the former; the former is called the ascending, the latter the descending node. We
(4
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fix the positions of the nodes in the ecliptic by means of their distance from the
mean vernal equinox (longitude) counted in the order of the signs. Let, in fig. 1,
R be the ascending node, A & I part of the ecliptic, ¢'& D part of the orbit;
let the motions of the earth and of the heavenly body be in the directions from A
towards 7 and from € towards D, it is evident that the spherical angle which & D
makes with & ' can increase from 0 to 180°, but not beyond, without @ ceasing
to be the ascending node: this angle we call the wmclination of the orbit to the
ecliptic. The situation of the plane of the orbit being determined by the longi-
tude of the node and the inclination of the orbit, nothing further is wanted
except the distance of the perihelion from the ascending node, which we reckon
in the direction of the motion, and therefore regard it as negative, or between
180° and 360°, whenever the perihelion is south of the ecliptic. The following
expressions are yet to be observed. The longitude of any point whatever in
the circle of the orbit is counted from that point which is distant just so far back
from the ascending node in the orbit as the vernal equinox is back from the same
point in the ecliptic: hence, the longitude of the perihelion will be the sum of the
longitude of the node and the distance of the perihelion from the node; also, the
true longitude in orbit of the body will be the sum of the true anomaly and the
longitude of the perihelion. Lastly, the sum of the mean anomaly and longitude
of the perihelion is called the mean longitude : this last expression can evidently
only occur in elliptic orbits.

48,

In order, therefore, to be able to assign the place of a heavenly body in space
for any moment of time, the following things must be known.

I. The mean longitude for any moment of time taken at will, which is called
the epock : sometimes the longitude itself is designated by the same name. For
the most part, the beginning of some year is selected for the epoch, namely, noon
of January 1 in the bissextile year, or noon of December 31 preceding, in the
common year.

IT. The mean motion in a certain interval of time, for example, in one mean

solar day, or in 365, 3654, or 36525 days.
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III. The semi-axis major, which indeed might be omitted when the mass of
the body is known or can be neglected, since it is already given by the mean
motion, (article T); both, nevertheless, are usually given for.the sake of con-
venience.

IV. Eccentricity. V. Longitude of the perihelion. VI. Longitude of the
ascending node. VIIL. Inclination of the orbit.

These seven things are called the elements of the motion of the body.

‘In the parabola and hyperbola, the time of passage through the perihelion
serves in place of the first' element; instead of II,are given what in these
species of conic sections are analogous to the mean daily motion, (see article
19; in the hyperbolic motion the quantity A k573, article 23). In the hyperbola,
the remaining elements may be retained the same, but in the parabola, where
the major axis is infinite and the eccentricity = 1, the perihelion distance alone
will be given in place of the elements III. and IV.

49.

According to the common mode of speaking, the inclination of the orbit,
which we count from 0 to 180° is only extended to 90°, and if the angle made
by the orbit with the arc & B exceeds a right angle, the angle of the orbit with
the arc @ 4, which is its complement to 180° is regarded as the inclination of
the orbit; in this case then it will be necessary to add that the motion is retrograde
(as if) in our fiigure, &/ Q F' should represent a part of the orbit), in order that it’
may be distinguished from the other case where the motion is called direct. The
longitude in orbit is then usually so reckoned that in @ it may agree with the
longitude of this point in the ecliptic, but decrease in the direction @ F; the initial
point, therefore, from which longitudes are counted contrary to the order of
motion in the direction @ 7} is just so far distant from &, as the vernal equinox
from the same Q in the direction & 4. Wherefore, in this case the longitude of
the perihelion will be the longitude of the node diminished by the distance of
the perihelion from the node. In this way either form of expression is easily con-
verted into the other, but we have preferred our own, for the reason that we
might do away with the distinction between the direct and retrograde motion,
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and use always the same formulas for both, while the common form may fre-
quently require double precepts.

50.

The most simple method of determining the position, with respect to the
ecliptic, of any point whatever on the surface of the celestial sphere, is by means
of its distance from the ecliptic (lfitude), and the distance from the equinox of
the point at which the ecliptic is cut by a perpendicular let fall upon it, (long:-
tude). The latitude, counted both ways from the ecliptic up to 90°, is regarded as
positive in the northern hemisphere, and as negative in the southern. Let the
longitude A, and the latitude 8, correspond to the heliocentric place of a celestial
body, that is, to the projection upon the celestial sphere of a right line drawn
from the sun to the body; let, also, # be the distance of the heliocentric place
from the ascending node (which is called the argument of the lotitude), i be the
inclination of the-orbit, Q@ the longitude of the ascending node;there will exist
between 4, u, 8, A— @, which quantities will be parts of a right-angled spherical
triangle, the following relations, which, it is easily shown, hold good without any
restriction : —

L tan (A — @) =cositan u
II. tan f =tanisin (A — Q)
IIL sinf —=sinssin

IV. cosu=cosf cos(A— Q).

When the quantities 7 and u are given, A — @ will be determined from them by
means of equation [, and afterwards 8 by IL or by IIL, if § does not approach
too near to 4 90°; formula IV. can be used at pleasure for confirming the cal-
culation. Formulas I. and IV. show, moreover, that 2 — @ and u always lie in
the same quadrant when ¢ is between 0° and 90°; L — @ and 360° —w, on the
other hand, will belong to the same quadrant when ¢ is between 90° and 180°, or,
according to the common usage, when the motion is retrograde : hence the ambi-
guity which remains in the determination of A— @ by means of the tangent
according to formula L, is readily removed.

8
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The following formulas are easily deduced from the combination of the pre-

ceding: — -
V. sin(u—2A+4 Q)=2sin?$isinucos(h— Q)
VI sin(u—214 Q)=taniisinf cos(A — Q)
VIL sin(z—21 -+ Q)=tan $:tanf cosu
VIIL sin(z 41— Q)=2cos’ }isinucos(L— Q)
IX. sin(u—4 A — Q)=cotan $¢sinf cos(A — Q)
X. sin(u 4 A — Q)= cotan ¢ tan $ cos u.

The angle » — A -+ &, when ¢ is less than 90°, or v 4+ 4 — @, when 7 is more
than 90°, called, according to common usage, the reduction to the ecliptic, is, in fact,
the difference between the heliocentric longitude 4 and the longitude in orbit,
which last is by the former usage @ 4+, by ours & + «. When the inclination
is small or differs but little from 180°, the same reduction may be regarded as a
quantity of the second order, and in this case it will be better to compute first §
by the formula III, and afterwards 2 by VII. or X, by which means a greater
precision will be attained than by formula I. ’

If a perpendicular is let fall from the place of the heavenly body in space
upon the plane of the ecliptic, the distance of the point of intersection from the
sun is called the curtate distance. Designating this by #, the radius vector likewise
by r, we shall have

XI. ¥ =rcosf.

51.

As an example, we will continue further the calculations commenced in arti-
cles 13 and 14, the numbers of which the planet Juno furnished. We had
found above, the true anomaly 315°1°23".02, the logarithm of the radius yector
0.3259877: now let ¢ = 13°6'44".10, the distance of the perihelion from the
node = 241°10°20".567, and consequently »=—196°11"43".59 ; finally let @ —
171°7°48".73. Hence we have : —

logtanu . . . . 9.4630573 logsin(A— Q). . . . 9.4348691#x
logcos¢ . . . . 9.9885266 logtane¢ . . . . . . 93672305

log tan(A— Q). . 94515839 logtan@ . . . . . . 8.8020996x
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A—Q = 196°47'40".25 5 — — 3°3740".02
A= 6 56 28 .98 logecosB o & & w s 9.9991289
logr . . . . . . 03259877 logcosA—Q . . . 9.9832852n
lOg Cos ﬂ e e 4 e 9.9991289 0.9824141%
log7#/ . . . . . . 03251166 logcosu . . . . . 9.9824141n.
The calculation by means of formulas IIL., VII. would be as follows: —
logsinu . . . . 9.4454714n logtands . . . . . 9.0604259
logsing. . . . . 93557570 logtanf . . . . . 880209957
logsinf . . . . 88012284n logcosw . . . . . 9.0824l4ln
g = —3°37'40".02 log sin(u— A4 Q) . 7.8449395
u—A4 Q@ = 0°24" 3".34
A— Q= 195 47 40 .25.
52.

Regarding ¢ and » as variable quantities, the differentiation of equation III,
article 50, gives
cotan $d 8 — cotan ¢d7¢ - cotan udu,
or

XII. df =sin (L — Q)dé - sinicos(A — Q)du.

In the same manner,by differentiation of equation I. we get

cos?

XIII. d(A— @ )=— tan $ cos (A — Sz)dz'—l-émdu.
Finally, from the differentiation of equation XI. comes
d” =cosfdr — rsinfdp,
or .
XIV. d#¥ =cosfdr —rsinf# sin(L — Q)dé— rsinf siné cos (L — ) du.
In this last et.quation,'either the parts that contain d7 and du a/re to be divided by

206266”, or the remaining ones are to be multiplied by this number, if the
changes of 7 and u are supposed to be expressed in minutes and seconds.
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53.

The position - of any point whatever in space is most conveniently deter-
mined by means of its distances from three planes cutting each other at right
angles. Assuming the plane of the ecliptic to be one of these planes, and denot-
ing the distance of the heavenly body from ‘this plane by 2, taken positively on
the north side, negatively on the south, we shall evidently have z—=7"tan § =
rsinff =rsinssinu. The two remaining planes, which we also shall consider
drawn through the sun, will project great circles upon the celestial sphere, which
will cut the ecliptic at right angles, and the poles of which, therefore, will lie in
the ecliptic, and will be at the distance of 90° from each other. We call that pole
of each plane, lying on the side from which the positive distances are counted,
the positive pole. Let, accordingly, N and N 4 90° be the longitudes of the
positive poles, and let distances from the planes to which they respectively
belong be denoted by # and y. Then it will be readily perceived that we have

z=r"cos(A —N)

=rcosficos(A— Q)cos(N— Q)4 rcosfsin(A— Q)sin(N— Q)
y=7sin (L — ) " |
=rcosfisin(A— Q)cos(N— Q)—rcosfcos(h— Q)sin(N—Q),
which values are transformed into
z=rcos(N— Q) cosu—rcos¢sin (N— Q)sinu
y =rcosicos (N— Q) sin u—rsin (N— Q) cos u.
If now the positive pole of the plane of z is placed in the ascending node, so that
N = @, we shall have the most simple expressions of the cotrdinates z, 7, 2, —

r=rcosu
Yy =rcosisinu
2 =rsingsin .

But, if this supposed condition does not occur, the formulas given above will

still acquire a form almost equally convenient, by the introduction of four
auxiliary quantities, &, 4, 4, B, so determined as to have
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cos(N— @) =uasind
cosisin(N— Q)=acos 4
—sin(N—Q)=bsin B
cost cos (N — Q) =0bcos B,
(see article 14, IL.). We shall then evidently have
x =rasin(u -+ A)
y=rbsn(uv—+ B)

2—rsSingsiny.

54.

The relations of the motion to the ecliptic explained in the preceding article,
will evidently hold equally good, even if some other plane should be substituted
for the ecliptic, provided, only,the position of the plane of the orbit in respect
to this plane be known; but in this case the expressions longitude and latitude
must be suppressed. The problem, therefore, presents itself: From the Inown
position of the plane of the orbit and of anether new plane in respect to the ecliptic, to
derive the position of the plane of the orbit in respect to the new plane. Let n Q, Q &,
n Q' be parts of the great circles which the plane of the ecliptic, the plane of the
orbit, and the new plane, project upon the celestial sphere, (fig. 2). In order
that it may be possible to assign, without ambiguity, the inclination of the second
circle to the third, and the place of the ascending node, one direction or the other
must be chosen in the third circle, analogous, as it were, to that in the ecliptic
which is in the order of the signs; let this direction in our figure be from u toward
Q'. Moreover, of the two hemispheres, separated by the circle 7 ®’, it will be
necessary to regard one as analogous to the northern hemisphere, the other to
the southern ; these hemispheres, in fact, are already distinct in themselves, since
that is always regarded as the northern, which is on the right hand to one moving
forward* in the circle according to the order of the signs. In our figure, then, g,
n, Q', are the ascending nodes of the second circle upon the first, the third upon
the first, the second upon the third; 180°— 2z Q @/, @27 Q’, 2 Q'@ the inclina-

* In the snner surface, that is to say, of the sphere represented by our figure.
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tions of the second to the first, the third to the first, the second to the third.
Our problem, therefore, depends upon the solution of a spherical triangle, in
which, from one side and the adjacent angles, the other parts are to be deduced.
We omit, as sufficiently well known, the common precepts for this case given
in spherical trigonometry : another method, derived from certain equations, which
are sought in vain in our works on trigonometry, is more conveniently employed.
The following are these equations, which we shall make frequent use of in future:
a, b, ¢, denote the sides of the spherical triangle, and 4, B, C, the angles oppo-
site to them respectively : —
[ sin—o) _ sini(B—0)

sinya = cosid
I sing (b+4¢) __cosi(B—0)
’ sinta T sinid
11 cost(b—c) __ sing (B4 0)
) " eosta T cosid
v, ©2dGte) _ es}(B40)
) costa sintd °

Although it is necessary, for the sake of brevity, to omit here the demonstration
of these propositions,l any one can easily verify them in triangles of which neither
the sides nor the angles exceed 180°. But if the idea of the spherical triangle is
conceived in its greatest generality,so that neither the sides nor the angles are
confined within any limits whatever (which affords several remarkable advan-
tages, but requires certain preliminary explanations), cases may exist in which it
is necessary to change the signs in all the pf‘eceding equations; since the former
signs are evidently restored as soon as one of the angles or one of the sides is
increased or diminished 360° it will always be safe to retain the signs as we
have given them, whether the remaining parts are to be determined from a side
and the adjacent angles, or from an angle and the adjacent sides; for, either
the values of the quantities sought, or those differing by 360° from the true val-
ues, and, therefore, equivalent to them, will be obtained by our formulas. We
reserve for another occasion a fuller elucidation of this subject: because, in the
meantime, it will not be difficult, by a rigorous induction, that is, by a complete
enumeration of all the cases, to prove, that the precepts which we shall base upon
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these formulas, both for the solution of our present problem, and for other pur-
poses, hold good in all cases generally.

55.

Designating as above, the longitude of the ascending node of the orbit upon
the ecliptic by &, the inclination by 7; also, the longitude of the ascending node
of the new plane upon the ecliptic by =, the inclination by ¢; the distance of the
ascending node of the orbit upon the new plane from the ascending node of the
new plane upon the ecliptic (the arc » Q' in fig. 2) by &, the inclination of the
orbit to the new plane by ¢’; finally, the arc from & to Q’ in the direction of the
motion by 4: the sides of our spherical triangle will be & —n, Q’, 4, and the
opposite angles,#, 180° —4, &. Hence, according to the formulas of the preceding
article, we shall have

sin 4 ¢sin 3 (Q'+ 4) =sin $ (Q — n)sin 3 (¢ &)

sin 4 ¢/ cos 3 (' + 4) = cos 4 (Q —n)sin # ({ — &)

cos37'sin 3 (R — ) =sin 3 (& —mn)cost (7 +¢)

costi’cos 3 (R — ) =cos 3 (Q —n)cost (1 —e).
The two first equations will furnish 4 (Q" + 4) and sin 4 ¢’; the remaining two,
3 (R —4) and cos $¢'; from 3 (R4 4) and 3 (R —4) will follow Q" and 4;
from sin 47 and cos$ ¢ (the agreement of which will serve to prove the calcula-
tion) will result #. The uncertainty, whether 3 (" + 4) and % (R’ — 4) should
be taken between 0 and 180° or between 180° and 360°, will be removed in this

manner, that both sin 4} cos 4 ¢ are positive, since, from the nature of the case, ¢/
must fall below 180°.

56.

It will not prove unprofitable to illustrate the preceding precepts by an
example. Let @ = 172°2818".7, 1= 84°38’1".1; let also the new plane be
parallel to the equator, so that » = 180°; we put the angle &, which will be the
obliquity of the eclii)tié = 23°27'55".8. We have, therefore,
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Q@ —n= —7°31'46".3 (@ —n)= —3°4553".15
ite= 58 & 56 .9 d(i4e)= 29 2 568 .45
i—e= 1110 5.3 1(l—e)= 535 2.65

logsin3(Q —n) . . 8.8173026n  logcos# (& —=) . . 9.9990618

logsind(¢4¢) . . . 9.6862484 logsin 4 (f7—e) . . . 8.9881405

logcosd (z4¢) . . . 9.9416108 logcosd(v—e) . . . 9.9979342.
Hence we have

logsin 4 ¢'sin 4 (Q'+44) 8.5035510% logcosissini (Q—4) 8.7689134n
logsin #7'cos (R~ 4) 8.9872023 logcos 3/ cos 4 (R'—4) 9.9969960

whence # (@' 4)=341°4919".01  whence # (Q' — 4) = 356°41'31".43

logsinds . . . . . 9.0094368 logcosds . . . . . 9.9977202.
Thus we obtain # ¢ = 5°51’ 56”.445, ¢ —11°48’ 62".89, Q'=338°30"50"43,
A4 =—14°52"12"42. TFinally, the point » evidently corresponds in the celestial

sphere to the autumnal equinox; for which reason, the distance of the ascending
node of the orbit on the equator from the vernal equinox (its 7ight ascension)
will be 168° 30" 50”.43.

In order to illustrate article 53, we will continue this example still further,
and will develop the. formulas for the codrdinates with reference to the three
planes passing through the sun, of which, let one be parallel to the equator, and
let the positive poles of the two others be situated in right ascension 0° and 90°:
let the distances from these planes be respectively 2, , . If now, moreover,
the distances of the heliocentric place in the celestial sphere from the points &,
Q’, are denoted respectively by u, o, we shall have ' —=u— 4 —u -} 14°52'12" 42,
and the quantities which in article 63 were represented by ¢ V— &, u, will here
be 7, 180° — Q’, u’.’ Thus, from the formulas there given, follow,

logasind . . . . 99687197z logésinB . . . . 9.56380568
logacos4 . . . . 9.6646380n logdcosB . . . . 9.9595519n
whence 4 = 248°5522".97 whence B = 158°5'54".97

loge . . . . . . 99987923 logd . . . . . . 9.9920848.

We have therefore,
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z = ar sin (v -} 248°65'22".97) = ar sin (u 4 263°47'35".39)
y=>0brsin (v 4+ 158 5 54 .97) = brsin (v 4 172 58 7 .39)
z=—crsinu —c¢rsin (u+ 14 52 12 42)

in which log ¢ = log sin ¢ — 9.3081870.
Another solution of the problem here treated is found in Von Zach’s Monatliche
Correspondenz, B. IX. p. 385. '

57.

Accordingly, the distance of a heavenly body from any plane passing through
the sun can be reduced to the form %7 sin (v 4 K'), » denoting the true anomaly;
k£ will be the sine of the inclination of the orbit to this plane, K the distance
of the perihelion from the ascending nodeof the orbit in the same plane. So far
as the position of the plane of the orbit, and of the line of apsides in it, and also
the position of the plane to which the distances are referred, can be regarded as
constant, £ and A will also be constant. In such a case, however, that method
will be more frequently called into use in which the third assumption, at least, is
not allowed, even if the perturbations should be neglected, which always affect
the first and second to a certain extent. This happens as often as the distances
are referred to the equator, or to a plane cutting the equator at a right angle
in given right ascension: for since the position of the equator is variable,owing to
the precession of the equinoxes and moreover to the nutation (if the true and not
the mean position should be in question), in this case also £ and KA will be subject
to changes, though undoubtedly slow. The computation of these changes can be
made by means of differential formulas obtained without difficulty: but here
it may be, for the sake of brevity, sufficient to add the differential variations
of 7, @ and 4, so far as they depend upon the changes of & — n and .

d? =sinesinQ'd (@ —n)—cosQ’'de
sin¢ cos 4 sin Q'
dd—smscosgg d(gg n)_*_smgg

sin ¢’

Finally, when the problem only is, that several places of a celestial body with
Y
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respect to such variable planes may be computed, which places embrace a mod-
erate interval of time (one year, for example), it will generally be most con-
venient to calculate the quantities a, 4, 4, B, ¢, C, for the two epochs between
which they fall, and to derive from them by simple interpolation the changes for
the particular times proposed.

8.

Our formulas for distances from given planes involve » and »; when it is
necessary to determine these quantities first from the time, it will be possible to
abridge part of the operations still more, and thus greatly to lighten the labor.
These distances can be immediately derived, by means of a very simple formula,
from the eccentric anomaly in the ellipse, or from the auxiliary quantity # or u
in the hyperbola, so that there will be no need of the computation of the true
anomaly and radius vector. The expression £7 sin (v 4 &) is changed ;

I. For the ellipse, the symbols in article 8 being retained, into

ak cos ¢ cos K sin E -+ ak sin A (cos F/—e).
Determining, therefore, /, L, 1, by means of the equations

aksin K =1sin L
‘ak cos ¢ cos K = [cos L
—eaksin K =— el sin L=1,

our expression passes into /sin (£ + L)~ 4, in which /, Z, 1 will be constant, so
far as it is admissible to regard %, K, e as constant; but if not, the same precepts
which we laid down in the preceding article will be sufficient for computing their -
changes. .

We add, for the sake of an example, the transformation of the expression for
# found in article 56, in which we put the longitude of the perihelion = 121°17"
34”4, p = 14°13'381".97, log @ = 0.4423790. The distance of the perihelion from
the ascending node in the ecliptic, therefore, = 308°4920".7 —=u —v; hence
K —=212°36"56".09. Thus we have,
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logak . . . . . 04411713 loglsinZ . . . . 0.1727600%
logsin & . . . . 973156887n loglcosZ . . . . 0.3531164n
logakcosgp . . . 04276456 whence L — 213°2551”.30
logcos & . . . . 992546987 logl= 0.4316627
logh = 9.5632352
= —+ 0.3657929.

IL In the hyperbola the formula %7 sin (v 4 K), by article 21, passes into
)+ ptan P4 vsec F, if we put ebksin K=A, bk tany cos K=p, —bksin K
—w; it is also,evidently,allowable to bring the same expression under the form

nsin (F4+N)+4»
cos ' *

If the auxiliary quantity u is used in the place of #) the expression %7 sin (v | K)
will pass, by article 21, into _
«putl,
in which e, 8, 7, are determined by means of the formulas
o =>LA=¢bksin K
B=4(v4p) =— b ebksin (E—y)
y=43%(wv—up)=—tebksin(K-+|vy).

III. In the parabola, where the true anomaly is derived directly from the time,
nothing would remain but to substitute for the radius vector its value. Thus,
denoting the perihelion distance by ¢, the expression Z7sin (» -+ K) becomes

gksin (w4 K) .

cos?L v

59.

The precepts for determining distances from planes passing through the sun
may, it is evident, be applied to distances from the earth; here, indeed, only the
most simple cases usually occur. Let R be the distance of the earth from the sun,
L the heliocentric longitude of the earth (which differs 180° from the geocentric
longitude of the sun), lastly, X, ¥, Z, the distances of the earth from three planes °
cutting each other in the sun at right angles. Now if
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I The plane of Z is the ecliptic itself, and the longitudes of the poles of the

remaining planes, the distances from which are X, Y, are respectively X, and

N -+ 90°; then '
X=2Recos(L—N), Y=Rsin(L—DN), Z=0.

II. If the plane of Z is parallel to the equator, and the right ascensions of the
poles of the remaining planes, from which the distances are X, Y, are respectively
0° and 90°, we shall have, denoting by & the obliquity of the ecliptic, _

X=~RcosL, Y=RcosesinL, Z=— Rsinesin L.

The editors of the most recent solar tables, the illustrious Vox ZacH and DE
Lawmsrg, first began to take account of the latitude of the sun, which, produced
by the perturbations of the other planets and of the moon, can scarcely amount
to one second. Denoting by B the heliocentric latitude of the earth, which will

always be equal to the latitude of the sun but affected with the opposite sign, we
shall have,

In Case I In Case II.
X=RcosBcos(L—UN) X=~Rcos B cos L
Y=RcosBsin(L—UN). Y= Rcos B cosesin L— R sin Bsine
Z=RsinB Z = RcosBsinesin L+ Rsin B cose.

It will always be safe to substitute 1 for cos B, and the angle expressed in parts
of the radius for sin B.

The coirdinates thus found are referred to the centre of the earth. If &, 9, C,
are the distances of any point whatever on the surface of the earth from three
planes drawn through the centre of the earth, parallel to those which were drawn
through the sun, the distances of this point from the planes passing through the
sun, will evidently be X 4§, Y+, Z+ {: the values of the codrdinates &, 3, £,
are ‘easily determined in.both cases by the following method. Let ¢ be the radius
of the terrestrial globe, (or the sine of the mean horizontal parallax of the sun,)
A the longitude of the point at which the right line drawn from the centre of the
earth to the point on the surface meets the celestial sphere, # the latitude of the
same point, ¢ the right ascension, 0 the declination, and we shall have,
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In Case I In Case II.
§E=ogcosf cos(A—N) §=ogcosdcose
n=¢cosfsin (A—N) n=¢cosdsine
{=p¢sinf {=o¢sind.

This point of the celestial sphere evidently corresponds to the zenith of the
place on the surface (if the earth is regarded as a sphere), wherefore, its right
ascension agrees with the right ascension of the mid-heaven, or with the sidereal
time converted into degrees, and its declination with the elevation of the pole;
if it should be worth while to take account of the spheroidal figure of -the earth,
it would be necessary to adopt for d the corrected elevation of the pole, and for
0 the true distance of the place from the centre of the earth, which are deduced
by means of known rules. The longitude and latitude A and £ will be derived
from @ and ¢ by known rules, also to be given below: it is evident that 1 coin
Fides with the longitude of the nonagesimal, and 90° — # with its altitude.

60.

If 2, y, 2, denote the distances of a heavenly body from three planes cutting
each other at right angles at the sun; X, ¥, Z, the distances of the earth (either
of the centre or a point on the surface), it is apparent that + — X,y — Y, 2 —Z,
would be the distances of the heavenly body from three planes drawn through
the earth parallel to the former; and these distances would have the same relation
to the distance of the body from the earth and its geocentric place,*(thatis, the place
of its projection in the celestial sphere, by a right line drawn to it from the earth),
which #, g, z,have to its distance from the sun and the heliocentric place. Let 4
be the distance of the celestial body from the earth; suppose a perpendicular in
the celestial sphere let fall from the geocentric place on the great circle which
corresponds to the plane of the distances 2, and let ¢ be the distance of the
intersection from the positive pole of the great circle which corresponds to the

* In the broader sense: for properly this expression refers to that case in which the right line is
drawn from the centre of the earth.
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plane of the distances #; and, finally,let & be the length of this perpendicular, or
the distance of the geocentric place from the great circle correspond'ing to the
distances z. Then & will be the geocentric latitude or declination, according as the
plane of the distances 2 is the ecliptic or the equator; on the other hand, a 4 &V
will be the geocentric longitude or right ascension, if IV denotes, in the former
case, the longitude, in the latter, the right ascension, of the pole of the plane of
the distances . Wherefore, we shall have

z—X=4dcosbcosa
y— Y =4dcosbsina
2—Z =Asinb.

The two first equations will give o and 4 cosd; the latter quantity (which must
be positive) combined with the third equation, will give 4 and 4.

61.

We have given, in the preceding articles, the easiest method of determining
the geocentric place of a heavenly body with respect to the ecliptic or equator,
either free from parallax or affected by it, and in the same manner, either free
from, or affected by, nutation. In what pertains to the nutation, all the difference
will depend upon this, whether we adopt the mean or true position of the equator;
as in the former case, we should count the longitudes from the mean equinox,
in the latter, from the true, just as, in the one, the mean obliquity of the ecliptic
is to be used, in the other, the true obliquity. It appears at once, that the greater
the number of abbreviations introduced into the computation of the coirdinates,
the more the preliminary operations which are required; on which account, the
superiority of the method above explained, of deriving the codrdinates immedi-
ately from the eccentric anomaly, will show itself especially when it is necessary
to detcrmine many geocentric places. But when one place only is to be com-
puted, or very few, it would not be worth while to undertake the labor of calcu-
lating so many auxiliary quantities. It will be preferable in such a case not to
depart from the common method, according to which the true anomaly and radius
vector arec deduced from the eccentric anomaly; hence, the heliocentric place
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with respect to the ecliptic; hence, the geocentric longitude and latitude ; and
hence, finally, the right ascension and declination. Lest any thing should seem
to be wanting, we will in addition briefly explain the two last operations.

62.

Let A be the heliocentric longitude of the heavenly body, 8 the latitude; / the
geocentric longitude, o the latitude, » the distance from the sun, 4 the distance
from the earth; lastly, let L be the heliocentric longitude of the earth, I’ the lat-
itude, Z2 its distance from the sun. When we cannot put 5= 0, our formulas
may also be applied to the case in which the heliocentric and geocentric places
are referred, not to the ecliptic, but to any other plane whatever; it will only be
necessary to suppress the terms longitude and latitude: moreover, account can
be immediately taken of the parallax, if only, the heliocentric place of the earth
is referred, not to the centre, but to a point on the surface. Let us put, moreover,

rcosfp=r, Adcosb=A, Rcos B=FR.

Now by referring the place of the heavenly body and of the earth in space to
three planes, of which one is the ecliptic, and the second and third have their

poles in longitude NV and N4 90°, the following equations immediately present
themselves:—

7 cos(A— N)— R'cos (L— N)=d"cos({ —N)
7sin(A—2N)— R'sin(L—N)=4"sin({—N)
7 tan 8 — R tan B = A" tan,

in which the angle IV is wholly arbitrary. The first and second equations will
determine directly /— N and 4, whence b will follow from the third; from &
and 4’ you will have 4. That the labor of calculation may be asconvenient as
possible, we determine the arbitrary angle IV in the three following ways:—

I. By putting V= L, we shall make

Zsin(A—L)="P,

%cos(l—L)—l: Q,

)’

and [— Z, % , and b, will be found by the formulas
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tan (1— L) =7

e

R~ sin({—L)™ cos(!{—1L)
T’

R

tan §— tan B
Zy
RI
II. By putting V=1, we shall make
. o
G

and we shall have,

tan b —

sin(A—L)=P, 1—= cos (. — L)= @,
tan (l—l):%

A P Q
7 sin((—21) — cos(I—7)

tanﬁ—gtanB
tan b —=

a1 N

III. By putting N¥=14% (L4 L), / and 4’ will be found by means of the
equations

tan (1 — # (A 4 L)) = "+ tan (L — L)

. (*+R)sink(A—L) _ (*—R)cosi(A—L)

T osn(l—3(+D)  es(i—3Q+D) ’

and afterwards 4, by means of the equation given above. The logarithm of the
fraction

4

v+ &
7Y — R
is conveniently ¢omputed if R%l is put = tan {, whence we have
T — tan (45° - 0).
In this manner the method ITL for the determination of / is somewhat shorter
than I and II.; but, for the remaining operations, we consider the two latter
preferable to the former.
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63.

For an example, we continue further the calculation carried to the helio-
centric place in article 51. Let the heliocentric longitude of the earth,
24°19 497.06 = L, and log B = 9.9980979, correspond to that place; we put
the latitude —0. We have, therefore, A — L=—17°24"20".07, log k' = R,
and thus, according to method IL,

log 2 06720813  log(1— @) . . . . 9.6526258

logsin(A— L) . 94758653 1— Q= 0.4493925

logcos (A —ZL) . 9.9796445 Q= 0.5506075

logP . . . . 9.1488466#%

log @ . . . . 9.7408421

Hence /— L = —14°21'6".75 whence /= 352°34'22".23

logZ . . . . 97546117  whencelog4’ . . . 0.0797283

logtan . . . 8.8020996# logcosd . . . . . . 99973144

logtand . . . 9.0474879n  logd . . . . . . . 0.0824139
b=—  6°21'55".07

According to method IIIL, from log tan { = 9.6729818, we have { —25°138'6".31,
and thus,

log tan (45°¢) . . . 0.4441091
logtan $ (A— L) . . . 9.1848938n
logtan({— 41— 3 L) . 9.62900297
I=dl=lm= MR } whence /= 352° 34’ 227225,
1L 31L= 15 3739.015
64.

We further add the following remarks concerning the problem of article 62.
I By putting, in the second equation there given,
N=1), N=L, N=],
10
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there results
R’ sin (A— L)=A4'"sin (I—1)
7’sin (A — L)=A4"sin (I— L)
7 sin(l— 1) = R’sin ({— L).
The first or the second equation can be conveniently used for the proof of the
calculation, if the method I. or II. of article 62 has been employed. In our
example it is as follows: —
logsin(A—L) . . . 947586563% {— L—=—31°4526".82
log2. . . . . . . 97546117

9.7212536 %
logsin({— L) . . . 97212536

II. The sun, and the two points in the plane of the ecliptic which are the
projections of the place of the heavenly body and the place of the earth form a
plane triangle, the sides of which are 4/, R, #/, and the opposite aligles, either
A—L,1—1, 180°—/+ L, or L— ), A —1{, and 180°— L - /; from this the
relations given in L. readily follow.

III. The sun, the true place of the heavenly body in space, and the true place
of the earth will form another triangle, of which the sides will be 4, R, r: if|
therefore, the angles opposite to them respectively be denoted by

S, T, 180°— 8 — T,

we shall have

sinS __ sin7 _ sin(S4T)
4 — R T r °
The plane of this triangle will project a great circle on the celestial sphere, in
which will be situated the heliocentric place of the earth, the heliocentric place
of the heavenly body, and its geocentric place, and in such a manner that the
distance of the second from the first, of the third from the second, of the third
from the first, counted in the same direction, will be respectively, S, 7, § 4 7.
IV. The following differential equations are derived from known differential
variations of the parts of a plane triangle, or with equal facility from the formu-
las of article 62:— '
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1 — ﬂcos()—l dl—l—sm(l_l)dr/
dd' =—7 sm(l—l)dl—|—cos(l—l)dr’

/ cos bsinbsin (A —1) 7' cos?d 0s? b ’
b= 7 g d B +—5—ftanf — cos (A — ) tan b) d 7,

in which the terms which contain d+* d 4" are to be multiplied by 206265, or the
rest are to be divided by 206266, if the variations of the angles are expressed in

seconds.
V. The inverse problem, that is, the determination of the heliocentric from

the geocentric place, is entirely analogous to the problem solved above, on which
account it would be superfluous to pursue it further. For all the formulas of
article 62 answer also for that problem, if, only, all the quantities which relate to
the heliocentric place of the body being changed for amalogous ones referring to
the geocentric place, L + 180° and — B are substituted respectively for L and B,
or, which is the same thing, if the geocentric place of the sun is taken instead of
the heliocentric place of the earth.

65.

Although in that case where only a very few geocentric places are to be
determined from given elements, it is hardly worth while to employ all the
devices above given, by means of which we can pass directly from the eccentric
anomaly to the geocentric longitude and latitude, and so also to the right ascen-
sion and declination, because the saving of labor therefrom would be lost in
the preliminary computation of the multitude of auxiliary quantities; still, the
combination of the reduction to the ecliptic with the computation of the geocen-
tric longitude and latitude will afford an advantage not to be despised. For if the
ecliptic itself is assumed for the plane of the codrdinates 2z, and the poles of
the planes of the coordinates z, y, are placed in &, 90° 4 Q, the coordinates are
very easily determined without any necessity for auxiliary quantities. We have,

Z=rcosu X=TRcos(L— Q) x— X=A cos(I—Q)

Yy =rcosisinu Y=FR'sin(L— Q) y— Y=4"sin (I—Q)
z=rsinisinu Z= R’ tan B 2—Z=Atanb.
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When B = 0, then "= R, Z—=0. According to these formulas our example is

solved as follows: —
L—9=—213°120".32.

log » 0.3269877 log R . . 9.9980979
log cosu . 9.9824141%n logcos(L—Q) . . 9.9226027x
logsinw . 9.4454714n logsin(L—8) . 9.73843637n
logz 0.30840187% log X 9.9207006 7
log 7 sin 9.7714591n
log cosz . 9.9885266
logsins . 9.3557570
logy . o 275998577 log ¥ . 9.73653327
logz . . 9.1272161n = 0

Hence follows
log (z —X) 0.0795906 7
log (y — ¥) 8.4807165n
whence (/—8Q)= 181°26'33"49 I= 3562°34722".22
log 4’ . 0.0797283
log tan b . 9.0474878n b= —6 21 65.06

66.

The right ascension and declination of any point whatever in the celestial
sphere are derived from its longitude and latitude by the solution of the spherical
triangle which is formed by that point and by the north poles of the ecliptic and
equator. Let & be the obliquity of the ecliptic, / the longitude, 4 the latitude, e
the right ascension, 0 the declination, and the sides of the triangle will be ¢,
90° — b, 90° —d'; it will be proper to take for the angles opposite the second
and third sides, 90° 4 e, 90° — /, (if we conceive the idea of the spherical triangle
in its utmost generality); the third angle, opposite & we will put=90°—Z. We
shall have, therefore, by the formulas, article 54,



Skcr. 2.] TO POSITION IN SPACE. 7

sin (45° — 3 0) sin 3 (£ + «) = sin (45° 4 3 7) sin (45° — 3 (¢ +-2))

sin (45° — 3 0) cos 3 (£ + ) = cos (45° + 4 ) cos (45° — & (e — b))

cos (45°— 3 0) sin 4 (£ — «) = cos (45° + 3 /) sin (45° — 4 (¢ — 1))

cos (45°— 3 0) cos 3 (£ — @) = sin (45° + 3 /) cos (45° — 3 (¢ 4-0))
The first two equations will give 3 (£ -+ «) and sin (45° — 4 J); the last two,
3 (£ — «) and cos(45°— 340); from 3 (£'+ «) and 3 (£ — «) will be had «, and,
at the same time, Z; from sin (45° — % J) or cos (45° — 4 J), the agreement of
which will serve for proving the calculation, will be determined 45°— 34, and
hence ¢. The determination of the angles # (Z 4 a), 3 (£— «) by means of
their tangents is not subject to ambiguity, because both the sine and cosine of the
angle 45° — % & must be positive.

The differentials of the quantities «, d, from the changes of /, 4, are found

according to known principles to be,

sin & cos b cos &
de= cos 0 dl—c s 0 do

dé=cos L cosbd !4 sin £dbd.

67.

Another method is required of solving the problem of the preceding article
from the equations
cos & sin / = sin ¢ tan b -} cos / tan «
Sin 8 = cos ¢ sin b - sin & cos b sin /

cosb cos!= cosa cos 9.

The auxiliary angle 8 is determined by the equation

tan b
tan 0 = —— :
sin ¢
and we shall have
tan ¢ — &8 (¢4 0) tan?
cos O

tan & = sin « tan (¢ 4 9),
to which equations may be added, to test the calculation,
cos (¢4 6) cos bsinl

cos 6 sin &

cos bcos !

cosd = ,0r cos0 =
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This ambiguity in the determination of @ by the second equation is removed by
this consideration, that cose and cos/ must have the same sign. ,

This method is less expeditious, if, besides & and d, Z also is required: the most
convenient formula for determining this angle will then be

sin & cos sin & cos I

cos = cosdb ~  cosd °

But £ cannot be correctly computed by this formula when + cos £ differs but
little from unity; moreover, the ambiguity remains whether Z should be taken
between 0 and 180° or between 180° and 360°. The inconvenience is rarely
of any importance, particularly, since extreme precision in the value of Z is not
required for computing differential ratios; but the ambiguity is easily removed
by the help of the equation

cosbcosd sin £ = cos e —sin b sind,

which shows that Z must be taken between 0 and 180° or between 180° and
360°, according as cos ¢ is greater or less than sin 4 sind': this test is evidently not
necessary when either one of the angles 4, d, does not exceed the limit 66°32’;
for in that case sin Z is always positive. Finally, the same equation, in the case
above pointed out, can be applied to the more exact determination of Z, if it
appears worth while.

68.

The solution of the inverse problem, that is, the determination of the longi-
tude and latitude from the right ascension and declination, is based upon the same
spherical triangle; the formulas, therefore, above given, will be adapted to this
purpose by the mere interchange of & with d, and of / with —e. It will not be
unacceptable to add these formulas also, on account of their frequent use:

According to the method of article 66, we have,

sin (45° — 3 ) sin 4 (£ —17) =cos (45° + % &) sin (45° — % (¢ 4-0))
sin (45° — # 8) cos # (B — 1) = sin (45° + # &) cos (45° — # (e —8))
cos (45° — 4 8) sin 4 (E+ 1) = sin (45° + % ) sin (45° — % (¢ —9))
cos (456° — 4 8) cos 4 (E 4 1) =cos (45° + % &) cos (45°— % (¢ 4-9)).
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As in the other method of article 67, we will determine the auxiliary angle §
by the equation

__tand

tm.l{’—s_inoc 2

and we shall have
cos ({ —¢) tan
cos

tan /—

tan b = sin /tan (§ —&).

For proving the calculation, may be added,

cosdcosa _ cos (§—e)cos dsine
cos! cos Lsinl

cos b —

For the determination of Z, in the same way as in the preceding article, the fol-
lowing equations will answer: —

sin & cos & sin & cos {
cosd cos 0

cos =
cosb cosdsin / —cose —sinbsin 0.

The differentials of Z, 4, will be given by the formulas

sin & cos & cos K

db—=—-cosLcosddea -+ sin/dJ. '

69.

We will compute, for an example, the longitude and latitude from the right
ascension 355°43'456".30 = «, the declination — 8°47'25” —d, and the obliquity
of the ecliptic 23°27' 569”26 —e&. We have, therefore, 45° 4 4 « = 222°51'52".65,
45°— 4 (e +0)=1387°89"42".87, 45° — § (¢ — ) = 28°52"17".87; hence also,
logcos(45° 4+ 4 a) . . 9.8650820% logsin(45°—+ 4e) . . 9.8326803x
log sin (45° — 4 (e +0)) 9.7860418 logsin (45°— # (e—d)) 9.6838112
log cos (46°— 4 (e40)) 9.8985222 logcos (45°— 4 (e—0)) 9.9423572
log sin (45°—4)sin 4 (E—1) . . 9.6011238xn
log sin (45° — 4 ) cos 3 (E—1) . . 9.7750375n

whence $ (Z/— /) = 216°56"5".39 ; log sin (45° — 4 b) = 9.8723171
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logcos(45°— 4 8)sind (E47) . . 9.5164916n
log cos (45°— 4 8)cos 3 (E+17) . . 9.7636042n
whence 3 (£ 4-7) = 209°30749".94 : log cos (45° — & 5) = 9.8239669.

Therefore, we have £ = 426°26’55".33, / = — 7°25'15"45, or, what amounts
to the same thing, £ — 66°26’55".33, /= 3562°34'44".65; the "angle 46° — 135,
obtained from the logarithm of the sine, is 48°10°58".12, from the logarithm of
the cosine, 48°10'58".17, from the tangent, the logarithm of which is their differ-
ence, 48°10'58".14 ; hence 6 = — 6°21’ 56".28.

According to the other method, the calculation is as follows: —

logtand . . . . 91893062z C.logcost . . . . 0.3626190
logsine . . . . 88719792n  logcos(f—e) . . 9.8789703
logtan{ . . . . 0.3173270 logtane . . . . 8.8731869xn
(= 64°17'6”.83 logtanZ . . . . . 911477624#
—e= 40 49 7 5T (= 352°34'44”.50
logsin/ . . . . . 91111232x
logtan({ —e) . . 9.9363874
logtand . . . . . 9.0475106x
b= — 6°21'56".26.
For determining the angle Z we have the double calculation _
logsine . . . . 9.6001144 logsine . . . . . 6.6001144
logcose . . . . 9.9987924 logcos? . . . . . 9.9963470
C.logcosd . . . 0.0026859 C.logcosd . . . . 0.0051313
logcos Z . . . 9.6015927 Jdogcos £. . . . . 9.6015927
whence £ = 66°26"56".35.
70.

Something is still to be added concerning the parallaz and aberration, that
nothing requisite for the computation of geocentric places may be wanting.
We have already described, above, a method, according to which, the place
affected by parallax, that is, corresponding to any point on the surface of the
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earth, can be determined directly with the greatest facility ; but as in the com-
mon method, given in article 62 and the following articles, the geocentric place is
commonly referred to the centre of the earth, in which case it is said to be free
from parallax, it will be necessary to add a particular method for determining the
parallax, which is the difference between the two places.

Let the geocentric longitude and latitude of the heavenly body with reference
to the centre of the earth be A, 8; the same with respect to any point whatever
on the surface of the earth be [, &; the distance of the body from the centre of
the earth, »; from the point on the surface, 4; lastly, let the longitude Z, and the
latitude B, correspond to the zenith of this point in the celestial sphere, and let
the radius of the earth be denoted by R. Now it is evident that all the equations
of article 62 will be applicable to this place also, but they can be materially
abridged, since in this place /2 expresses a quantity which nearly vanishes in
comparison with » and 4. The same equations evidently will liold good if 4,/ L
denote right ascensions instead of longitudes, and f3,5, B, declinations instead of
latitudes. In this case /— 4, 8 — 3, will be the parallaxes in right ascension and
declination, but in the other, parallaxes in longitude and latitude. If, accord-
ingly, % is regarded as a quantity of the first order,/— 4,6 — 8, 4 —r, will be
quantities of the same order; and the higher orders being neglected, from the
formulas of article 62 will be readily derived : —

R cos Bsin (A— L)
rcosf3

II. 3—3 :M (tan f3 cos (A — L) — tan B)
II. 4/—r—=— RcosBsinp (cotan B cos (L — L) 4 tan B).

LlI—r=

The auxiliary angle 8 being so taken that

tan 3

tan 0 ==

the equations II. and IIL assume the following form : —

R cos Beos (A— L) sin (8—6) __ Rsin Bsin (B—0)

7 cos 0 7sin 6

I b—p=

RcosBeos (A—L)cos(f—0) _ RsinBcos (B—0)
cos 0 T sin 6 ’

11

III. 4

B
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Further, it is evident, that in 1. and IL, in order that /— 1 and & — $ may be
had in seconds, for 2, must be taken the mean parallax of the sun in seconds;
but in IIT, for &, must be taken the same parallax divided by 206265”. Finally,
when it is required to determine in the inverse problem, the place free from
parallax from the place affected by it, it will be admissible to use 4, /, b, instead
of r, 1, #, in the values of the parallaxes, without loss of precision.

Ezample. — Let the right ascension of the sun for the centre of the earth
be 220°46'44”.65 =1, the declination,— 15°49'43".94 —8, the distance, 0.9904311
=r: and the sidereal time at any point on the surface of the earth expressed
in degrees, 78°20’38” — L, the elevation of the pole of the point, 45°2767" = B,
the mean solar parallax, 8”.6 — R. The place of the sun as seen from this point,

and its distance from the same, are required.

log R 0.93450 log R 0.93450
log cos B 9.84593 log sin B 9.85299
C.logr . 0.00418 C.logr . 0.00418
C.log cos f8 0.01679 C.logsind . 0.10317
logsin(A — L) . 9.78508 logsin (8 — 6) 9.77162n
log (1— 1) 058648 log (b— p) 0.66636 2
l—Ll= -} 3”.86 b—B = — 4764
= 220°46"48".51 b= —15°49"48".58
log tan B . 000706  log (b— ) 0.66636 2
log cos (A — L) . 9.89909% log cot (8 — 6) 0.135622
log tan 8 0107972  logr . 9.99582
6= 127°57 0" log 1” 468657
B—o= — 143 46 44 log (r — 4) . . b548297x
r—d4—= — 0.0000304
= 0.9904615
71.

The aberration of the fixed stars, and also that p‘art of the aberration of com-
ets and planets due to the motion of the earth alone, arises from the fact, that
the telescope is carried along with the earth, while the ray of light is passing
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along its optical axis. The observed place of a heavenly body (which is called
the apparent, or affected by aberration), is determined by the direction of the
optical axis of the telescope set in such a way, that a ray of light proceeding
from the body on its path may impinge upon both extremities of its axis: but this
direction differs from the true direction of the ray of light in space. Let us con-
sider two moments of time ¢, ¢, when the ray of light touches the anterior ex-
tremity (the centre of the object-glass), and the posterior (the focus of the object-
glass); let the position of these extremities in space be for the first moment a, & ;
for the last moment «,%. Then it is evident that the straight line a?’ is the true
direction of the ray in space, but that the straight line @b or 4" (which may be
regarded as parallel) corresponds to the apparent place: it is perceived without
difficulty that the apparent place does not depend upon the length of the tube.
The difference in direction of the right lines g, ba, is the aberration such as exists
for the fixed stars: we shall pass over the mode of calculating it, as well known.
This difference is still not the entire aberration for the wandering stars: the
planet, for example, whilst the ray which left it is reaching the earth, itself
changes its place, on which account, the direction of this ray does not correspond
to the true geocentric place at the time of observation. Let us suppose the ray
of light which impinges upon the tube at the time ¢ to have left the planet at the
time 7'; and let the position of the planet in space at the time 7' be deuoted by
P, and at the time ¢ by p; lastly, let A be the place of the anterior extremity of
the axis of the tube at the time 7' Then it is evident that, —

1st. The right line A P shows the true place of the planet at the time 77;

2d. The right line ap the true place at the time ¢;

3d. The right line 4« or §'a’ the apparent place at the time ¢ or ¢ (the differ-
ence of which may be regarded as an infinitely small quantity) ;

4th. The right line ¥’ the same apparent place freed from the aberration of
the fixed stars.

Now the points P, a, &, lie in a straight line, and the parts Pa, ¥, will be
proportional to the intervals of time {— 7}, #—¢, if light moves with an uni-
form velocity. The interval of time #— 7' is always very small on account of
the immense velocity of light; within it, it is allowable to consider the motion
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of the earth as rectilinear and its velocity as uniform: so also 4, @, o’ will lie in a
straight line, and the parts Aa, e’ will likewise be proportional to the intervals
t—1T,¢*—1¢ Hence it is readily inferred, that the right lines AP, ¢'a’ are paral-
lel, and therefore that the first and third places are identical.

The time ¢ — 7', within which the light traverses the mean distance of the
earth from the sun which we take for unity, will be the product of the distance
Pa into 493°. In this calculation it will be proper to take, instead of the dis-
tance Pa, either PA or pa, since the difference can be of no importance.

From these principles follow three methods of determining the apparent place
of a planet or comet for any time ¢, of which sometimes one and sometimes
another may be preferred.

I. The time in which the light is passing from the planet to the earth may be
subtracted from the given time; thus we shall have the reduced time 7} for which
the true place, computed in the usual way, will be identical with the apparent
place for Z. For computing the reduction of the time ¢ — 7 it is requisite to
know the distance from the earth; generally, convenient helps will not be want-
ing for this purpose, as, for example, an ephemeris hastily calcuiated, otherwise it
will be sufficient to determine, by a preliminary calculation, the true distance for
the time ¢ in the usual manner, avoiding an unnecessary degree of precision.

II. The true place and distance may be computed for thé instant 7 and,
from this, the reduction of the time # — 7} and hence, with the help of the daily
motion (in longitude and latitude, or in right ascension and declination), the re-
duction of the true place to the time 7'

III. The heliocentric place of the earth may be computed for the time 7; and
the heliocentric place of the planet for the time 7': then, from the combination
of these in the usual way, the geocentric place of the planet, which, increased
by the aberration of the fixed stars (to be obtained by a well-known method, or
to be taken from the tables), will furnish the apparent place sought.

The second method, which is commonly used, is preferable to the others,
because there is no need of a double calculation for determining the distance,
but it labors under this inconvenience, that it cannot be used except several
places near each other are calculated, or are known from observation; otherwise
it would not be admissible to consider the diurnal motion as given.
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The disadvantage with which the first and third methods are incumbered, is
evidently removed when several places near each other are to be computed.
For, as soon as the distances are known for some, the distances next following
may be deduced very conveniently and with sufficient accuracy by means of
familiar methods. If the distance is known, the first method will be generally
preferable to the third, because it does not require the aberration of the fixed
stars; but if the double calculation is to be resorted to, the third is recommended
by this, that the place of the earth, at least, is retained in the second calculation.

What is wanted for the inverse problem, that is, when the true is to be derived
from the apparent place, readily suggests itself. According to method I, you will
retain the place itself unchanged, but will convert the time 7, to which the given
place corresponds as the apparent place, into the reduced time 7} to which the
same will correspond as the true place. According to method II., you will retain
the time ¢, but you will add to the given place the motion in the time {— 7, as
you would wish to reduce it to the time /4 ({— 7"). According to the method
III., you will regard the given place, free from the aberration of the fixed stars,
as the true place for the time 7} but the true place of the earth, answering to
the time 7, is to be retained as if it also belonged to 7. The utility of the third
method will more clearly appear in the second book.

Finally, that nothing may be wanting, we observe that the place of the sun is
affected in the same manner by aberration, as the place of a planet: but since
both the distance from the earth and the diurnal motion are nearly constant, the
aberration itself has an almost constant value equal to the mean motion of
the sun in 493% and so = 20”.25; which quantity is to be subtracted from the
true to obtain the mean longitude. The exact value of the aberration is in the
compound ratio of the distance and the diurnal motion, or what amounts to the
same thing, in the inverse ratio of the distance ; whence, the mean value must be
diminished in apogee by 0”.34, and incrcased by the same amount in perigee.
Our solar tables already include the constant aberration — 20”.25; on which

account, it will be necessary to add 20”.25 to the tabular longitude to obtain the
true.
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72.

Certain problems, which are in frequent use in the determination of the orbits
of planets and comets, will bring this section to a close. And first, we will revert
to the parallax, from which, in article 70, we showed how to free the observed
place. Such a reduction to the centre of the earth, since it supposes the distance
of the planet from the earth to be at least approximately known, cannot be made
when the orbit of the planet is wholly unknown. But, even in this case, it is pos-
sible to reach the object on account of which the reduction to the centre of the
earth is made, since several formulas acquire greater simplicity and neatness
from this centre lying, or being supposed to lie, in the plane of the ecliptic,
than they would have if the observation should be referred to a point out of the
plane of the ecliptic. In this regard, it is of no importance whether the obser-
vation be reduced to the centre of the earth, or to any other point in the plane
of the ecliptic. Now it is apparent, that if the point of intersection of the
plane of the ecliptic with a straight line drawn from the planet through the true
place of observation be chosen, the observation requires no reduction whatever,
since the planet may be seen in the same way from all points of this line:* where-
fore, it will be admissible to substitute this point as a fictitious place of observa-
tion instead of the true place. We determine the situation of this point in the
following manner : —

Let L be the longitude of the heavenly body, 8 the latitude, 4 the distance,
all referred to the true place of observation on the surface of the earth, to
the zenith of which corresponds the longitude 7 and the latitude &; let, more-
over, T be the semidiameter of the earth, L the heliocentric longitude of the cen-
tre of the earth, B its, latitude, R its distance from the sun; lastly, let Z" be the
heliocentric longitude of the fictitious place, & its distance from the sun, 4 —I-: d

* If the nicest accuracy should be wanted, it would be necessary to add to or subtract from the given
time, the interval of time in which light passes from the true place of-observation to the fictitious, or from
the latter to the former, if we are treating of places affected by aberration: but this difference can
scarcely be of any importance unless the latitude should be very small.
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its distance from the heavenly body. Then, IV denoting an arbitrary angle, the
following equations are obtained without any difficulty: —

R cos (L' —N) 0 cos 8 cos (L —2N) = I cos B cos (L— V) -7 cos b cos ({— V)
R sin (LI'—N) -+ d cos B sin(A—N)=LRcosBsin(L—N)-+mcosbsin ({—LN)
0 sin = R sin B + 7 sin b.

Putting, therefore,

L (Zsin B +4 7 sind) cotan # =p,
we shall have

II. R cos(L'—N)= RcosBcos(L—N)—~+mcosbcos({—N)—mucos(h—LN)
OI. R'sin(L'—N)= Rcos B sin (L—N) -+ mcosbdsin ({—N) —pu sin (A—LN)
IV, § ==t

cos B°

From equations II. and III, can be determined R’ and L', from IV., the inter-
val of time to be added to the time of observation, which in seconds will be
=493 0.

These equations are exact and general, and will be applicable therefore when,
the plane of the equator being substituted for the plane of the ecliptic, Z, L', 4, 4,
denote right ascensions, and B, 4, 8 declinations. But in the case which we are
specially treating, that is, when the fictitious place must be situated in the eclip-
tic, the smallness of the quantities B, &, L' — L, still allows some abbreviation of
the preceding formulas. The mean solar parallax may be taken for mw; B, for
sin B; 1, for cos B, and also for cos (L' — L); L'— L, for sin (L' — L). In this
way, making N = L, the preceding formulas assume the following form : —

I. u= (R B+ msinb)cotan
II. F=R+4 mcosbcos({— L)—pcos(A—L)

1. L L— 7 cos b sin (l—L])e,—“sm (A— 1) .

Here B, n, ' — L are, properly, to be expressed in parts of the radius; but it is
evident, that if those angles are expressed in seconds, the equations L, III. can be
retained without alteration, but for II. must be substituted

- rcosbeos(!— L) —pcos (A— L)
R—R—I— 206265 *
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Lastly, in the formula III, R may always be used in place of the denominator R’
without sensible error. The reduction of the time, the angles being expressed

in seconds, becomes
493% p
206265". cos g8°

73.

Eromple. — Let L = 354°44'54", f = —4°59 32", 1=24°29, b = 46°53,
L'=12°28'54", B—=+ 0".49, R = 0.9988839, = — 8".60. The calculation is as

follows: —
logR . . . . . . 999951 logm . . . . . . 0.93450
logB . . . . . . 969020 logsind . . . . . 9.86330
logBR ¢ i s 5 « 968971 logmsind . . . . 0.79780
Hence log (BR -+ msinb) . 0.83040
logcotanf . . . . 1.05873x
logp . . . . . . 188913=x _
logm . . . . . . 0.93450 logp . . . . . . 188913z
logcosd . . . . . 9.83473 logl” . . . . . . 468557
log” . . . . . . 4.68557 logcos(A—L) . . . 9.97886
logecos(!—ZL) . . . 9.99040 6.553567
5.44520 number — 0.0003577
number + 0.0000279
Hence is obtained R’ = R + 0.0003856 = 0.9992695. Moreover, we have
logmeosd. . . . . 0.76923 logp . . . . . . 188913«
logsin({—ZL) . . . 93179 logsin(A—ZL) , . 9.48371lxn
ClogR . . . . . 000032 ClogR . . . . . 0.00032
0.08749 1.37316

number - 1".22 number 4 23".61
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Whence is obtained Z'= L — 22".39. Finally we have

logep . . . . . . . 188913#n
C.log 206265 . . . . 4.68557
log493 . . . . . . 269285

C.logcosp . . . . . 0.00165
9.26920n,
whence the reduction of time — — 0°.186, and thus is of no importance.
74.

The other problem, fo deduce the heliocentric place of o heavenly body in s orbit
Jrom the geocentric place and the situation of the plane of the orbi, is thus far similar to
the preceding, that it also depends upon the intersection of a right line drawn
between the earth and the heavenly body with the plane given in position. The
solution is most conveniently obtained from the formulas of article 65, where the
meaning of the symbols was as follows: —

L the longitude of the earth, 2 the distance from the sun, the latitude B we
put = 0, —since the case in which it is not =0, can easily be reduced to this by
article 72,— whence R'— R, [ the geocentric longitude of the heavenly body, &
the latitude, # the distance from the earth, » the distance from the sun, u the
argument of the latitude, @ the longitude of the ascending node, 7 the inclination
of the orbit. Thus we have the equations

L rcosu— Rcos(L—Q)=4Adcosbcos(I—Q)
II. rcosisiny— Rsin(L—Q)=dcosbsin(l—Q)
ITI. 7sin¢sin u =4 sin b.
Multiplying equation I. by sin (L—Q)sin 4, II. by — cos (L— ) sin 4, III. by
— sin (L — /) cos b, and adding together the products, we have
cosusin (L—Q ) sin b —sin u cos? cos (L—Q ) sin b —sinusin¢sin (L—7) cos =0,
whence

sin(L—Q)sind
costcos (L—Q)sinb—+sinisin (L—I)cosd’
12

IV. tanu—=



90 RELATIONS PERTAINING SIMPLY - [BOOK )1

Multiplying likewise L by sin (! — &), II. by — cos ({— &), and adding together
the products, we have

Rsin (L—1)
sinu cosz cos (| — Q) —cosusin([—Q)"°

V. r—=

The ambiguity in the determination of # by means of ‘equation IV, is removed
by equation III., which shows that » is to be taken between 0 and 180°, or be-
tween 180° and 360° according as the latitude & may be positive or negative ;
but if 6 = 0, equation V. teaches us that we must put » = 180°, or v = 0, accord-
ing as sin (L —/) and sin (/— Q) have the same or different signs.

The numerical computation of the formulas IV. and V. may be abbreviated in
various ways by the introduction of auxiliary angles. For example, putting

tandcos (L—Q)

mZ—n —tn4,
we have
_ sindtan (L—@Q) .
tan U= W 5
putting :
tan¢sin (L—1)
| wz—g) — =5
we have

__cos Bsinbdtan (L—Q)
fany=- sin (B 6) cos¢

In the same manner the equation V. obtains a neater form by the introduction
of the angle, the tangent of which is equal to

) tan ([ —
cos 2 tan u, or J
Cos

Just as we have obtained formula V. by the combination of I, M.,soby a combina~
tion of the equations M, ITL, we arrive at the following: — -

_ Rsin(L—Q)

"= S (cos 7 — sin ¢ sin (l—gg)cotanb);

and in the same manner, by the combination of equations L, IIL, at this;

. Rcos(L—Q)

r— 5 —r 5
cos #— sin u sin ¢ cos ({— Q) cotan b’
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both of which, in the same manner as V., may be rendered more simple by the
introduction of auxiliary angles. The solutions resulting from the preceding
equations are met with in Vox Zacn Monatliche Correspondenz, Vol. V. p. 640, col-
lected and illustrated by an example, wherefore we dispense with their further
development in this place. If, besides » and 7, the distance 4 is also wanted, it
can be determined by means of equation III

75.

Another solution of the preceding problem rests upon the truth asserted in arti-
cle 64, III.,— that the heliocentric place of the earth, the geocentric place of the
heavenly body and its heliocentric place are situated in one and the same great
circle of the sphere. In fig. 3 let these places be respectively 7, G, H ; further,
let & be the place of the ascending node; Q 7, QH, parts of the ecliptic and
orbit; G'P the perpendicular let fall upon the ecliptic from ¢, which, therefore,
will be =5. Hence, and from the arc 27'=L—{ will be determined the angle 7'
and the arc 7'G. Then in the spherical triangle & ZI7 are given the angle & =7,
the angle 7} and the side 77— L —&, whence will be got the two remaining
sides Q H—=w and 7ZZ. Finally we have /G = T'G — T'H, and

__RsinTG _ RsinTH
— snHG’“ T snHG ®

76.

In article 52 we have shown how to express the differentials of the heliocen-
tric longitude and latitude, and of the curtate distance for changes in the argu-
ment of the latitude u, the inclination ¢ and the radius vector », and subsequently
(article 64, IV.) we have deduced from these the variations of the geocentric
longitude and latitude, / and & : therefore, by a combination of these formulas, d/
and db will be had expressed by means of du, d4, dQ, d». But it will be worth
while to show, how, in this calculation, the reduction of the heliocentric place
to the ecliptic, may be omitted in the same way as in article 65 we have
deduced the geocentric place immediately from the heliocentric place in orbit.
That the formulas may become more simple, we will neglect the latitude of
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the earth, which of course can have no sensible effect in ‘differential formulas.
The following formulas accordingly are at hand,-in which, for the sake of brevity,
we write o instead of /—8, and also, as above, 4’ in the place of 4 cos .
A cosw =rcosu—Rcos(L—Q)=
A’ sin 0 =rcosz'sinu—Rsin(L-—‘- Q)=n
A tan b —=rsinisinu = {;
from the differentiation of which result
cosw.dd — A sinw.do=d4§&
sinw.d 4 4+ 4 cosw.do =dy

tand.d 4 + 2 dp=dt.

Hence by elimination,

—sinw.d§+cos w.dy

A/
qp— =08 w.sinb.d§ —sin wsind.dy -} cosb.d ¢
A

If in these formulas, instead of &, 4, {, their values are substituted, dw
and dé will appear represented by dr, du, d7, dQ; after this, on account -of
d/=do 4 dQ, the partial differentials of / and 4 will be as follows: —

do =

I 4 ﬂ):—sinwcosu—|—coswsinucosi
1L A'(dl)—sinwsinu+coswcosucosi
m 2 (%)
V. (2)=14Zcos(Z—g—w)=1 B
- \dg P —0)=1-+Z cos(Z—1)
Y b

&

— cOs w Sin % Sin ¢

— €0S @ oS % sin b — sin w sin % cos# sin & - sinw sin 7 cos &

=
Y

A (db . . . . . el
. 7(—)=cosws1nus1nb—s1nwcosucoszsmb—|—cosusmzcosb
A (dd . . e . n .
VII. = —.):smwsmusmzsmb+31nucoszcosb
r \d¢
VIII. ﬁ-(g—b)zsinbsin(L—sz—w)zsinbsin(L—l')
R\dR ¢
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The formulas IV. and VIIL already appear in the most convenient form for cal-
culation ; but the formulas I, II, V., are reduced to a more elegant form by
obvious substitutions, as

e () =iz

IIIL.* (;—l;) ——cosw tan b
V. (g) =—§1 cos(L—17)sinb :-_—r%, cos (L—17)sin & cos &.

Finally, the remaining formulas IL, VI, VIL, are changed into a more simple form
by the introduction of certain auxiliary angles: which may be most conveniently
done in the following manner. The auxiliary angles M, IV, may be determined
by means of the formulas

tan w . . 00
tanM:m, tan V= sin o tan 7= tan M cos w sinz.

Then at the same time we have

cos? M 1-4tan? N __ cos?s - sin? wsin®¢

2
= = o — w:
cos? N 1+ tan? M cos?? - tan® w cos

now, since the doubt remaining in the determination of MM, &V, by their tangents,
may be settled at pleasure, it is evident that this can be done so that we may

have

cos M
oy — T coso,

and thence

= sind.
These steps being taken, the formulas II., VI, VIL, are transformed into the fol-
lowing : —

e dl\ _ rsinwcos (M—u)

du A’ sin M
VIL* (gg) = -A'L-(cos  sin ¢ cos (M —u) cos (N —=>b) - sin (M —u) sin (N —5))

db 7 sin % cos ¢ cos (IV —b)
VIIL* < ,_
o \dd T dcos N :
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These transformations, so far as the formulas II.-and VII. are concerned, will detain
no one, but in respect to formula VI,some explanation will not be superfluous.
From the substitution, in the first place, of M — (M — u) for u, in formula VI,
there results

é(g-g) = cos (M — u) (cos o sin M'sin b — sin @ cos ¢ cos Msin b -} sins cos M cosd)
— sin (M —u) (cos © cos M sinb—-sin o cos ¢ sin M sin —sin ¢ sin M cosb).
Now we have '
cos o sin M = cos® ¢ cos w sin M - sin® ¢ cos w sin I/
= sin w cos ¢ cos M + sin®¢ cos w sin M;
whence the former part of that expression is transformed into
sin ¢ cos (M —u) (sin ¢ cos o sin M 'sin b - cos M cos b)
=sin ¢ cos (M —u) (cos o sin NV sin b 4 cos  cos IV cos d)
= cos o sin ¢ cos (M — u) cos (N —15).
Likewise,
cos V= cos® @ cos IV -+ sin® w cos N = cos w cos M - sin w cos¢sin M
whence the latter part of the expression is transformed into
—sin (M —u) (cos IV sin b — sin NV cos b) = sin (M — u) sin (N —10).
The ekpression VL* follows directly from this.

The auxiliary angle M can also be used in the transformation of formula I,
which, by the introduction of M, assumes the form

‘I.** (il) . sin o sin (M — u)
dr A'sin M

- from the comparison of which with formula L* is derived

— Rsin(L—/)sin M=rsin wsin (M —u);

hence also a somewhat more simple form may be given to formula IL¥, that is,

ke (ﬂ) =— ZI; sin (L —1) cotan (M-_ “)-

du

That formula VL* may be still further abridged, it is necessary to introduce
a new auxiliary angle, which can be done in two ways, that is, either by putting
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tan (M —wu)

cos w sin ¢

tan (N—10)

coswsinz

tan P = ,or tan  —

from which results

Vo (4% __ rsin (M—u)cos (N—b—P) _ rsin (N—10) cos (M —u—Q)
’ \du/ sin P — A sin Q ’

The auxiliary angles M, IV, P, @, are, moreover, not merely fictitious, and it would
be easy to designate what may correspond to each one of them in the celestial
sphere ; several of the preceding equations might even be exhibited in a more
elegant form by means of arcs and angles on the sphere, on which we are less
inclined to dwell in this place, because they are not sufficient to render superflu-
ous, in numerical calculation, the formulas above given.

7.

What has been developed in the preceding article, together with what we
have given in articles 15, 16, 20, 27, 28, for the several kinds of conic sections,
will furnish all which is required for the computation of the differential varia-
tions in the geocentric place caused by variations in the individual elements.
For the better illustration of these precepts, we will resume the example treated
above in articles 13, 14, 51, 63, 65. And first we will express d/ and dJ in terms
of dr, du, ds, dQ, according to the method of the preceding article; which cal-
culation is as follows: —

logtanw . 840118 logsinw . 840099z logtan (M—u) 9.41932%
logcosé . 9.98853 logtanz . 9.36723  logcoswsiné . 9.35562n

logtan M . 841260 logtanXN . 776822z logtanP . . 006370
M = 1°28'5% N=179°39'50" P= 49°11'13"
M—u=16517 8 N—3—186 145 N—js—P— 136 5032
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I TL#* T
log sin(L—17)9.72125  (¥) . . . 963962  logcosw . . 9.99986x
logR . . 999810 log cot(M—u)0.58068% logtand . . 9.04749x
Clogd” . 992027 155 (1) . 022080 'log(%) . . 9.04735n
(* . . . 9.63962

C.logr . 9.67401
log (dl) . 9.31363

dr
Iv. - P VI#*
logZ . . 991837 (*%) . . . 984793 logl . . . 024357
log cos(L—17)9.92956  logsinbcosd 9.04212% logsin (M —u) 9.40484
(**) . . 984793 C.logr . . 9.67401 logcos(N—5—P)9.86301n
—Tloo (35 b C.logsin” . 0.12099
—log(dsz 1) log(&—r) . . 856406 —
log($2) . . 9.63241n
VIL* VIIL
log rsinucosz9.756999%  (*) . . . 9.63962

log cos(N—5)9.997569% log sin b cos b 9.04212x

g d!; ° N

log (g—g) . 9.67518x

These values collected give

dl= 4 0.20689 dr -+ 1.66073 du — 0.11152 d7 -} 1.70458 dQ

db = 0.03665 dr — 0.42895 du — 0.47335 d7 — 0.04806 d Q.
It will hardly be necessary to repeat here what we have often observed, namely,
that either the variations d/, db, du, di, dQ, are to be expressed in parts of the
radius, or the coefficients of dr are to be multiplied by 206265, if the former are

supposed to be expressed in seconds.
Denoting now the longitude -of the perihelion (which in our example is
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52°18'9".30) by I, and the true anomaly by v, the longitude in orbit will be
u = Q@ =v -+ 1I, and therefore du = dv 4 dII — dQ, which value being sub-
stituted in the preceding formulas, d/ and dé will be expressed in terms of dr,
do, de, d®, ds. Nothing, therefore, now remains, except to express d» and dv, ac-
cording to the method of articles 15, 16, by means of the differential variations
of the elliptic elements.*

We had in our example, article 14,

logZ = 9.90355 = log ()

log=> . ., . . 019290 10§ yay = # 3.12244
logtang . . . . 940820

C .. . 9.98652
',IOgC(()lstp ' logsine . . . . 9.84931as
log(iv) . . . . 017942 1~ @ - o
2 —ecos B= 1.80085 og\ga): + - - POIdon
e = 0.06018 loga . . . . . 042244
1.74067 logcosp . . . . 9.98652
log 0.24072 IOg cos?y . . . . 9.84966

d

log?® . . . . . 019200  log(§y) - . . . 025862n

logsinZ . . . . 9.76634n
dv
log 55) . . . . 019996

Hence is collected

do=-+ 151164 d ¥ — 1.58475 d¢ »
dr=—0.47310d /' — 1.81393 d¢g + 0.80085 da;
which values being substituted in the preceding formulas, give
di=+ 2.41287 d M — 3.00531 d¢ +- 0.16488 da | 1.66073 d IT
—0.11162 dz+ 0.04385dQ
dd =— 0.66572 d M4 0.61331 dg + 0.02925 da — 0.42895 d IT
— 0.47335 d¢ 4 0.38090 d Q.

* Tt will be perceived, at once, that the symbol 27 in the following calculation, no longer expresses
our auxiliary angle, but (as in section 1) the mean anomaly.

13
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If the time, to which the computed place corresponds, is supposed to be
distant # days from the epoch, and the mean longitude for the epoch is
denoted by &V, the daily motion by =, we shall have M — N + nt — II, and thus
dM—dN-+4ndv—dIl. In our example, the time answering to the computed
place is October 17.41507 days, of the year 1804, at the meridian of Paris: if]
accordingly, the beginning of the year 1806 is taken for the epoch, then
n=— 74.68493 ; the mean longitude for that epoch was 41°52'21".61, and the
diurnal motion, 824”.7988. Substituting now in the place of dM its value in
the formulas just found, the differential changes of the geocentric place, expressed
by means of the changes of the elements alone, are as follows: —

di=2.41287 AV — 179.96 dw — 0.75214 d IT — 8.00531 dg -+ 0.16488 da
— 011152 ds 4 0.04385 d g,
db = —0.66572 d. N+ 49.65 d= -+ 0.28677 d IT + 0.61331 dg + 0.02935 da
— 0.47885 d7 4 0.38090 d Q.

If the mass of the heavenly boély is either neglected, or is regarded as
known, 7 and @ will be dependent upon each other, and so either d¢ or de may
be eliminated from our formulas. Thus, since by article 6 we have

vad =y (14-p),

we have also

in which formula, if dz is to be expressed in parts of the radius, it will be neces-
sary to express = in the same manner. Thus in our example we have

loge . . . . . 291635
logl” . . . . . 468557
logd . . . . . 017609
C.loga . . . . 9.67756
logt . . . . . 7.35557a,

or, dv = — 0.0022676 da, and de = — 440.99 d 7, which value being substituted
in our formulas, the final form at length becomes: —
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dl=2.41287 AN — 252,67 dv — 0.76214 d IT — 3.00531 d¢
—0.111562dz -} 0.04385 dQ,
db=—0.66672d N+ 36.71 dz -+ 023677 d IT 4 0.61331 d¢
— 0.47335 d7 4 0.838090 d Q.

In the development of these formulas we have supposed all the differentials dJ,
db, d A, dz, dII, do, dé, dQ to be expressed in parts of the radius, but, mani-
festly, by reason of the homogeneity of all the parts, the same formulas will
. answer, if all those differentials are expressed in seconds.



THIRD SECTION.

RELATIONS BETWEEN SEVERAL PLACES IN ORBIT.

78. .

THE discussion of the relations of two or more places of a heavenly body in
its orbit as well as in space, furnishes an abundance of ‘elegant propositions, such
as might easily fill an entire volume. But our plan does not extend so far as to
exhaust this fruitful subject, but chiefly so far as to supply abundant facilities for
the solution of the great problem of the determination of unknown orbits from
observations: wherefore, neglecting whatever might be too remote from our pur-
pose, we will the more carefully develop every fhing that can in any manner
conduce to it. We will preface these inquiries with some trigonometrical propo-
sitions, to which, since they are more commonly used, it is necessary more fre-
quently to recur.

L. Denoting by 4, B, C, any angles whatever, we have

sinA4 sin (C— B)+ sin B sin (A—C) +sin C'sin (B— 4)=0
cosAsin (0'— B) + cos Bsin (4—C') 4 cos Csin(B—4) = 0.
II. If two quantities p, P, are to be determined by equations such as
psin(A—P)=a
psin (B— P)=1,
it may generally be done by means of the formulas
psin (B—A)sin(H— P)=1bsin (H— A) —asin (H—B)
psin (B—A)cos(H— P)=bcos(H— A)—acos(H— B),
in which A is an arbitrary angle. Hence are derived (article 14, IL.) the angle

H—P, and psin (B—A); and hence P and p. The condition added is gen-
(100)
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erally that p must be a positive quantity, whence the ambiguity in the deter-
mination of the angle — Pby mecans of its tangent is decided; but without
that condition, the ambiguity may be decided at pleasure. In order that the
calculation may be as convenient as possible, it will be expedient to put the arbi-
trary angle X either = 4 or =B or —= 4 (A4 B). In the first case the equa-
tions for determining P and p will be

psin (44— P)=a,

b—acos (B—A
peos (A_P): sin (BLA) )
In the second case the equations will be altogether analogous ; but in the third
case,
. . b+a

b—a

pecos(3 44+ 3B —P)= Tl (I—4)"
And thus if the auxiliary angle { is introduced, the tangent of which = %, P will
be found by the formula
tan (3 4 4 3 B— P) = tan (45° 4- {) tan 4 (B — 4),
and afterwards p by some one of the preceding formulas, in which

. sin (45° bsin (45°+-C
3 (b4 a) = sin (45 —‘I“C)\/Smgc : sfm:zl_ﬁ— r;ig\/";)

r 45° b cos (45°
,‘}(5_0;)_003 45 +t)\/~m?§ E(%\/QLC)— coco(sgng).

III. If p and P are to be determined from the equations
peos(A—P)=a,
peos(B—P)=b,
every thing said in IL could be immediately applied provided, only, 90° 4 A4
90° + B were written there throughout instead of A and B: that their use may
be more convenient, we can, without trouble, add the developed formulas. The
general formulas will be
psin (B—A4)sin (H—P)=—bcos(H—A) 4 acos (H— B)
psin(B—A)cos(H—P)= bsin (H—A)—asin (H— D).
Thus for /= A4, they change into
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acos (B—A4)—b
sin (B—4)

psin(A—P)=
pcos(A— P)=a.
For H = B, they acquire a similar form ; but for &= % (4 + B) they become

. a—b
psin (3 44 %B—P)z%—in_g@.__.j)

a+b
pcos(%A—[—%B—P)zﬂos_%(’%TAj’

a

so that the auxiliary angle { being introduced, of which the tangent —-, it

becomes
tan (3 4+ 3 B— P) —tan ({ — 45°) cotan # (B — 4).
Finally, if we desire to determine p immediately from o and & without previ-
ous computation of the angle P, we have the formula

psin(B—A)=y (aa+ bb— 2 abcos (B —4)),

as well in the present problem as in IL.

79.

For the complete determination of the conic section in its plane, #ree things
are required, the place of the perihelion, the eccentricity, and the semi-parameter.
If these are to be deduced from given quantities depending upon them, there
must be data enough to be able to form three equations independent of each
other. Any radius vector whatever given in magnitude and position furnishes
one equation: wherefore, three radii vectores given in magnitude and position are
requisite for the determination of an orbit; but if two only are had, either one
of the elements themselves must be given, or at all events some other quantity,
with which to form the third equation. Thence arises a variety of problems
which we will now investigate in succession.

Let 7,+/, be two radii vectores which make, with a right line drawn at pleasure
from the sun in the plane of the orbit, the angles &V, V', in the direction of the
motion ; further, let Z7 be the angle which the radius vector at perihelion makes
with the same straight line, so that the true anomalies N — 17, N’ — IT may
answer to the radii vectores r, »; lastly, let ¢ be the eccentricity, and p the semi-
parameter. Then we have the equations
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B=1+-ccos(N¥—1T)

%: 14-ecos(N'—1II),
from which, if one of the quantities p, ¢, IT, is also given, it will be possible to
determine the two remaining ones. /

Let us first suppose the semi-parameter p to be given, and it is evident that
the determination of the quantities ¢ and I7 from the equations

ecos(N—H):%'—-l
ecos(N’—IT):%—l,

can be performed by the rule of lemma IIL in the preceding -article. We have
accordingly

tan (V— IT) = cotan (V' — N ) — r(p—")

v (p—r)sin (N'—XV)
tan (4 N4+ $ N'— IT) = ' —r) cota,n%(N’__N).

, 27y
r+r 5

80.

If the angle I7 is given, p and e will be determined by means of the equations
v’ (cos (V— IT) —cos (N'— IT))
P=Tes (N —II) — 7' cos (N — IT)
: e=rcos(.N— H)r—r’rcos(N’—I'[)'
It is possible to reduce the common denominator in these formulas to the form
acos (A—1IT), so that @ and A may be independent of 7I. Thus letting H de-
note an arbitrary angle, we have
7 cos(N—IT)—r’ cos (N'—II') = (rcos(N— H)—+ cos(N'— H)) cos(H—IT)
— (rsin(N—H)—¢'sin (N'—H)) sin (H—IT)

and\so
—a cos (A—IT),

if @ and A are determined by the equations
rcos(N—H)—¢ cos(N'— H)=acos (4 — H)
rsin (N—H) —¢ sin (V' — H) =asin (A — H).
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In this way we have
_ 2r/sind (V' —N)ysin A N3 NV — 1)
- acos (4 —IT)

v —r

= @ =T
These formulas are especially convenient when p and ¢ are to he computed for
several values of II; r, s/, N, NV continuing the same. Since for the calculation
of the auxiliary quantities a, A, the angle 7 may be taken at pleasure, it will be
of advantage to put Z— % (¥ -+ &), by which means the formulas are changed
into these, — ’

(¥ —r)cos 3 (N*—N)=—acos(A—3 N— 3 )

(fF=7)sin 3 (V' —N)=—gsin (A—3 N — 1 V).
* And so the angle A being determined by the equation

tan (4— 4 N— 4 ') = 7% tan 4 (V' — V),

we have immediately _

__ cos(A—}{N—1 D)
cos 3 (V' —N) cos (A—1I11)°

The computation of the logarithm of the quantity T;j_—r may be abridged by a

e =

method already frequently éxplained.

81.

If the eccentricity e is given, the angle I will be found by means of the

equation
cos (A =4V -1 V)
ecost(N'—N) 2

afterwards the auxiliary angle 4 is determined by the equation

fan (4 — $ N— 3 N') =51 tan } (' — ).

cos(A—1IT)=—

The ambiguity remaining in the determination of the angle A — IT by its cosine
is founded in the nature of the case, so that the problem can be satisfied by two
different solutions; which of these is to be adopted, and which rejected, must be
decided in some other way ; and for this purpose the approximate value at least
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of IT must be already known. After I7 is found, p will be computed by the
formulas
p=r {1 +ecos(N—1II)) =+ (14 ecos (N —IT)),
or by this,
__2¢7'esin (V'—N)sin (3 V43 N— 1)

v —7

82.

Finally, let us suppose that there are given three radii vectores r, 7/, 7, which
make, with the right line drawn from the sun in the plane of the orbit at pleasure,
the angles ¥, N, N”. We shall have, accordingly, the remaining symbols being
retained, the equations

(L) =1-+ecos(N—II)

14 ecos (V' —IT)

s s sl

=1+4ecos(N'"—1IT),

from which p, IT, ¢, can be derived in several different ways. If we wish to
compute the quantity p before the rest, the three equations (1.) may be multiplied
respectively by sin (N'— N'), — sin (V" — V), sin (V' — &), and the products
being added, we have by lemma I, article 78,

sin (V" —N') —sin (N"—N)~4sin (V' —N) B
Lsin (" — ') — 2-sin (N — V) + 2 sin (V' — )

This expression deserves to be considered more closely. The numerator evidently
becomes
2sin 3 (N"—N")cos 3 (N'—N')—2sin $ (V' —N')cos(3 N+ 4N —N)
—4sin $ (V'—N')sin 4 (NV'—N)sin (V' —N).
Putting, moreover,
7" sin (V' —N')=mn, rr"’"sin(N'—N)=an, rv'sin (N —N)=4n",

it is evident that 4 n, $ ' % #”, are areas of triangles between the second and third
radius vector, between the first and third, and between the first and second.

14
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Hence it will readily be perceived, that in the new formula,
__4sin} (N — N') sin} (N" — N) sin } (V' — N).rr' 2"

b n_nl_{_nll
the denominator is double the area of the triangle contained between the ex-
tremities of the three radii vectores, that is, between the three places of the

heavenly body in space. When these places are little distant from each other,
this area will always be a very small quantity, and, indeed, of the third order,
if NN— N, N"— N’ are regarded as small quantities of the first order. Hence
it is readily inferred, that if one or more of the quantities », #/, ’, N, N, N”, are
affected by errors never so slight, a very great error may thence arise in the de-
termination of p; on which account, this manner of obtaining the dimensions of
the orbit can never admit of great accuracy, except the three heliocentric places
are distant from each other by considerable intervals.

As soon as the semi-parameter p is found, e and 17 will be determined by the
combination of any two whatever of the equations I. by the method of article 79.

83.

If we prefer to commence the solution of this problem by the computation
of the angle I7, we make use of the following method. From the second of
equations I. we subtract the third, from the first the third, from the first the sec-
ond, in which manner we obtain the three following new equations: —

1 1

7_7 4 /"
(IL) = =0 (R + § N — )

1 1

__7 4

sI—) =, (N + V' — 1)

1 1

T 7

T IV — ) sm(f}N—{-—&N' 1I).

Any two of these equations,according to lemma II., article 78, will give 77 and % .
whence by either of the equations (I.) will be obtained likewise ¢ and p. If we

sclect the third solution given in article 78, IL, the combination of the first equa-
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tion with the third gives rise to the following mode of proceeding. The auxil-
iary angle { may be determined by the equation

sin (V" — V')
7" sint(VN—DN)

and we shall have
tan (3 N+ $ N4 3 N — IT) = tan (45° + {) tan # (N — NV).

Two other solutions wholly analogous to this will result from changing the second
place with the first or third. Since the formulas for%become more complicated
by the use of this method, it will be better to deduce ¢ and p, by the method of
article 80, from two of the equations (I). The uncertainty in the determination
of IT by the tangent of the angle } N+ # N 4+ # N — IT must be so decided
that ¢ may become a positive quantity: for it is manifest that if values 180° dif-
ferent were taken for. 17, opposite values would result for e. The sign of p, how-
ever, is free from this uncertainty, and the value of p cannot become negatfve,
unless the three given points lie in the part of the hyperbola away from the sun,
a case contrary to the laws of nature which we do not consider in this place..

That which, after the more difficult substitutions, would arise from the appli-
cation of the first method in article 78, II, can be more conveniently obtained in
the present case in the following manner. Let the first of equations II. be multi-
plied by cos # (V" — N’), the third by cos 4 (V' — V), and let the product of
the latter be subtracted from the former. Then, lemma I of article 78 being
properly applied,* will follow the equation,

%(%—-7—%,,) cotan 3 (N' —N')— 3 (;—%) cotan (V' — V)
=;sin%(N”—N)cos(£N+%N"—H). |

By combining which with the second of equations IL I7 and;—)will be found ; thus,
IT by the formula

* Putting, that is, in the second formula, A =% (V" —DN"), B={ N+ L N"—IT, O=} (N—N').
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tan (§ N4 $ N —IT)
A~

. r
_(1—;7;) cotan % (N”—N)—(:—I— 1) cotan 3 (N’—N)

Hence, also, two other wholly analogous formulas are obtained by interchanging
the second place with the first or third.

84.

Since it is possible to determine the whole orbit by two radii vectores given
in magnitude and position together with one element of-the orbit, the #ime also
in which the heavenly body moves from one radius vector to another, may be
determined, if we either neglect the mass of the body, or regard it as known:
we shall adhere to the former case, to which the latter is easily reduced. ~Hence,
inversely, it is apparent that two radii vectores given in magnitude and position,
together with the time in which the heavenly body describes the intermediate
space, determine the whole orbit. But this problem, to be considered among the
most important in the theory of the motions of the heavenly bodies, is not so
easily solved, since the expression of the time in terms of the elements is tran-
scendental, and, moreover, very complicated. It is so much the more worthy of
being carefully investigated; we hope, therefore, it will -not be disagreeable to
the reader, that, besides the solution to be given hereafter, which seems to leave
nothing further to be desired, we have thought proper to preserve also the one
of which we have made frequent use before the former suggested itself to me.
It is always profitable to approach the more difficult problems in several ways,
and not to despise the good although preferring the better. We begin with ex-
plaining this older method.

85.

We will retain the symbols », #/, N, N, p, ¢, IT with the same meaning, with
which they have been taken above; we will denote the difference V' — IV by 4,
and the time in which the heavenly body moves from the former place to the
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latter by ¢&. Now it is evident that if the approximate value of any one of the
quantities p, ¢, IT, is known, the two remaining ones can be determined from them,
and afterwards, by the methods explained in the first section, the time corre-
sponding to the motion from the first place to the second. If this proves to be
equal to the given time 7, the assumed value of p, ¢, or 17, is the true one, and the
orbit is found ; but if not, the calculation repeated with another value differing a
little from the first, will show how great a change in the value of the time corre-
sponds to a small change in the values of p, ¢, II; whence the correct value will
be discovered by simple interpolation. And if the calculation is repeated anew
with this, the resulting time will either agree exactly with that given, or at least
differ very little from it, so that, by applying new corrections, as perfect an agree-
ment can be attained as our logarithmic and trigonometrical tables allow.

The problem, therefore, is reduced to this,— for the case in which the orbit is
still wholly unknown, to determine an approximate value of any one of the quan-
tities p, e, II. We will now give a method by which the value of p is obtained
with such accuracy that for small values of 4 it will require no.further correc-
tion; and thus the whole orbit will be determined by the first computation with
all the accuracy the common tables allow. This method, however, can hardly
ever be used, except for moderate values of 4, because the determination of
an orbit wholly unknown, on account of the very intricate complexity of the
problem, can only be undertaken with observations not very distant from each
other, or rather with such as do not involve very considerable heliocentric
motion.

86.

Denoting the indefinite or variable radius vector corresponding to the true
anomaly v — IT by o, the area of the sector described by the heavenly body in’
the time ¢ will be 4 /¢ ¢ dv, this integral being extended from v =V to v =1V,
and thus, (% being taken in the meaning of article 6), £y p—=/00dv. Now it
is evident from the fomulas developed by Corrs, that if ¢z expresses any
function whatever of z, the continually approximating value of the integral
S92.d= taken from £ =u to #=u-} 4 is given by the formulas
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14 (pu+9 (u+4))
§4(putdgutid)+9u+4)
td(pu+3¢@+34)+39 v+ 1)+ 9 (u+4)), ete
It will be sufficient for our purpose to stop at the two first formulas.
By the first formula we have in our problem,

fggdv—w(rr+r'r')_it’i,

if we put
T = tan (45° + o).
Wherefore, the first approximate value of y/ p, which we will put = 3 a, will be
Vp=A _3q.

Etcos 2
By the second formula we have more exactly |
Joodv=23}d(rr+4r 44 RE),
denoting by R the radius vector corresponding to the middle anomaly
1N+ N —

Now expressing p by means of r, R, », N, N+ % 4, N+ 4 according to the for
mula given in article 82, we find

e 4sin?1 Asing A
- b
(—:'-—i— 71,—) sin %d—%sinzl
and hence
coslg-A_%(l 1) 2sm2§A cos ® __2sin?} 4
R~ *\r T 7/ T p V(rrcos2m) p
By putting, therefore,
2sin?} Ay (rr/cos2m) )
cos -
we have
e coslA\/(M’cos2w)
coso (1 — —)

whence is obtained the second approximate value of y/ p,
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\/p_a+2acoszldcosz2m_a e 5
cos w(l——)2 (1_}_])2

H

if we put
2a(cos%Ac052m)2=8.

COs W

Writing, therefore, 7 for / p, © will be determined by the equation
(m—a)(l— )=,

b4
which properly developed would ascend to the fifth degree. We may put
. = ¢ + u, so that ¢ is the approximate value of 7, and p a very small quantity,
the square and higher powers of which may be neglected : from which substitu-
tion proceeds

(=) Q=P p (A= + =2 A=) =,

or

”zeq‘—(qq—aq) (¢g—9°
(99—9) ("+30g—4a0)’

and so

eq*+(9qg—9) (egqg+409—5ad) ¢
(g9—9) (" +309—4 ) ’

Now we have in our problem the approximate value of m, namely, 3 ¢, which

T =

being substituted in the preceding formula for ¢, the corrected value becomes

243 ete 3 a (9 e e — 9) (9aa+76)
= Ooa—20) (2T aet53)

Putting, therefore,
5 & .

| Taa— P T=3ga—"
the formula assumes this form,

_e(l+y+216)

=" 1F5 °
and all the operations necessary to the solution of the problem are comprehended
in these five formulas: —

L Z = tan (45° 4 o)
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Are
1L Sktcos2m

2em214\/(rr cos2w) —B

27 o ¢ cos o

III.

2cos?} Acos?2m
(1—38p)cos’w ~

a(l474218)
v, s0EiD — .

If we are willing to relinquish something of the precision of these formulas, it

IV.

will be possible to develop still more simple expressions. Thus, by making cos
and 'cos 2w =1, and developing the value of y/p in a series proceeding according
to the powers of 4, the fourth and higher powers being neglected, we have,

Vp=a(3—t44 L 25V7)

in which 4 is to be expressed in parts of the radius. Wherefore, by making
Arr' ,
T =Vr;

we have

VL p=p (1—344+450).

In like manner, by developing y/ p in a series proceeding-according to the powers

of sin 4, putting
77/ sin 4 . ”
kt T v
we have

- sin® 4y/7 /
VIL yp=(14225) vy,
or
VIIL p=p"+4sin®4y/rr.
The formulas VIL. and VIIL. agree with those which the illustrious EuvLer has
given in the T%eoria motus planetarum et cometarum, but formula VI, with that which

has been introduced in the Recherches et calewls sur la vraie orbite elliptique de la
comete de 1769, p. 80.
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87.

The following examples will illustrate the use of the preceding precepts, while

from them the degree of precision can be estimated.
L. Let log r = 0.3307640, log " = 0.3222239, 4 = 7°34'53".73 = 27293".73,

¢t =21.93391 days. Then is found © = — 33'47”.90, whence the further compu-
tation is as follows: —
logd . . . . 44360629 tlogrr'cos2mw . 03264519
logre” . . . . 0.65629879 2logsintd . . 7.0389972
C.log8% . . . 6.9728722 log% . . . . 8.8696662
C.logz. . . . 8.6688840 Clogea . . . 0.5582180
C.logcos2w . 0.0000840 C.logcosw . . . 0.0000210
loge . . . . 9.7208910 log . . . . . 6.7933543
: i — 0.0006213757
log2 . . . . 03010300
2logcostd . 9.9980976 147+4218=  3.0074471-
2logcos2w . 9.9998320 log. . . . . . 04781980
C.log(1—3pB) 0.0008103 loge . . . . . 9.7208910
2C.logcosw . 0.0000420 C.log(1+58) . 9.9986528
logy . . . . 02998119 logyp . . . . 01977418
— 1.9943982 logp . . . . . 03954836
218 = 0.0130489

This value of log p differs from the true value by scarcely a single unit in the
seventh place: formula VL,in this example, gives log p = 0.3954822; formula
VII gives 0.39564780 ; finally, formula VIIL, 0.3954754.
II. Let logr=10.4282792, log+’'=10.4062033, 4 =62° 55"16".64,7=259.88477
days. Hence is derived w = — 1°27'20".14, log « = 9.7482348, § = 0.04535216,
= 1.681127, log.y p = 0.2198027, log »p = 0.4396054, which is less than the true
value by 183 units in the seventh place. For, the true value in this example is
0.4396237; it is found to be, by formula VL, 0.4368730; from formula VII. it
15
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results 0.4159824 ; lastly, it is deduced from formula VIII, 0.4051103: the two
last values differ so much from the truth that they cannot even be used as ap-
proximations.

88.

The exposition of the second method will afford an opportunity for treating
fully a great many new and elegant relations; which, as they assume different
forms in the different kinds of conic sections, it will be proper to treat separately ;
we will begin with the ELLIPSE.

Let the eccentric anomalies %, E’, and the radii vectores 7, 7, correspond to
two places of the true anomaly v, %', (of which » is first in time); let also p
be the semi-parameter, ¢ —sin ¢ the eccentricity, o the semi-axis major, ¢ the
time in which the motion from the first place to the second is completed; finally
let us put

¥ —o=2f, v +0=2F, E—E=29, B4+ E=2@G, acosg=-L_=1s.

cos @

Then, the following equations are easily deduced from the combination of for-
mulas V., VL, article 8: —

[1] bsing=sinf.yr7r,

[2] 6sinG =sinF.\/r7,
peosg= (costvcostv.(l+4e)4sindvsinde. (1—e))y/rr,or

[8] pcosg=(cosf—ecosF)yrr,and in the same way, ‘

[4] pcos@=(cosF—+ecosf)yrr.
From the combination of the equations 3 and 4 arise,

[6] cosf.yrr =(cosg—ecos@)a,

[6] cosF.yrr' = (cos G —ecosyg)a.
From formula III., article 8, we obtain

[7] ¥ —r=2aesingsin G,
¥ +r—=2a—2aecosg cos @ =2asin’g -+ 2 cos fcosgyrr';
whence,

741" —2cos fcos gy rr’
[8] v= 2sin’g °
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Let us put
TV 7
[9] \/ 2605}/ =14 27,
and then will
[10] a=2(l—|—sm’ g)cosf\/w’

sin?g

also
Vo= V(2 (+sin*tg) c°~‘3f\/""’)

sin g

in which the upper or lower sign must be taken, as sin g is positive or negative.

Formula XTI, article 8, furnishes us the equation

I-cé =F —esinB'—E—+esinE=2g—2e¢singcos &

a
—oh L n g
=2g—sin2g -+ 2cosfsing ¥

If now we substitute in this equation instead of g its value from 10, and put, for
the sake of brevity,
kt
11] ————=m
) et ™

we have, after the proper reductions,

[12] +m=(I+ sin® 4 g)} -1+ sin? 3 )} (2£5229),

gind g
in which the upper or lower sign is to be prefixed to m, as sin g is positive or
negative.

When the heliocentric motion is between 180° and 360°, or, more generally,
when cos f is negative, the quantity m determined by formula 11 becomes im-
aginary, and / negative ; in order to avoid which we will adopt in this case, instead
of the equations 9, 11, the following: —

| 9*]\/ Ty —1—21Z,

2cosf

kt
[11%] =M,
ot (— cosf)% (rr’)2 ’
whence for 10, 12, we shall obtain these,—
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—2 (L—sin?l g) cosf\/rr'

sin?g

[124] +M=— (L—sin® § g)* 4 (L —sin? 4 g)} (22829

sin® g ’

[10%] a=

in which the doubtful sign is to be determined in the same manner as before.

89.

We have now two things to accomplish; first, to derive the unknown quan-
tity ¢ as conveniently as possible from the transcendental equation 12, since it
does not admit of a direct solution; second, to deduce the elements themselves

from the angle g thus found. Before we proceed to these, we will obtain -

a certain transformation, by the help of which the computation of the auxiliary
quantity / or L is more expeditiously performed, and also several formulas after-
wards to be developed are reduced to a more elegant form.

By introducing the auxiliary angle w, to be determined by means of. the
formula

4/ .
\/7=tan(45 + w),
we have
V =+ 7=2+ (tan (45° 4 w) — cotan (45° + w))2_2+4tan22 w;
whence are obtained

sin?l f | tan’2 @ _ sin?}f  tan’2w

cos f cosf > T 7 Tcosf  cosf

N—

90.

We will consider, in the first place, the case in which a value of ¢ not very
great, is obtained from the solution of the equation 12, so that
29—sin2g
sin® g
may be developed in a series arranged according to the powers of sin 4 g. The
numerator of this expression, which we shall denote by X, becomes

325in® 3 g — L sin® 4 g — 4 sin” § g — ete.;
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and the denominator,
8sin® 4 g — 12 sin® 4 g 4 3sin’ 4 g - ete.
Whence X obtains the form
3+ &sin® 4 g 84 sin* 3 g 4 ete.
But in order to obtain the law of progression of the coefficients, let us differen-
tiate the equation
Xsintg=2g—sin2y,
whence results
3Xcosysinzg-|—sinsg%§= 2 —2cos2g=4sin’y;

putting, moreover,

sin 4 g = 2,
We have
42 _ }sin
dg 9>

whence is deduced

dX 8—6Xcsg 4—8X(1—22)
dz = sin?g - 2z(l—=a)

and next,
(25—222) 3 =4—(3—62)X.
If, therefore, we put
X=414ez+Bzr+ y2* 4 d2*+ etc)

we obtain the equation |

§ @z 4 (26 —a)zz+ (37 —28) P+ (43 —87) 2 + eto)

=(8—4ea)z4 (8a—4p)zz+ (88 —4y)2®+ (8y —40)a*+ ete.
which should be identical. Hence we get

a=¢t,f=4a, 7y =546,0 =1}y etc,
in which the law of progression is obvious. We have, therefore,
Xm e et S5 S A

This series may be transformed into the following continuous fraction: —
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6
1 —_— -5' A
2
14552
SRR
1— 7.9
1.4
l—g5172
7.10
1—gpe
3.6
1—55
9.12
l— G377
1 — ete.
The law according to which the coefficients
6 2 58 1.4

5 57 7.9° 0.1 o

proceed is obvious; in truth,the #* term of this series is, when # is even,

n—3a.n

2n+41.2n+43°

when # is odd,

n42.n45
2_n—|—1.2n—|-_3'

the further development of this subject would be too foreign from our purpose.
If now we put

X
7 =z—¢
1—{—5. z
o 5.8
1 mx
1
l—mx
1 — ete.
we have
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and
10
f=r—t+ oz

or .

E— sinfg—3 (2g—sin29) 1 —§ Sing%.‘]).
Y5 (29—sin2g)

The numerator of this expression is a quantity of the seventh order, the denomi-

nator of the third order, and &, therefore, of the fourth order, if g is regarded as
a quantity of the first order, and # as of the second order. Hence it is inferred
that this formula is not suited to the exact numerical computation of § when g
does not denote a very considerable angle: then the following formulas are
conveniently used for this purpose, which differ from each other in the changed
order of the numerators in the fractional coefficients, and the first of which is
derived without difficulty from the assumed value of z — &.*

= T5 2%
Bl ==
1—%2
1—5%%52
I—&%o
1— Rtz
1— etc,
or,
— TEIT
R e Y
1—432
1— %z
1—152 _
1—A%z
1— ete.

In the third table annexed to this work are found, for all values of z from
.0 to 0.3, and for every thousandth, corresponding values of & computed to
seven places of decimals. This table shows at first sight the smallness of £ for

* The derivation of the latter supposes some less obvious transformations, to be explained on another
occasion.
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moderate values of g; thus, for example, for £’ — E=10°, or g = 6° when
z—0.00195, is £=0.0000002. It would be superfluous to continue the table fur-
ther, since to the last term #=10.3 corresponds g = 66° 25',or £’ — E'—132° 50"
The third column of the table, which contains values of £ corresponding to nega-
tive values of z, will be explained further on in its proper place.

91.

Equation 12, in which, in the case we are treating, the upper sign must evi-
dently be adopted, obtains by the introduction of the quantity & the form
3.
m=(1+ x)’e‘ e (b2

i—F@—¥)
Putting, therefore,

V+2)=2,
and
mm
U4 s =2 —
the proper reductions being made, we have
—0—Dyy
(18] =37 |
If, accordingly, ~2 may properly be regarded as a known quantity, ¥ can be de-
termined from it by means of a cubic equation, and then we shall have

mm
[16] s=22—1.

Now, although % involves the quantity , still unknown, it will be allowable to
neglect it in the first approximation, and for % to take
sl iB.
&+
since & is undoubtedly a very small quantity in the case we are discussing.
Hence y and 2 will be deduced by means of equations 15, 16; & will be got
from z by table III, and with its aid the corrected value of % will be obtained by
formula 14, with which the same calculation repeated will give corrected values
of y and z: for the most part these will differ so little from the preceding, that &
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taken again from table III, will not differ from the first value ; otherwise it would
be necessary to repeat the calculation anew until it underwent no further change.
When the quantity « shall be found, ¢ will be got by the formula sin® 4 g = 2.

These precepts refer to the first case, in which cosf is positive; in the other
case, where it is negative, we put

\,/(L—:z:):g_K

whence equation 12* properly reduced passes into this,

17 Yy
[15%] H= UI:_B%_—.

Y and H can be determined, accordingly, by this cubic equation, whence agan
will be derived from the equation

[16+] s=L—2L%.
In the first approximation
M
I=3%

will be taken for H; & will be taken from table III. with the value of 2z derived
from H by means of the equations 15% 16%; hence, by formula 14% will be had
the corrected value of H, with which the calculation will be repeated in the same
manner. Finally, the angle g will be determined from # in the same way as in
the first case.

92.

Although the equations 18, 16% can have three real roots in certain cases, it
will, notwithstanding, never be doubtful which should be selected in our problemn.
Since % is evidently a positive quantity, it is readily inferred fromn the theory
of equations, that equation 156 has one positive root with two imaginary or two
negative. Now since

m
Y =VaEs
16
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must necessarily be a positive quantity, it is evident that no uncertainty remains
here. So far as relates to equation 16% we observe, in the first place, that L is
necessarily greater than 1; which is easily proved, if the equation given in article
89 is put under the form .

. cos’L f | tan’2w
L—1+—cosf' —cosf

Moreover, By substituting, in equation 12% Y/ (L —2#) in the place of M, we

have ;
Y4+1=(L—2)X,
and so
4 4.6 468 , .
Y+1>(1—2)X>¢ + 552t 55729% T 55797 T ¢te- >4
and therefore Y>> }. Putting, therefore, ¥ —= % -+ Y7, ¥” will necessarily be a
positive quantity ; hence also equation 15* passes into this,

Y 4 2V Y +(1—H)Y 44 —3 H=0,

- which, it is easily proved from the theory of equations, cannot have several posi-
tive roots. Hence it is concluded.that equation 165% would have only one root
greater than 4,} which, the remaining ones being neglected, it will be necessary
to adopt in our problem.

93.

In order to render the solution of equation 15 the most convenient possible
in cases the most frequent in practice, we append to this work a special table
(Table IL), which gives for values of 4 from 0 to 0.6 the corresponding loga-
rithms computed with great care to seven places of decimals. The argument
h, from 0 to 0.04, proceeds by single ten thousandths, by which means the
second differences vanish, so that simple interpolation suffices in this part
of the table. But since the table, if it were equally extended throughout,
would be very voluminous, from %4 = 0.04 to the end it was necessary to proceed
by single thousandths only ; on which account, it will be necessary in this latter
part to have regard to second differences,if we wish to avoid errors of some units

tIf in fact we suppose that our problem admits of solution.
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in the seventh ficure. The smaller values, however, of % are much the more fre-
quent in practice.

The solution of equation 15, when /4 exceeds the limit of the table, as also
the solution of 15% can be performed without difficulty by the indirect method,
or by other methods sufficiently known. But it will not be foreign to the pur-
pose to remark, that a small value of g cannot coexist with a negative value of
cos f, except in an orbit considerably eccentric, as will readily appear from equa-
tion 20 given below in article 95.7

94.

The treatment of equations 12, 12%, explained in articles 91, 92, 93, rests upon
the supposition that the angle ¢ is not very large, certainly within the limit 66°2¥/,
beyond which we do not extend table III. When this supposition is not correct,
these equations do not require so many artifices; they can be most securely
and conveniently solved by trial wihout a change of form. Securely, since the value
of the expression

29g—sin2yg

sin®g ?
in which it is evident that 2¢ is to be expressed in parts of the radius, can, for
greater values of g,be computed with perfect accuracy by means of the trigonomet-
rical tables, which certainly cannot be done as long as ¢ is a small angle: con-
venicntly, because heliocentric places distant from each other by so great an interval
will scarcely ever be used for the determination of an orbit wholly unknown, while
by means of equation 1 or 3 of article 88, an approximate value of g follows
with almost no labor, from any knowledge whatever of the orbit: lastly, from an
approximate value of g, a corrected value will always be derived with few trials,
satisfying with sufficient precision equation 12 or 12* For the rest, when two
given heliocentric places embrace more than one entire revolution, it is necessary
to remember that just as many revolutions will have been completed by the eccen-
tric anomaly, so that the angles £'— E, v'—w, either both lie between 0 and 360°,

T That equation shows, that if cos f is negative, ¢ must, at least, be greater than 90° — g.
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or both between similar multiples of the whole circumference, and also /" and g
together, either between 0 and 180°, or between similar multiples of the semicir-
cumference. If, finally, the orbit should be wholly unknown, and it should not
appear whether the heavenly body, in passing from the first radius vector to the
second, had described a part only of a revolution or, in addition, one entire revo-
lution, or several, our problem would sometimes admit several different solutions:
however, we do not dwell here on this case, which can rarely occur in practice.

95.

We pass to the second matter, that is, the determination of the elements from
the angle ¢ when found. The major semiaxis is had here immediately by the
formulas 10, 10%, instead of which the following can also be used : —

__2mmecos f\/rr Lkt
[17] o= yysinig T 4yyrrcostfsinig
[17_4: _ —2MMcosf\rv __ kket
] a= Y Ysing " 4T Yrv cos’fsin’g’

The minor semiaxis 6=y ap is got by means of equation 1, which being
combined with the preceding, there results
'sin 2 17\ ?
[18] p= (“%?*’5
i _ (TYr7sin2 f\?
(8] p= (2.

Now the elliptic sector contained between two radii vectores and the elliptic arc

is $ £¢\/ p, also the triangle between the same radii vectores and the chord
377’ sin 2f: wherefore, the ratio of the sector to the triangle is asy: 1 or I: 1.
This remark is of the greatest importance, and elucidates in a beautiful manner
both the equations 12,12%: for it is apparent from this, that in equation 12 the
parts m, (I4-2)%, X (14-2)% and in equation 12* the parts M, (L—2)%, X (ZI—2)%,
are respectively proportional to the area of the sector (between the radii vectores
and the elliptic arc), the area of the triangle (between the radii vectores and the
chord), the area of the segment (between the arc and the chord), because the
first area is evidently equal to the sum or difference of the other two, accord-
ing as ' —o lies between 0 and 180° or between 180° and 360°. In the case
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where »' — » is greater than 360° we must conceive the area of the whole ellipse
added to the area of the sector and the area of the segment just as many times
as the motion comprises entire revolutions.

Moreover, since b =a cos ¢, from the combination of equations 1, 10, 10%,
follow

__ singtanf

[19] COSP =5t inthg)

" __ —singtan f
[19+] COS(P—Q(L—sinaég)’

whence, by substituting for /, Z,their values from article 89, we have

o sin f'sin g
[20] WS 1 —cos fcos g+ 2tan®*2 "

This formula is not adapted to the exact computation of the eccentricity

when the latter is not great: but from it is easily deduced the more suitable
formula

2 _sin’} (f—g)+tan’2w
[21] tan %(P—sinz-zk(f—l—y)—{—tanWw'
to which the following form can likewise be given (by multiplying the numerator
and denominator by cos® 2 w)
21, SN?3(f—g)Fcos’s (f—g)sin®2w
[22] tan® ¢ ¢ = sin?L (f4g) Fcos? L (f—g)sin*2 @’
The angle ¢ can always be determined with all accuracy by either formula, using,

it thought proper, the auxiliary angles of which the tangents are

tan 2 w tan 2 o

sing (f—g)’ sini(f+9)

for the former, or
_sin2w _sin_2 ®
tan} (f—g)’ tang(f+g)
for the latter.
The following formula can be used for the determination of the angle @,
which readily results from the combination of equations 5,7, and the following
one net numbered,

A B (r —7r)sing
[23] tan ¢ = (¥’ +7) cos g — 2 cos fy/ ro”?

from which, by introducing w,is easily derived
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singsin 2 @

cos?2 wsin % (f—g) sin 3 (f+9) +sin?2 wcos g°

The ambiguity here remaining is easily decided by means of equation 7, which

shows, that @ must be taken between 0 and 180° or between 180° and 360°,
as the numerator in these two formulas is positive or negative.

[24] tan G =

By combining equation 3 with these, which flow at once from equation 1L
article 8,

%—%:—smfsin]f’
%4—% '—2——|—Zpﬁcosfcos1f’,

the following will be derived without trouble,

_ (W —7)sinf .
[25] tan'z;,—2cosg\/rr’—(r’—|—7‘)cosf’

from which, the angle w being introduced, results

. sin f'sin 2
[26] tan = cos?2 wsin (f—g) sind (f+g) —sin?2 wcos f*

The uncertainty here is removed in the same manner as before.— As soon as
the angles ' and @ shall have been found, we shall have v = F —f, v = F -,
whence the position of the perihelion will be known; also Z= G—g, £'= G +¢.
Finally the mean motion in the time ¢ will be

ad

the agreement of which expressions will serve to confirm the calculation; also,
the epoch of the mean anomaly, corresponding to the middle time between the
two given times, will be G — e sin G cosg, which can be transferred at pleasure
to any other time. It is somewhat more convenient to compute the mean
anomalies for the two given times by the formulas Z— e sin Z, £’ — ¢ sin ', and
to make use of their difference for a proof of the calculation, by comparing it with

ke

3

a
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96.

The equations in the preceding article possess so much neatness, that there
may seem nothing more to be desired. Nevertheless, we can obtain certain
other formulas, by which the elements of the orbit are determined much more
elegantly and conveniently; but the development of these formulas is a little
more abstruse.

We resume the following equations from article 8, which, for convenience, we
distinguish by new numbers : —

L sinw\/gzsinwv(1+e)
II. cosév\/gz cos 3 Ey/(1—e)
I sin$o/y/Z=sin$ 2y (1+e)
V. cos%z/\/gz cos 3 B'\/(1—e).
We multiply L. by sin 4 (#+ ¢), IL. by cos 3 (¥ + g), whence, the products being

added, we obtain

cos 3 (f+9) \/£=sinéEsin%(F—l—g)\/(l—l—e)—{—cosélf}'cosé(If’—l—g)\/(l—e)

or, because

V(1+4e)=costqptsindg, /(1 —e)=cossgp—sini g,
cos%(f—l—g)\/—r:cosécpcos(é]’—%G‘—{—g)—sinérpcos&(lf’—!—G).

a
In exactly the same way, by multiplying IIL by sm % (#—g¢), IV. by cos } (F—yg),
the products being added, appears

cos%(f—}—g)\/-%zcos dpcos(3F— 3G —g)—sin $ ¢ cos 3 (F+4G).
The subtraction of the preceding from this equation gives
7 r ; .
cos 3 (f+9) <\/;—\/;) —2cost@singsin (F—@),

or, by introducing the auxiliary angle w,
[27] cosd(f+g)tan2w =sin } (F—G)cos$ g sing \4/;;
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By transformations precisely similar, the development of which we leave to the
skilful reader, are found

[28] Mi’.ﬂ:cosi(lﬂ—a) COS%(PSin,QC/:ZTa’

cos2 w
[29] cos$ (f—y) tan 2 w =sin % (F+G) sin %¢Sing\7:_:"
[80] U= — cos 4 (4 @) sin d gsing /2.

When the first members of these four equations are known, % (#— &) and
COS%(pSiIlgd%Z:P

will be determined from 27 and 29 ; and also, from 29 and 30,in the same manner,
3 (F+ @) and
2 9 4/aa
sm&gosmg\/r—r,=Q;
the doubt in the determination of the angles 4 (F— &), # (F+} &), is to be so
decided that P and @ may have the same sign as sin 9. Then % ¢ and

sin g \‘/ 28—R
will be derived from P and . From R can be deduced
2 RR\rr

sintg ?

and also

_sintfyre
=~"FRE

unless we prefer to use the former quantity, which must be
+vV@@+sin®dg)cosf) =+ (—2(L—sin?4g)cosf),

for a proof of the computation chiefly, in which case @ and p are most conven-

iently determined by the formulas

__sinfyr? b .
b= Sng ,a_cow,p_bcosqn.

Several of the equations of articles 88 and 95 can be employed for proving the
calculation, to which we further add the following : —

2tan2w [rr’ . .
— —esin@sing
cs2w Y aa
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2tan2w [pp . 5

T o —=esin Fsinf
21n20 _ 4n ¢ sin G sin f = tan ¢ sin #'sin
s, —tang: ‘ =tan ¢ sing.

Lastly, the mean motion and the epoch of the mean anomaly will be found in the

same manner as in the preceding article.

97.

We will resume the two examples of article 87 for the illustration of the
method explained in the 88th, and subsequent articles: it is hardly necessary to
say that the meaning of the auxiliary angle @ thus far adhered to is not to be
confounded with that with which the same symbol was taken in articles 86, 87.

I. In the first example we have /= 3°47 26".865, also

log —:,- = 9.9914599, log tan (45° 4+ w) = 9.997864975, o = — 8" 27".006.
Hence, by article 89,
logsin?4f . . . 7.0389972 logtan®’2 0 . . 5.3832428
logcos /. . . . 99990488 logcosf . . . 9.9990488
7.0399484 5.3841940
=1log 0.0010963480 = log 0.0000242211
and thus /=0.0011205691, 3 +7=0.8344539. Further we have
logkt . . . . 9.5766974
2logkt . . . . 9.1533948
C.3logrs . . . 9.0205181
C.log8cos’f . . 9.0097636
logmm . . . T7.2736765
log(542) . . . 99214023
7.3522742

The approximate value, therefore, of 4 is 0.00225047, to which in our table II
corresponds log 7y = 0.0021633. We have, accordingly,
log "™ ="7.2715132, or """ = 0.001868587,
Yy Yy
17
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whence, by formula 16, z=0.0007480179 : wherefore, since § is, by table NI,
wholly insensible, the values found for 4, 7, z, do not need correction. Now, the
determination of the elements is as follows: —

logz . . . . . 6.8739120

logsindg . . . 84369560, 4 g=1°34" 2".0286, 4 (f-+ g)=38°27"45"4611,

3 (f—g)=19'41"4039. Wherefore, by the formulas 27, 28, 29, 30, is had
logtan20 . . . 7.6916214#2 C.logcos2w . . . 0.0000052
logcost (f+g) . 999920656 logsin4 (f+g¢) . . 8.7810188
log cos # (f—g) . 9.9999929 logsin 4(f—g) . . 77579709

log Psin § (F—G) 7.6908279n  log Qsin4 (F4-@) . 7.6916143n
log Pcos}(F—@) 87810240 log Qcost (F+ @) . T7.7579761

1(F—@)= —4°38'41".54 log P =1log Rcostg 8.7824527
1 (F4+6)= 319 21 38 .05 logQ =log Rsintg 7.8778355
F= 314 42 56 .51 Hence $ ¢ = 7° 6" 0".935
v= 310 55 29 .64 = 14 12 1.87
i = 318 30 23 .37 logR . . . . . . 87857960
G = 324 (019 .59 For proving the calculation.
E= 320 52 15 .63 tlog2cosf. . . . 01500394
7= 521 82865 jlog(14a)=logZ 86357506
: 8.7857960
tlogr’ . . . . 03264939  logsing . . . . . 0.3897262
logsinf/ . . . . 88202909 log 206265 . . . . b5.3144251
C.logsing . . . 12621765 loge in seconds . . 4.7041513
logb . . . . . 04089613 logsinE . . . . . 9.8000767x
logcosgp . . . . 9.9865224 logsin B . . . . 9.7344714n
logp . . . . . 03954837 logesmE . . . . 450422802

loge . . . . . 04224389 logesin ' . . . . 443862277
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logk . . . 3.5500066 esin ' ——31932".14 = — 8°52'12".14
2loga . . . 0.6336584 esin ' = — 27465 .08 =— 7 37 35 .08
2.9163482 Hence the mean anomaly for the

log¢ . . . 13411160 first place = 329°44'27".67
4.2574625 for the second = 334 45 58 .73

Difference = 5 131.06

Therefore, the mean daily motion is 824”.7989. The mean motion in the time
¢ is 18091”.07 = 6° 1'31".07.
II. In the other example we have

f=381°2738"32, o =—21'50".565, = 0.08635659, log m m = 9.83530651,

M;, or the approximate value of 4= 0.2451454 ;

to this, in table IL, corresponds log y y = 0.1722663, whence is deduced
| %‘ = 0.15163477, z = 0.06527818,

hence from table IIL is taken § = 0.0002581. Which value being used, the cor-
rected values become

= 02450779, logy y = 01722803, "2 = 0.15164787, = 0.06520078,

£ =0.0002532.

If the calculation should be repeated with this value of &, differing, by a single
unit only, in the seventh place, from the first; %, logyy, and 2 would not suffer
sensible change, wherefore the value of # already found is the true one, and we
may proceed from it at once to the determination of the elements. We shall
not dwell upon this here, as it differs in nothing from the preceding example.

III. It will not be out of place, to elucidate by an example the other
case also in which cosf is negative. Let v’ —»=224° 0" 0", or f=112° (' 0",
log »r = 0.1394892, log »' = 0.3978794, ¢=206.80919 days. Here we find
o =4 4°14"43"78, L = 1.8942298, log M M = 0.6724333, the first approximate
value of log /T = 0.6467603, whence by the solution of equation 15* is obtained
Y'=1591432, and afterwards z = 0.087037, to which, in table III., corresponds
£ =0.0000801. Hence are derived the corrected values log 27 = 0.6467931,
Y'=1.5915107, = 0.0372195, £ = 0.0000809. The calculation being repeated
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with this value of &, we have z = 0.0372213, which value requires no further cor-
rection, since £ is not thereby changed. Afterwards is found 4.¢ = 11° .7.25".40,
and hence in the same manner as in example L

1(F—G)= 3°33'63".69  logP=IlogRcosig 9.9700507

Y FP+6)= 8§96 6.38 log Q—=logRsinkgp . 9.8580552
F= 11 59 69 .97 o= 37°41'34".27
v= —100 0 0.03 Q= 75 23 8.54
v = 4123 59 59 .97 logR . . . . . . 00717096
= 4 56212.79 For proving the calculation.
b= —172288.00 o0 My _9cosf . . 00717097

E= 427 7 3.59

The angle ¢ in such eccentric orbits is computed a little more exactly by
formula 19% which gives in our example ¢ = 75°23" 8”.57; likewise the eccen-
tricity e is determined with greater precision by the formula

e=1—2sin® (45°— 1% ¢),
than by e =sin ¢ ; according to the former, ¢ = 0.96764630.

By formula 1, moreover, is found log $ = 0.65676611, whence log p—=10.0695967,
log @ = 1.2557255, and the logarithm of the perihelion distance

log ;_i; =loga(l—e)=1logd tan (45°—} 9) = 9.7656496.

It is usual to give the time of passage through the perihelion in place of the
epoch of the mean anomaly in orbits approaching so nearly the form of the
'parabola; the intervals between this time and the times corresponding to the
two given places can be determined from the known elements by the method
given in article 41, of which intervals the difference or sum (according as the
perihelion lies without or between the two given places), since it must agree with
the time 7, will serve to prove the computation. The numbers of this third ex-
ample were based upon the assumed elements in the example of articles 38, 43,
as indeed that very example had furnished our first place: the trifling differences
of the elements obtained here owe their origin to the limited accuracy of the
logarithmic and trigonometrical tables.
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98.

The solution of our problem for the ellipse in the preceding article, might be
rendered applicable also to the parabola and hyperbola, by considering the parab-
ola as an ellipse, in which ¢ and 4 would be infinite quantities, ¢ — 90°, finally
E,E',g,and G =0; and in a like manner, the hyperbola as an ellipse, in which a
would be negative, and b, £, ', g, (I, ¢, imaginary : we prefer, however, not to
employ these hypotheses, and to treat the problem for each of the conic sections
separately. In this way a remarkable analogy will readily show itself between
all three kinds.

Retaining in the PARABOLA the symbols p, 9%/, F, f, 7,7/, ¢ with the same sig-
nification with which they had been taken above, we have from the theory of the
parabolic motion: — -

[1] \/F=rcos4(F—f)
[2] \/ & =cost (F+7)

2y = ton'§ (F4f)—tan § (F—7) 4 tan $ (F+f) — 4 tan® § (F—7)
(4

= (tan # (F4-7) —tan 3 (F—f)) (1+tan 3 (F+/) tan § (F—f) +
3 (tan 3 (F+f) — tan # (F—1))?)
— 2 sin f\/ 7+’ (2 cos.f/ r7’ + 4sin? fr )

\

p p 8pp /?
whence
___2sin feos f.rr’ 4sin‘f(rr')’3
[3] ko= VP + 3},%

Further, by the multiplication of the equations 1, 2, is derived
[4] \—/%—, = cos I+ cos f

and by the addition of the squares,
[5] B) g —~+ cos Fcos f.

2rr!
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Hence, cos #' being eliminated,
_ 2 ro/ sin? f
[6] p_r—{—r’—2cosf\/r7"
If, accordingly, we adopt here also the equations 9, 9%, article 88, the first for
cos f positive, the second for cos f negative, we shall have,

__sin?fy/ro’/
(7] p= 2lcosf

. _ sin’f \/ ro
[7¥] p== —2Lcosf’
which values being substituted in equation 3, preserving the symbols m, M, with
the meaning established by the equations 11, 11%, article 88, there result

(8] m=rf 2%,

(8] M=—IF 4I%
These equations agree with 12, 12%, article 88, if we there put g=10. Hence it is
concluded that, if two heliocentric places which are satisfied by the parabola, are
treated as if the orbit were elliptic, it must follow directly from the application
of the rules of article 19, that #=0; and vice versa, it is readily seen that, if
by these rules we have z= 0, the orbit must come out a parabola instead of
an ellipse, since by equations 1, 16, 17, 19, 20 we should have & = o0, a = oo,
¢ =90. After this, the determination of the elements is easily effected. Instead

of p, either equation 7 of the present article, or equation 18 of article 95 might
be employed : but for # we have from equations 1, 2, of this article

tan § /= $Z+$ cotan # f =sin 2 w cotan 3 £,

if the auxiliary angle is taken with the same meaning as in article 89.
We further observe just here, that if in equation 3 we substitute instead of
p its value from 6, we obtain the well-known equation

kt=3%(r—4rFcosf.yrr)(r4++r—2cosf.yrs )12"\/2.

T Whence it is at once evident that y and ¥ express the same ratios in the parabola as in the
ellipse. See article 95.
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99.

We retain, in the HYPERBOLA also, the symbols p, v, ¢/, £, F, r, ¥/, ¢ with the
same meaning, but instead of the major semiaxis @, which is here negative, we
shall write —e; we shall put the eccentricity e = c—ul;_;ﬁin the same manner as
above, article 21, ete. The auxiliary quantity there represented by u, we shall
put for the first place _.— for the second = Ce, whence it is readily inferred
that ¢ is always greater than '1, but that it differs less from one, other things
being equal, in proportion as the two given places are less distant from each
other. Of the equations developed in article 21, we transfer here the sixth and

seventh slightly changed in form,

R e

[2] sindo=1(y/ L—y/5)/ CED

[8] cos#d' =14 v0c+\/5.)\/<e—1)a

[4] sin#v'=1 (VOe—y/32)y/ “E2%
From these result directly the followmg P —

[6] snF=%e 0__)\/“—-1

[6] sinf=ta(c—3)\/ "

7] cosF=(e<c+—)—(0+l) e

LRI} et — (“’(0+ 0)— )2,/#

Again, by equation X. article 21, we have
(0]
=te(3+5)—1,

=te(Cet5)—1,

=
o
v
o
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and hence,

[9] ZC=de(C—g)(c—3),

[10] 2= ge(04 1) (e43)—2
This equation 10 combined with 8 gives
Vet r— (c43)cosf.yrr

3(c—2)

Putting, therefore, in the same manner as in the ellipse

[11] e=

y ;
.w=1+2z, or=1—21L,

2 cos f

according as cosf is positive or negative, we have

8(—1 (Vc—\/jf)z)cosf.\/rr',

[12] o=
(e—3»
—8(L+2(Ye— ;)2)cosf.\/r7/

The computation of the quantity / or L is here made with the help of the auxil-
iary angle o in the same way as in the ellipse. Finally, we have from equation
XI. article 22, (using the hyperbolic logarithms),

kt 1 o o
a—g_=%e(00—m—-—c-+'5-)-—log 06’+10g-c—

=1¢(0+3) (e—;) —2loge,

or, C being eliminated by means of equation 8,

ke (c—%)cosf.\/rr' .
T = +3(ce—=)—2loge.

In this equation we substitute for ¢ its value from 12, 12%#; we then introduce
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the symbol 7 or M, with the same meaning that formulas 11, 11%, article 88 give
it ; and finally, for the sake of brevity, we write

1
— s —4 log' (] o

=2Z;
t(e—:)

4 (ye—y/lp=s, -

from which result the equations
[18] m=(l— )} + (1 —2)! Z,
(18] M=—(L 42+ (Z+2)} 2,

which involve only one unknown quantity, 2, since Z is evidently a function of 2
expressed by the following formula,
7—1+2:)Y(Etza)—log (YA +2)+V2)
2 (z—{—zz)%

100.

In solving the equation 13 or 13% we will first consider, by itself, that case in
which the value of z is not great, so that Z can be expressed by a series proceed-
ing according to the powers of z and converging rapidly. Now we have

1422V (et =gt 434,
T
log (V(1+42)+ve) =2 —3s'+g2F ..,
and so the numerator of Z is %zgﬂ—éz% 600 ]

and the denominator, 2 2 +3 ... s

whence,
Z=4—382....

In order to discover the law of progression, we differentiate the equation
2(+22)! Z=(1422)y(2+22) —log (V(1 +2)+V2),
whence results, all the reductions being properly made,
dZ
2(zt22) G 32 (14 22)V (e +22) =4y(c +22),
18
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or

(224222)S2 =4—(3462) 2,

whence, in the same manner as in article 90, is deduced
4.6 4.6.8 4.6.8.10 4.6.8.10.12
Z=t—53°t557°° 335797 T3570.07  °f¢
It is evident, therefore, that Z depends upon — z in axactly the same manner
as X does upon z above in the ellipse ; wherefore, if we put

- 1
Z=iTReTo

¢ also will be determined in the same manner by —z as §, above, by #, so that
we have

or,

5 22

B EE T PRy
T+ 8-
147752
14 ete.
In this way the values of { are computed for z to single thousandths, from 2= 0
up to 2= 0.3, which values are given in the third column of table IIL

101.
By introducing the quantity { and putting
! . m M
V@—a) =2 ory(Z+2)=7%,
also
(15] ' =hor

o MM
(157] ——=%,
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gquations 13, 13* assume the form,

(y—Dyy __
6] =4

Y+1HT¥Y
(169 S =a,
and so, are wholly identical with those at which we arrived in the ellipse (15, 15%,

article 91). Hence, therefore, so far as # or H can be considered as known, y or
Y can be deduced, and afterwards we shall have :

[17] 2= —%T:/n,
o MM
[17] e —YY_—L

From these we gather, that all the operations directed above for the ellipse serve
equally for the hyperbola, up to the period when y or ¥ shall have been deduced
from %4 or H; but after that, the quantity

MM
rr’

22 _JorL—
Y

which, in the ellipse, should become positive, and in the parabola, 0, must in the
hyperbola become negative: the nature of the conic section will be defined by
this criterion. Our table will give { from z thus found, hence will arise the cor-
rected value of % or H, with which the calculation is to be repeated until all
parts exactly agree.

After the true value of z is found, ¢ might be derived from it by means of the
formula —

e=1+422+42y(2+422),

but it is preferable, for subsequent uses, to introduce also the auxiliary angle #,
to be determined by the equation

tan2n =2y (24 22);
hence we have

e=tan2n - /(14 tan’2 n) = tan (45° +-n).-
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102.

Since y must necessarily be positive, as well in the hyperbola as in the ellipse,
the solution of equation 16 is, here also, free from ambiguity:1 but with respect
to equation 16% we must adopt a method of reasoning somewhat different from
that employed in the case of the ellipse. It is easily demonstrated, from the the-
ory of equations, that, for a positive value of HI, this equation (if indeed it has
any positive real root) has, with one negative, two positive roots, which will either
both be equal, that is, equal to

3y 5—1=0.20601,
or one will be greater, and the other less, than this limit. We demonstrate in
the following manner, that, in our problem (assuming that z is not a large
quantity, at least not greater than 0.3, that we may not abandon the .use of the
third table) the greater root is always, of necessity, to be taken. If in equation
13%, in place of M, is substituted ¥ y/ (L 2),we have

Y4+ 1=(L+2)Z>(1+2)Z, or
4 4.6 . 4.6.8
Y>3 —g5?tg572% 55797 T ¢t
whence it is readily inferred that, for such small values of 2z as we here suppose,
Y must always be > 0.20601. In fact, we find, on making the calculation, that

z must be equal to 0.79858 in order that (1-+}2)Z may become equal to this
limit: but we are far from wishing to extend our method to such great values of z.

103.

When 2 acquires a greater value, exceeding the limits of table IIL, the equa-
tions 13, 18* are always safely and conveniently solved by trial in their un-
changed form; and,in fact, for reasons similar to those which we have explained

T Tt will hardly be necessary to remark, that our table II. can be used, in the hyperbola, as well ag
in the ellipse, for the solution of this equation, as long as % does not exceed its limit.

1 The quantity A evidently cannot become negative, unless > ; but to such a value of £ would
correspond a value of z greater than 2.684, thus, far exceeding the limits of this method.



Secr. 3.] PLACES IN ORBIT. 141

in article 94 for the ellipse. In such a case, it is admissible to suppose the
elements of the orbit, roughly at least, known: and then an approximate value
of #n is immediately had by the formula

sinfyre

ay/ (ee—1)

which readily follows from equation 6, article 99. 2 also will be had from = by

tan 2 n —

the formula

1—cos2n sin’n
2cos2n ~ cos2n’

5=

and from the approximate value of z, that value will be deduced with a few
trials which exactly satisfies the equation 13,13% These equations can also be
exhibited in this form,

tan 2 o
— (] Sin'n 3 ( sin?n % Ic?)s 57_7: — i o n)l
m—( cos2n) + —CO=272 tan®2 n

sin?n sin?n
_—( +cos2n) +2(L+c0a2n)

and thus, z being neglected, the true value of # can be deduced.

tan 2 ]
% {x?:_hw-logtan<45 +7z)}

tan®2 n

104.

It remains to determine the elements themselves from 2, u, or ¢. Putting
@/ (¢e—1)={, we shall have from equation 6, article 99,

[18] ﬁ:sinf\/rr’

tan2n °

combining this formula with 12, 12% article 99, we derive,

0] ool =tany =505

. t 2n
[19%] tany =— %,

whence the eccentricity is conveniently and accurately computed; o will result
from B and y/ (¢e— 1) by division, and p by multiplication, so that we have,
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__2(—2)cosf.\Jrr __2mmcosf.\rr kkte
¢ = tan?2n — yytan®’2n 4 yy rr cos’ftan?2n

__ —2(L+42)cosf.\rr' __ —2MMcosf.\r __ kktt

- tan?2n —  TYTYtan’2n — 4 Y Yr+ cos’ftan?2 n’
___sinfitanf.re' _ yysinf.tanf.yre __ (yresin2 f)2
P="3%0— 2mm -\ ki )

__ —sinf.tanf.\/r’ _ — Y X¥sinf.tanf.y/re'__ (Yrr'sin2f)\2

- 2 (L+2) - 2MM \ ke /)

The third and sixth expressions for p, which are wholly identical with the form-
ulas 18, 18% article 95, show that what is there said concerning the meaning
of the quantities y, X, holds good also for the hyperbola.

From the combination of the equations 6, 9, article 99, is derived
(¥ —r) \/eer_;l —esinf.(0— %),

by introducing therefore y and w, and by putting ¢'= tan (45° 4 V), we have

2sinytan2 o
sin fcos2 e °

[20] tan2 N =
C being hence found, the values of the quantity expressed by # in article 21, will
be had for both places; after that, we have by equation III, article 21,
C—c
(Cteotangy

t * r__ Ce—1
MY = e Dty

or, by introducing for (¢, the angles IV, n,

sin (N —n)
[21] t&n * 2) — COS(N_—l—W

s> sin(NV4-n)
[22] tan v = s —myan Ty’

tan $ v =

Hence will be determined the true anomalies ,?, the difference of which com-
pared with 2f will serve at once for proving the calculation.

Finally, the interval of time from the perihelion to the time corresponding to
the first place, is readily determined by formula XL, article 22, to be

a§/2 e cos (N n) sin (N —n) tan (45° 4 V)
E\ cos 2 Ncos2n hyp'logtan(45°:|:n5)’
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and, in the same manner, the interval of time from the perihelion to the time cor-
responding to the second place,

% (2.6 cos (N — n) sin (I - ;
% = (COS 2;)02]:2(7‘ ) _ hyp.log tan (45° 4 V) tan (45° 4 72)).

If, therefore, the first time is put = 7’— # ¢, and, therefore, the second =74 4 ¢,

we have

}otan2 V N
[28] T=} (22T — log tan (45° 4 V),

whence the time of perihelion passage will be known; finally,

3
[24] ¢ =27 (C292" —log tan (45° ),

‘which equation, if it is thought proper, can be applied to the final proof of the
calculation.

105.

To illustrate these precepts, we will make an example from the two places
in articles 23, 24, 25, 46, computed for the same hyperbolic elements. Let,
accordingly,

v —ov=48°12" 0", or f =24° 6’ 0", logr = 0.0333585, log " = 0.2008541,
¢ = 5149788 days.

Hence is found
o = 2°45'28"47, 1 = 0.05796039,

amTZ or the approximate value of % = 0.0644371; hence, by table IL,

log 7 y = 0.0560848, ";J” = 0.05047454, z = 0.00748585,
to which in table III. corresponds { = 0.0000032. Hence the corrected value of
% is 0.06443691,

iog yy = 0.0560846, ]J — 0.05047456, z = 0.00748583,

which values require no further correction, because ¢ is not changed by them.
The computation of the elements is as follows: —
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logz . . . 7.8'742399 log tan 1 . 9.6506199
Tog (142) . 0.0032389 . log }tan27 . 8.9387394
logy/ (2 +22) . . 89387394 C.log (I—¢) 1.2969275
log 2 0.3010300 log tan vy . . 9.8862868
log tan 2z 9.2397694 = 37°3459.17
oOn — 9°51’11”.816 (it should be 37° 35’ 0”)

n= 4 5535.908 _
logsin f . 9.6110118 C.log % sin f. 0.6900182
logy/rr . 0.1171063 log tan 2 @ 8.9848318
C.log tan 2 % 0.7602306 C.log cos 2 0.0020156
log tany . 9.8862868 logtan2 N . . 94621341
log & 0.6020619 28N = 16°946".253
log p 0.8746355 = S 4 L2
(they should be 0.6020600 and 0.3746356) N—n= 3 917 219
N4n= 13 0 29 .0356
log sin (N —n) 8.7406274 log sin (IV -+ n) 9.3523527
C.log cos (N +4n) . 0.0112902 C.log cos (V —m) . 0.0006587
log cot % v 0.4681829 log cot %y 0.4681829
log tan 3 » 9.2201005 log tan # o/ . 9.8211943
o= 9°25'29".97 3 = 33°31'29".93
v= 18 50 69 .94 V= 67 259 .86
(it should be 18° 517 0) (it should be 67° 8’ 0”)
loge 0.1010184 loge . 0.1010184
logtan 2V . 9.4621341 logtan 27 9.2397694
C.log cos2n 0.0064539 C.logcos 2 N 0.0175142
9.5696064 9.3583020

number =— 0.3'7119863

hyp log tan (46°+V) = 0.28591251

number — 0.22819284
hyp log tan (456° 4-2)=0.17282621

Difference —

0.08528612

Difference = 0.05536663
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log . « « « & . 89308783 log . . . . . . 87432480
2loge . . . . . 09030928 Lloga < & + & » 0.9030928
Clogk. . . . . 17644186 Clogk. . . . . 17644186
los?” . . . . . 15983897 log2. . . . . . 03010300
== 39.66338 logz . . . . . . 17117894

= 51.49788

Therefore, the perihelion passage is 13.91444 days distant from the time

corresponding to the first place, and 656.41232 days from the time corresponding
to the second place. Iinally, we must attribute to the limited accuracy of the
tables, the small differences of the elements here obtained, from those, according
to which, the given places had been computed.

106.

In a treatise upon the most remarkable relations pertaining to the motion
of heavenly bodies in conic sections, we cannot pass over in silence the elegant
expression of the time by means of the major semiaxis, the sum r—#, and the
chord joining the two places. This formula appears to have been first discovered,
for the parabola, by the illustrious Eurer, (Miscell. Berolin, T. VIL. p. 20,) who
nevertheless subsequently neglected it, and did not extend it to the ellipse and
hyperbola: they are mistaken, therefore, who attribute the formula to the illus-
trious Lampert, although the merit cannot be denied this geometer, of having
independently obtained this expression when buried in oblivion, and of having
extended it to the remaining conic sections. Although this subject is treated by
several geometers, still the careful reader will acknowledge that the following
explanation is not superfluous. We begin with the elliptic motion.

We observe, in the first place, that the angle 2f described about the sun
(article 88, from which we take also the other symbols) may be assumed to be
less than 360°; for it is evident that if this angle is increased by 360°, the time
1s increased by one revolution, or

ot
a7 300% _ ¥  365.25 days.

k
19
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Now, if we denote the chord by ¢, we shall evidently have
00 = (" cosv' —rcosv)? 4 (' sin v’ —rsinv)?,
and, therefore, by equations VHL, IX, article 8,
00 =aa(cos E'— cos E)* 4+ aacos’ ¢ (sin B’ —sin E)?
—4aasin’g (sin? @+ cos’p co? F) =4 aasin’g(1—eecos? ).
We introduce the auxiliary angle % such, that cosZ=-¢ecos ¢ ; at the same time,
that all ambiguity may be removed, we suppose % to be taken between 0°and
180°, whence sin 4 will be a positive quantity. Therefore, as g lies between the
same limits (for if 2 g should amount to 360° or more, the motion would attain to,
or would surpass an entire revolution about the sun), it readily follows from the
preceding equation that ¢ =2 asin g sin 4, if the chord is considered a positive
quantity. Since, moreover, we have
r+4r=2a(1—ecosgcos@) =2a(l—cosgcosh),
it is evident that, if we put A—g =2, A} g —=¢, we have,
1] r4+7—90=2a(1—cosd)=4asin®}0,
[2] »+7+0=2a(l—cose) =4asin®{:.
Finally, we have
lct:a%(Zg—Zesingcos G):ag(Zg—Z sin g cos %),
or

[8] kt=a"(: —sine— (§ —sind)).

Therefore, the angles 0 and & can be determined by equations 1, 2, from
+ =47/, 0, and @ ; wherefore, the time ¢ will be determined, from the same equa-
tions, by equation 3. If it is preferred, this formula can be expressed thus:

8 _ n__ . _ _
kt=a2(arccos2a (r+) 9—s1narccos2a (r;;rl) ¢

2a
Za—@+r) o 2@—(T+T’)+@).
2a 20

—arc cos ~} sin arc cos

But an uncertainty remains in the determination of the angles d,¢, by their
cosines, which must be examined more closely. It appears at once, that ¢
must lie between — 180° and 4 180°, and & between 0°and 360°: but thus
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both angles seem to admit of a double, and the resulting time, of a quadruple,
determination. We have, however, from equation 9, article 88,
cosf.{rv¥=ua(cosg—cosk)=2asin$dsin}e:

now, sin # ¢ is of necessity a positive quantity, whence we conclude, that cosf
and sin $ 0 are necessarily affected by the same sign; and, for this reason, that
J is to be taken between 0°and 180°, or between — 180° and 0° according as cox f
happens to be positive or negative, that is, according as the heliocentric motion
happens to be less or more than 180°. Moreover, it is evident that ¢ must neces-
sarily be 0° for 2f=180°. In this manner ¢ is completely determined. DBut
the determination of the angle & continues, of necessity, -doubtful, so that two
values are obtained for the time, of which it is impossible to determine the true
one, unless it is known from some other source. Finally, the reason of this
phenomenon is readily seen: for it is known that, through two given points, it
is possible to describe Zwe different ellipses, both of which can have their focus
in the same given point and, at the same time, the same major semiaxis;* but
the motion from the first place to the second in these ellipses is manifestly per-
formed in unequal times.

107.

Denoting by x any arc whatever between — 180° and - 180°, and by s the
sine of the arc % x, it is known that,
, 1.8.5

§x=s+§.§ss+%.l—2§s5+7.ms7—{— etc.

Moreover, we have
5 1.1 Uodlg
. — 3 J 13 T _
tsing =sy(l—ss)=s—#s 515 —3 s' — ete.
and thus,

r—siny =42+ 3. 38544 08 4+3. 0000 L ete

* A circle being described from the first place, as a centre, with the radius 2 @ —», and another,
from the second place, with the radius 2 @ — 7/, it is manifest that the other focus of the ellipse lies in the
intersection of these circles. Wherefore, since, generally speaking, two intersections are given, two dif-
ferent ellipses will be produced.
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We substitute-in this series for s, successively
Q\/’i%:_@, and # \/i%i@’
and we multiply the results by a%; and thus obtain respectively, the series,
b+ —of o — o f o g+ — o)+
reter g (r+ 1" —0) 4 ete.
HorHr o g o Fadr 7 o)+
Tobsr @ (r 7'+ 0)f + ete
the sums of which we will denote by 7, U. Now it is easily seen, since
2sin§0=o/"E2=8,

the upper or lower sign having effect according as 2 f is less or more than 180°,
that
& (0 —sind)=+T,

the sign being similarly determined. In the same manner, if for ¢ is taken the
smaller value, inferior to 180°, we have

(e —sine) = U;
but the other value, which is the complement of the former to 360°, being taken,
we evidently have

ot (e—sine) = a* 860°— U

Hence, therefore, are obtained two values for the time 7,

UFr o ddsee  Ttr
A , an 2 7"

108.

If the parabola 1s regarded as an ellipse, of which the major axis is infinitely
great, the expression for the time, found in the preceding article, passes into

s+ F e +r—o)):
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but since this derivation of the formula might perhaps seem open to some doubts,
we will give another not depending upon the ellipse.
Putting, for the sake of brevity,

tandv—=20,tan 3/ =¢,we have r—= 34 p (1 4808), 7" =4 p(1+46'¢),

4
, sinv’=—2L7.
1160

!

7] , 1 .
COS v — 6’ CoOsSv — sSIn v —

i 1=05 i
136 1166’ 1166
Hence follow

7 cosv' —rcosv=134p(00—08¢),7sine/ —rsiny =p (8 —0),
and thus

00="1pp (¢ —0) (4 + (¢ +0)").

sin f . e . .
EE 1s a positive quantity: putting,

V(L4404 6)) =7, we have = p (& —0)n.

Now it is readily seen that ' — 6 =

therefore,

Moreover,

r4r7=3p2+06400)=p @+ 1(¢—0)):

wherefore, we have

R (4 (¢ —a)

’_+;:_Q = (n— 4 (6 —0)*

From the former equation 1s readily deduced,

r+rte_ _

/S =1 (¢ —0)

as m and ' — 6 are positive quantities; but since # (6’ — 8) is smaller or greater
than 7, according as

np—3 (0 —0p =1+ 80 =S

1 L,/
COS 5 ¥ COS § ¥

is positive or negative, we must, evidently, conclude from the latter equation that
rtr—e (e —
1/ = —# (¢ —9),

in which the upper or lower sign is to be adopted, according as the angle de-
scribed about the sun is less than 180°, or more than 180°.
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From the equation, which in article 98 follows the second equatio.n, we have,
moreover,

H=w—o(ator+i (8 —0)) = (& —8) (97 + 7 (¢ —0)’)
=i(n+10@—0) —t(1—2@—0),

whence readily follows,
b= (0 +r+ O F e+ —0)),
the upper or lower sign taking effect, as 2f is less or more than 180°.

109.

. If, in the hyperbola, we take the symbols e, C, ¢, with the same meaning as in
article 99, we have, from equations VIII,, IX,, article 21,

7 cos v —rcosv——&(c—— (0—-_)
/smv—rsmv_&(c—— (C’—l— )a\/(ee—l);

and consequently,
1 1
e=ta(c—3)y/ (ce(045)—4).
Let us suppose that 7 is a quantity determined by the equation
1 1),

since this is evidently satisfied by fwo values, the reciprocals of each other, we
may adopt the one which is greater than 1. In this manner

o= 1o (=)
Moreover,

rr=ta(o(e+D) (O+ 5 —)=te(Cc+ D+ —1),
and thus,

r 47 —}-Q—a(\/cy—\/-l—)2

o= el
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Putting, therefore,
we necessarily have

but in order to decide the question whether \/ ;i —\/ ? is equal to 4 27 or — 2,

it is necessary to inquire whether y is greater or less than ¢: but it follows readily
from equation 8, article 99, that the former case occurs when 2 f is less than
180°, and the latter, when 2/ is more than 180°. Lastly, we have, from the same

article,
=t +;)(—7)—21oge= (7 —) —#({—2) —loge +-log?

=2my/(1+mm)F 20y (1 4 nn) — 2log ( (1 4 mm) + m)
- + 2log (y (1 4-1m) 1),
the lower signs belonging to the case of 2/ >180° Now, log (/ (14 mm)-+m)
is easily developed into the following series: —

1.3 1.8.5
m—%.?}m3—}—%.2—:4m5—1}~.2—|5m7—|— etc.

This is readily obtained from
dm
d log (V (1 4 mm)—4m) = VaTmm
There follows, therefore, the formula
2my/ (1 4+mm)—2log (Y (1 +mm)+m) =4 (G mP— 1.t mP- 1}4.;—'-477@7— etc.),
and, likewise, another precisely similar, if m is changed to n. Hence, finally, if we
put

| o

T=3(r+7—) —Fo g r +7 — - row o 7 —0)f
—sfora(r 7 —0)' 4 et

T=4 (47 40—y (7 + 0 b rion. o (7 -0
—n%n%a(r + 7/ 4-0) + ete.
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we obtain

Et=UZFT;
which expressions entirely coincide with those given in article 107, if @ is there
changed into — . )

Finally, these series, as well for the ellipse as the hyperbola, are eminently
suited to practical use, when a or @ possesses a very great value, that is, where the
conic section resembles very nearly the parabola. In such a case, the methods
previously discussed (articles 85-106) might be employed for the solution of the
problem: but as, in our judgment, they do not furnish the brevity of the solution
given above, we do not dwell upon the further explanation of this method.



FOURTH SECTION.

RELATIONS BETWEEN SEVERAL PLACES IN SPACE.

110.

THE relations to be considered in this section are independent of the nature of
the orbit, and will rest upon the single assumption, that all points of the orbit lie
in the same plane with the sun. But we have thought proper to touch here upon
some of the most simple only, and to reserve others more complicated and special
for another book.

The position of the plane of the orbit is fully determined by two places of
the heavenly body in space, provided these places do not lie in the same straight
line with the sun. Wherefore, since the place of a point in space can be assigned
in two ways, especially, two problems present themselves for solution.

We will, in the first place, suppose the two places to be given by means of
heliocentric longitudes and latitudes, to be denoted respectively by 4,1, 8, : the
distances from the sun will not enter into the calculation. Then if the longitude
of the ascending node is denoted by &, the inclination of the orbit to the ecliptic
by ¢, we shall have,

tan f# = tan ¢ sin (A — Q),
tan #'=tanssin (' — Q).
The determination of the unknown quantities &, tan#, in this place, is referred
to the problem examined in article 78, II. We have, therefore, according to the
first solution,
tan ¢sin (A — Q) =tan 3,

__tanf'—tanBcos (' —1)
- sin (X' —2) 2

20 (153)

tanicos(A—Q)
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likewise, according to the third solution, we find & by equation

’ sin tany (X' —2
tan (41440 —Q)= (ﬁ"'!'if)(ﬁv_‘eﬁ() ),

and, somewhat more conveniently, if the angles 8, ', are given immediately, and
not by the logarithms of their tangents: but, for determining ¢, recourse raust be
had to one of the formulas '

tan 8 tan g’
sin(A— Q)" sin(X—Q)°
Finally, the uncertainty in the determination of the angle

A—Q,or $L+3V—g,

by its tangent will be decided so that tan? may become positive or negative,
according as the motion projected on the ecliptic is direct or retrograde: this
uncertainty, therefore, can be removed only in the case where it may be ap-
pafent in what direction the heavenly body has moved in passing from the first
to the second place; if this should be unknown, it would certainly be impossi-
ble to distinguish the ascending from the descending node.

After the angles 8,7, are found, the arguments of the latitude u, ', will be

tan s —=

obtained by the formulas,
(A —8) pony=2E—2)

tanu—
cos 7. cos 1

H

which are to be taken in the first or second semicircle, according as the corre-
sponding latitudes are north or south. To these formulas we add the following,
one or the other of which can, at pleasure, be used for proving the calculation : —

cosu=cos f§ cos (A — &), cosu' = cos ' cos (' — ),

. sin 8
sin u—-—, sin u ——E,
sine’ sine

Sm(’t/—l—u) s1n(l+1'_2gg)cosﬁcoSﬁ', SIH(u' ) __sin(¥ —l)cospcosﬁ’

cos ¢ cost



@
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111.

Let us suppose, in the second place, the two places to be given by means of
their distances from three planes, cutting each other at right angles in the sun;
let us denote these distances, for the first place, by 2, 7, 2, for the second, by
2,4, 2, and let us suppose the third plane to be the ecliptic itself, also the posi-
tive poles of the first and second planes to be situated in 4V, and 90°+ V. We
shall thus have by article 53, the two radii vectores being denoted by r, 7/,

x=rcosucos(N—Q) -+ rsinusin(VN— Q) cosi,
y=rsinucos (NV—Q)cosi—rcosusin (N—Q),
2=/ sinusing
2/ =1’ cos cos (N — Q)+ r"sin o sin (N — Q) cos?,
¥ =7"sinu cos (V— Q) cost— ' cos v’ sin (N —Q),
Z =7 sinu sins.
Hence it follows that
zy —y2 =rr sin (¢ —u) sin (VN — Q) sin ¢,
vd — 22/ = ri’ sin (W — u) cos (N — Q) sin 7,
zy —ya’ =rr sin (W —u) cost.
From the combination of the first formula with the second will be obtained V¥ —@
and 77 sin (v’ — ) sin ¢, hence and from the third formula, ¢ and »7 sin (¢ — w)
will be obtained.

Since the place to which the covrdinates #/, i/, 2/, correspond, is supposed pos-
terior in time, »’ must be greater than »: if, moreover, it is known whether the
angle between the first and second place described about the sun is less or greater
than two right angles, »7'sin (¢'—u)sin¢ and 7# sin (v'—u) must be positive
quantities in the first case, negative in the second: then, accordingly, NV — &
is determined without doubt, and at the same time it is settled by the sign of
the quantity zy' — y2’. whethier the motion is direct or retrograde. On the other
hand, if the direction of the motion is known, it will be possible to decide from
the sign of the quantity =y’ —y 2/, whether »’ — u is to be taken less or greater
than 180°. DBut if the direction of the motion, and the nature of the angle
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described about the sun are altogether unknown, it is evident that we cannot dis-
tinguish between the ascending and descending node. '

It is readily perceived that, just as cos¢ is the cosine of the inclination of
the plane of the orbit to the third plane, so sin (V— Q) sin¢, cos (N — Q) sin ¢,
are the cosines of the inclinations of the plane of the orbit to the first and second
planes respectively; also that »7’sin (u'— u) expresses the double area of the tri-
angle contained between the two radii vectores, and zy'—y#/, 2’ —z2', 2 y' —y
the double area of the projections of this triangle upon each of the planes.

Lastly, it is evident, that any other plane can be the third plane, provided,
only, that all the dimensions defined by their relations to the ecliptic, are referred
to the third plane, whatever it may be.

112.

Let 2", ", 2", be the codrdinates of any third place, and «” its argument of
the latitude, " its radius vector. We will denote the quantities ' »" sin (v" —u),
r 7" sin (w" —u), r+/ sin (' —u), which are the double areas of the triangles be-
tween the second and third radii vectores, the first and third, the first and second,
respectively, by =, #, n’. Accordingly, we shall have for 2", y”, #/, expressions
similar to those which we have given in the preceding article for z,y, 2, and
2, y, 2'; whence, with the assistance of lemma I., article 78, are easily derived the
following equations : —

0 =nz —u's 4 n"?,

0=ny—n'y—|-n” ,’

0 =nz—n2 4 n"2".
Let now the geocentric longitudes of the celestial body corresponding to these
three places be «, ¢, ¢”; the geocentric latitudes, 8, ', #”; the distances from the
earth projected on the ecliptic, d, ¢, d”; the corresponding heliocentric longitudes
of the earth, Z, I/, L"; the latitudes, B, B’, B”, which we do not put equal to
0, in order to take account of the parallax, and, if thought proper, to choose
any other plane, instead of the ecliptic ; lastly, let D, I/, D", be the distances of
the earth from the sun projected upon the ecliptic. If, then, z, 7, 2, are expressed
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by means of L, B, D, e, f8, J, and the cotrdinates relating to the second and third
places in a similar manner, the preceding equations will assume the following
form : —
[1] 0=n(dcose—+ DcosL)—u' (0" cose’+ I cos L)
+ 2" (0" cose” + D" cos L"),
[2] 0=n(dsine+ Dsin L)— ' (¢"sin &' 4 D'sin L")
w’ (0" sine” 4+ D" sin L"),
[8] 0=mn(dtanB - D tan B) —# (" tan p'+ D tan B')
—+ 2" (0” tan 8” 4+ D” tan B”).
If «, 8, D, L, B, and the analogous quantities for the two remaining places, are
here regarded as known, and the equations are divided by #/, or by #”, five un-
known quantities remain, of which, therefore, it is possible to eliminate two, or to
determine, in terms of any two, the remaining three. In this manner these three
equations pave the way to several most important conclusions, of which we will
proceed to develop those that are especially important.

113.

That we may not be too much oppressed with the length of the formulas, we
will use the following abbreviations. In the first place we denote the quantity

tan 8 sin (¢” — ') 4 tan ' sin (¢ — ") + tan " sin (¢/ — )
by (0.1.2): if, in this expression, the longitude and latitude corresponding to
any one of the three heliocentric places of the earth are substituted for the longi-
tude and latitude corresponding to any geocentric place, we change the number
answering to the latter in the symbol (0.1.2.) for the Roman numeral which

corresponds to the former. Thus, for example, the symbol (0. 1. I.) expresses the
quantity

tan 8 sin (L' —ea’) 4 tan ' sin (¢ — L) + tan B’ sin (¢/ — at),
also the symbol (0. O. 2), the following,
tan §8 sin (¢” — L) 4 tan B sin (¢ —a”) -} tan ”sin (L — ).

We change the symbol in the same way, if in the first expression any fwo helio-
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centric longitudes and latitudes of the earth whatever, are substituted for two
geocentric. If two longitudes and latitudes entering into the sume expression are
only interchanged with each other, the corresponding numbers should also be
interchanged ; but the value is not changed from this cause, but it only becomes
~ negative from being p(;sitive, or positive from negative. Thus, for example, we
have

(0.1.2)=—(0.2.1) =(1.2.0) =—(1.0.2) = (2.0.1) =—(2. 1. 0).
All the quantities, therefore, originating in this way are reduced to the nineteen
following : —
(0.1.2)
(0.1.0), (0.1.1.), (0. 1.1L.), (0.0.2), (0.1.2), (0.IL 2), (0.1.2), (I1.1.2), (II. 1. 2),
(0.0.L), (0.0.1L), (0.LIL), (1.0.1), (1.0.IL), (1L.LIL), (2.0.1), (2.0.1L),
(2.1.1L),
to which is to be added the twentieth (O. L IL).

Moreover, it is easily shown, that each of these expressions multiplied by the
product of the three cosines of the latitudes entering into them, becomes equal
to the sextuple volume of a pyramid, the vertex of which is in the sun, and the
base of which is the triangle formed between the three points of the celestial
sphere which correspond to the places entering into that expression, the radius
of the-sphere being put equal to unity. When, therefore, these three places lie in
the same great circle, the value of the expression should become equal to 0; and
as this always occurs in three heliocentric places of the earth, when we do not
take account of the parallaxes and the latitudes arising from the perturbations of
the earth, that is, when we suppose the earth to be exactly in the plane of the
ecliptic, so we shall always have, on this assumption, (O. I. IL.) = 0, which is, in
fact, an identical equation if the ecliptic is taken for the third plane. And fur-
ther, when B, B, B”, each, =0, all those expressions, except the first, become
much more simple ; every one from the second to the tenth will be made up of

two parts, but from the eleventh to the twentieth they will consist of only one
term. '
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114.

By multiplying equation [1] by sin «” tan B” —sin L” tan ", equation [2]
by cos L” tan 8”7 — cos &” tan B”, equation [3] by sin (L” —«”), and adding the
products, we get,

[4] 0==((0.2.1L)d 4 (0.2.11.) D) —« ((1.2.11.) &' 4 (1. 2. IL.) D)) ;
and in the same manner, or more conveniently by an interchange of the places,
simply

[6] 0=#((0.1.1)0 -+ (0.1.1) D) 4+ " ((2.1.1.)¢” 4 (I1. 1.1.) D)

[6] 0=# ((1.0.0.)0"+ (1.0. 0.) D) — =" ((2.0.0.)0” + (II. 0. 0.) D").

If, therefore, the ratio of the quantities », #/, is given, with the aid of equation 4,
we can determine " from d, or ¢ from ¢"; and so likewise of the equations 6, 6.
From the combination of the equations 4, 5, 6, arises the following,

(7] (0.2.II.)6+(0.2.'II.)D><(l.0.0.)b"—}-(I.0.0.)D’ L)Y+ ALLL) D

O.T.I)3F (O L.I) D ™ (1.2 1L)yF (L2 10D 7 (2.0.0)8" 4+ (1L 0.0O) —

by means of which, from two distances of a heavenly body from the earth, the
third can be determined. DBut it can be shown that this equation, 7, beconies
identical, and therefore unfit for the determination of one distance from the other
two, when
DP=B=DB"=0,
and
tan B tan #” sin (L — a) sin (L” — L') 4 tan p” tan # sin (I’ —a') sin (L — L")
—+ tan 8 tan 8’ sin (L” — ") sin (L' — L) = 0.
The following formula, obtained ecasily from equations 1, 2, 3, is free from this
inconvenience : —
[8] (0.1.2)d00" 4 (0.1.2) D&0” + (0.1.2) D'§d” 4 (0.1.1L.) D6 ¢’
+- (0.I.IL) D'D"§ 4 (0.1.11.) D D¢’ 4 (0.1.2) DD'¢" + (0. 1L.IL.) DD'D" = 0.
By multiplying equation 1 by sina’ tan 8 —sin«” tan #’, equation 2 by
cos &” tan ' — cos & tan 87, equation 3 by sin (¢” —«’), and adding the products,
we get
[9] 0=2((0.1.2)d 4 (0.1.2) D) —«' (1.1.2) D'+ " (1L. 1. 2) D"
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and in the same manner,

[10] 0=7(0.0.2.)D —« ((0.1.2)d" 4 (0.12) D) 4" (0.11.2) D",
[11] 0==(0.1.0) D —x (0.1. L) D' 42" ((0.1.2) 6”4 (0. 1.1IL) D).

" By means of these equations the distances d,d’,0”, can be derived from the
ratio between the quantities n,#’,%”, when it is known. But this conclusion only
holds in general, and suffers an exception when (0.1.2)=0. For it can be shown,
that in this case nothing follows from the equations 8, 9, 10, except a necessary
relation between the quantities n,#’,7#”, and indeed the same relation from each
of the three. Analogous restrictions concerning the equations 4, 5, 6, will readily
suggest themselves to the reader.

Finally, all the results here developed, are of no utility when the plane of the
orbit coincides with the ecliptic. For if @, 8',8”, B, B B” are all equal to 0,
equation 3 is identical, and also, therefore, all those which follow.



SECOND BOOK.

INVESTIGATION OF THE ORBITS OF HEAVENLY BODIES FROM GEOCENTRIC
OBSERVATIONS.

FIRST SECTION.
DETERMINATION OF AN ORBIT FROM THREE COMPLETE OBSERVATIONS.

115.

SEVEN elements are required for the complete determination of the motion
of a heavenly body in its orbit, the number of which, however, may be dimin-
ished by one, if the mass of the heavenly body is either known or neglected ;
neglecting the mass can scarcely be avoided in the determination of an orbit
wholly unknown, where all the quaﬁtities of the order of the perturbations must
be omitted, until the masses on which they depend become otherwise known.
Wherefore, in the present inquiry, the mass of the body being neglected, we re-
duce the number of the elements to six, and, therefore, it is evident, that as many
quantities depending on the elements, but independent of each other, are re-
quired for the determination of the unknown orbit. These quantities are neces-
sarily the places of the heavenly body observed from the earth; since each one
of which furnishes two data, that is, the longitude and latitude, or the right ascen-
sion and declination, it will certainly be the most simple to adopt three geocentric
places which will, in gene'ral, be sufficient for determining the six unknown ele-
ments. This problem is to be regarded as the most important in this work, and,

for this reason, will be treated with the greatest care in this section.
21 (161)
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But in the special case, in which the plane of the orbit coincides with the
ecliptic, and thus both the heliocentric and geocentric latitudes, from their nature,
vanish, the three vanishing geocentric latitudes cannot any longer be considered
as three data independent of each other: then, therefore, this problem would
remain indeterminate, and the three geocentric places might be satisfied by an
infinite number of orbits. Accordingly, in such a case, four geocentric longitudes
must, necessarily, be given, in order that the four remaining unknown elements
(the inclination of the orbit and the longitude of the node being omitted)-may be
determined. But although, from an indiscernible principle, it is not to be ex-
pected that such a case would ever actually present itself in nature, nevertheless,
it is easily imagined that the problem, which, in an orbit exactly coinciding with
the plane of the ecliptic, is absolutely indeterminate, must, on account of the
limited accuracy of the observations, remain nearly indeterminate in orbits very
little inclined to the ecliptic, where the very slightest errors of the observations
are sufficient altogether to confound the determination of the unknown quan-
tities. Wherefore, in order to examine this case, it will be necessary to select
six data : for which purpose we will show in section second, how to determine an
unknown orbit from four observations, of which two are complete, but the other
two incomplete, the latitudes or declinations being deficient.

Finally, as all our observations, on account of the imperfection of the instru-
ments and of the senses, are only approximations to the truth, an orbit based
only on the six absolutely necessary data may be still liable to considerable
errors. In order to diminish these as much as possible, and thus to reach the
greatest precision attainable, no other method will be given except to accumulate
the greatest number of the most perfect observations, and to adjust the elements,
not so as to satisfy this or that set of observations with absolute exactness, but
so as to agree with all in the best possible manner. For which purpose, we will
show in the third section how, according to the principles of the calculus of
probabilities, such an agreement may be obtained, as will be, if in no one place
perfect, yet in all the places the strictest possible. '

The determination of orbits in this manner, therefore, so far as the heavenly
bodies move in them according to the laws of KEpLER, will be carried to the
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highest degree of perfection that is desired. Then it will be proper to undertake
the final correction, in which the perturbations that the other planets cause in the
motion, will be taken account of: we will indicate briefly in the fourth section.
how these may be taken account of, so far at least, as it shall appear consistent

witli our plan.

116.

Before the determination of any orbit from geocentric observations, if the
greatest accuracy is desired, certain reductions must be applied to the latter on
account of nutation, precession, parallax, and aberration: these small quantities
may be neglected in the rougher calculation.

Observations of planets and comets are commonly given in apparent (that
is, roferred to the apparent position of the equator) right ascensions and declina-
tions. Now as this position 1s variable on account of nutation and precession,
and, therefore, different for different observations, it will be expedient, first of all,
to introduce some fixed plane instead of the variable plane, for which purpose,
either the equator in its mean position for some epoch, or the ecliptic might he
selected : 1t is customary for thie most part to use the latter plane, but the former
is recommended by some peculiar advantages which are not to be despised.

When, therefore, the plane of the equator is selected, the observations are in
the first place to be freed from nutation, and after that, the precession being
applied, they are to be reduced to some arbitrary epoch: this operation agrees
entirely with that by which, from the observed place of a fixed star, its mean
place is derived for a given epoch, and consequently does not need explanation
here. But if it is decided to adopt the plane of the ecliptic, there are two courses
which may be pursued: namely, either the longitudes and latitudes, by means of .
the mean obliquity, can be deduced from the right ascensions and declinations
corrected for nutation and precession, whence the longitudes referred to the mean
equinox will be obtained; or, the latitudes and longitudes will be computed more
conveniently from the apparent right ascensions and declinations, using the appar-
ent obliquity, and will afterwards be freed from nutation and precession.

The places of the earth, corresponding to each of the observations, are com-
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puted from the solar tables, but they are evidently to be referred to the same
plane, to which the observations of the heavenly body are referred. For which
reason the nutation will be neglected in the computation of the longitude of the
sun ; but afterwards this longitude, the precession being applied, will be reduced
to the fixed epoch, and increased by 180 degrees; the opposite sign will be given
to the latitude of the sun, if, indeed, it seems worth while to take account of it :
thus will be obtained the heliocentric place of the earfh, which, if the equator is
chosen for the fundamental plane, may be changed into right ascension and decli-

nation by making use of the mean obliquity. '

117.

The position of the earth, computed in this manner from the tables, is the
place of the centre of the earth, but the observed place of the heavenly body
is referred to a point on the surface of the earth: there are three.methods of
remedying this discrepancy. Either the observation can be reduced to the centre
of the earth, that is,freed from parallax; or the heliocentric place of the earth
may be reduced to the place of observation, which is done by applying the
parallax properly to the place of the sun computed from the tables; or, finally,
both positions can be transferred to some third point, which is most conveniently
taken in the intersection of the visual ray with the plane of the ecliptic; the
observation itself then remains unchanged, and we have explained, in article 72,
the reduction of the place of the earth to this point. The first method cannot be
applied, except the distance of the heavenly body from the earth be approxi-
mately, at least, known: but then it is very convenient, especially when the
observation has been made in the meridian, in which case the declination only is
affected by parallax. Moreover, it will be better to apply this reduction imme-
diately to the observed place, before the transformations of the preceding article
are undertaken. But if the distance from the earth is still wholly unknown,
recourse must be had to the second or third method, and the former will be em-
ployed when the equator is taken for the fundamental plane, but the third will
have the preference when all the positions are referred to the ecliptic.
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118.

If the distance of a heavenly body from the earth answering to any observa-
tion is already approximately known, it may be freed from the effect of aberra-
tion in several ways, depending on the different methods given in article 71.
Let ¢ be the_true time of observation ; 8 the interval of time in which light passes
from the heavenly body to the earth, which results from multiplying 493 into the
distance ; [ the observed place, / the same place reduced to the time # 4 4 by
means of the diurnal geocentric motion; {” the place / freed from that part of the
aberration which is common to the planets and fixed stars ; L the true place of
the earth corresponding to the time ¢ (that is, the tabular place increased by
20".25) ; lastly, L the true place of the earth corresponding to the time #—é.
These things being premised, we shall have

L. 7 the true place of the heavenly body seen from ‘L at the time ¢ — 4.

I1. 7 the true place of the heavenly body seen from Z at the time ¢.

ITI. {” the true place of the heavenly body seen from L at the time ¢ — 6.
By method L, therefore, the observed place is preserved unchanged, but the fic-
titious time #—4@ is substituted for the true, the place of the earth being com-
puted for the former ; method IL, applies the change to the observation alone, but
it requires, together with the distance, the diurnal motion; in method IIL, the
observation undergoes a correction, not depending on the distance ; the fiotitious
time ¢ — @ is substituted for the true, but the place of the earth corresponding to
the true time is retained. Of these methods, the first is much the most conven-
ient, whenever the distance is known well enough to enable us to compute the
reduction of the time with sufficient accuracy. But if the distance is wholly un-
known, neither of these methods can be immediately applied : in the first, to be
sure, the geocentric place of the heavenly body is known, but the time and the
position of the earth are wanting, both depending on the unknown distance; in
the second, on the other hand, the latter are given, and the former is wanting;
finally, in the third, the geocentric place of the heavenly body and the position
of the earth are given, but the time to be used with these is wanting.
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What, therefore, is to be done with our problem, if, in such a case, a solution
exact with respect to aberration is required? The simplest course undoubtedly
is, to dt\etermine the orbit neglecting at first the aberration, the effect of which can
never be important; the distances will thence be obtained with at least such pre-
cision that the observations can be freed from aberration by some one of the
methods just explained, and the determination of the orbit can be repeated with
greater accuracy. Now, in this case the third method will be far preferable to the
others: for, in the first method all the computations depending on the position of
the earth must be commenced again from the very beginning; in the second (which
in fact is never applicable, unless the number of observations is sufficient to obtain
from them the diurnal motion), it is necessary to begin anew all the computations
depending upon the geocentric place of the heavenly body; in the third, on the
contrary, (if the first calculation had been already based on geocentric places
freed from the aberration of the fixed stars) all the preliminary computations
depending upon the position of the earth and the geocentric place of the heavenly
body, can be retained unchanged in the new computation. But in this way it
will even be possible to include the aberration directly in the first calculation, if
the method used for the determination of the orbit has been so arranged, that
the values of the distances are obtained before it shall have been necessary to
introduce into the computation the corrected times. Then the double compu-
tation on account of the aberration will not be necessary, as will appear more
clearly in the further treatment of our problem.

119.

It would not be difficult, from the connection between the data and unknown
quantities of our problem, to reduce its statement to six equations, or even to less,
since one or another of the unknown quantities might, conveniently enough, be
eliminated: but since this connection is most complicated, these equations would
become very intractable; such a separation of the unknown quantities as finally

to produce an equation containing only one, can, generally speaking, be regarded
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as impossible,* and, therefore, still less will it be possible to obtain a complete
solution of the problem by direct processes alone.

But our problem may at least be reduced, and that too in various ways, to the
solution of #wo equations X =0, Y= 0, in which only two unknown quantities
7, y, remain. It is by no means necessary that z, z, should be two of the ele-
ments: they may be quantities connected with the elements in any manner
whatever, if, only, the elements can be conveniently deduced from them when
found. Moreover, it is evidently not requisite that X, ¥, be expressed in explicit
functions of #, y : it is sufficient if they are connected with them by a system of
equations in such manner that we can proceed from given values of z, y, to the

corresponding values of X, Y.

120.

Since, therefore, the nature of the problem does not allow of a further reduc-
tion than to two equations, embracing indiscriminately two unknown quantities,
the principal point will consist, first, in the suitable selection of these unknown
quantities and arrangement of the equations, so that both X and ¥ may depend
in the simplest manner upon #, 7, and that the elements themselves may follow
most conveniently from the values of the former when known: and then, it will
be a subject for careful consideration, how values of the unknown quantities satis-
fying the equations may be obtained by processes not too laborious. If this should
be practicable only by blind trials, as it were, very great and indéed almost intol-
erable labor would be required, such as astronomers who have determined the
orbits of comets by what is called the indirect method have, nevertheless, often
undertaken: at any rate, the labor in such a case is very greatly lessened, if, in
the first trials, rougher calculations suffice until approximate values of the un-
known quantities are found. But as soon as an approximate determination is
made, the solution of the problem can be completed by safe and easy methods,
which, before.we proceed further, it will be well to explain in this place. 3

* When the observations are so near to each other, that the intervals of the times may be treated as
infinitely small quantities, a separation of this kind is obtained, and the whole problem is reduced to the

solution of an algebraic equation of the seventh or eighth degree.
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The equations X =10, ¥=0 will be exactly satisfied if for z and y their
true values are .taken ; if, on the contrary, values different from the true ones are
substituted for # and z, then X and ¥ will acquire values differing from 0. The
more nearly z and y approach their true values, the smaller should be the result-
ing values of X and Y, and when their differences from the true values are very
small, it will be admissible to assume that the variations in the values of X and ¥
are nearly proportional to the variation of z, if y is not changed, or to the varia-
tion of y,if z is not changed. Accordingly, if the true values of z and y are
denoted by &, %, the. values of X and ¥ corresponding to the assumption that
z=§-+4 % y=mn- u, will be expressed in the form

X=ad4fBu Y=yr4dp,
in which the coefficients ¢, 8, 7, 0 can be regarded as constant, as long as » and p
remain very small. Hence we conclude that, if for three systems of values of
z, y, differing but little from the true values, corresponding values of X, ¥ have
been determined, it will be possible to obtain from them correct values of #,  so
far, at least, as the above assumption is admissible. Let us suppose that,

forz—=a, y=20 we have X—=4A4, Y =05,
x:a’,y:b’ . X=A4 Y=B',
z =a"; y=1u" X=4"Y=5,
and we shall have :
A=a(a—8) 4B (E—n), B=7r(@—E) +I(—n),
L=a(d—8) LB —u) B=7(d—E)+0F—n),
A'=c(d'—8&) 4+ (" —n), B'=y(a'— &)+ (" —n).
From these we obtain, by eliminating e, §, 7, d,
‘ E— a(A’'B"—A"B') 4o/ (A’"B— AB") 4d’ (AB’—A’B),
AB"— A’"B+A'B—ADB"+4+ AB — A'B

_ b(AB'"— A"B) 4 ¥ (A"B— AB")+¥'(AB — A'B)
N=""WB_—ABY AB—ABFAB—4B °

or, in a form more convenient for computation,

o (@' —a) (4"B— A B") + (¢"—a) (AB'— A'B)
i AP — 4B+ AB—AB+AB—4B °’

. U—=H) 'B—4B) L ¥ —b) (4B —4B)
NW=b+ gy AL AB—AB 4B —4B
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It is evidently admissible, also, to interchange in these formulas the quantities
a, b, A, B, with o/, ¥, A, B', or with a”, 8", A", B".

The common denominator of all these expressions, which may be put under
the form (4'— A) (B”"— B) — (A" — A) (B’ — B), becomes

(20 —B7) (¢ —a) (6" —08) — (a" —a) (¢’ —10)):
whence it'appea.rs that a, &/, a”, b, V', & must be so taken as not to make
| d'—a_d—a

o' —b7 0 —b’ ,
otherwise, this method would not be applicable, but would furnish, for the values
of £ and 1), fractions of which the numerators and denominators would vanish at
the same time. It is evident also that, if it should happen that ad— 8y =0, the
same defect wholly destroys the use of the method, in whatever way @, &/, a”,
b, ¥, ", may be taken. In such a case it would be necessary to assume for the
values of X the form

al+Bu ekl 4 Lhp+Oup,

and a similar one for the values of ¥, which being done, analysis would supply
methods, analogous to the preceding, of obtaining from values of X, ¥, computed
for four systems of values of z, y, true values of the latter. But the computation
in this way would be very troublesome, and, moreover, it can be shown that, in
such a case, the determination of the orbit does not, from the nature of the ques-
tion, admit of the requisite precision: as this disadvantage can only be avoided
by the introduction of new and more suitable observations, we do not here dwell
upon the subject.

121.

When, therefore, the approximate values of the unknown' quantities are ob-
tained, the true values can be derived from them, in the manner just now ex-
plained, with all the accuracy that is needed. - First, that is, the values of X, ¥,
corresponding to the approximate values (o, 8) will be computed : if they do not
vanish for these, the calculation will be repeated with two other values (<, &)
differing but little from the former, and afterwards with a third system (o”, ")

22
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unless X, ¥, have vanished for the second. Then, the true values will be de-
duced by means of the formulas of the preceding article, so far as the assumption
on which these formulas are based, does not differ sensibly from the truth. In
order that we may be better able to judge of which, the calculation of the values
of X, ¥, will be repeated with those corrected values; if this calculation shows
that the equations X=0, Y =0, are, still, not satisfied, at least much smaller
values of X, Y, will result therefrom, than from the three former hypotheses, and
therefore, the elements of the orbit resulting from them, will be much more exact
than those which correspond to the first hypotheses. If we are not satisfied
with these, it will be best, omitting that hypothesis which produced the greatest
differences, to combine the other two with a fourth, and thus, by the process of
the preceding article, to obtain a fifth system of the values of z, 7; in the same
manner, if it shall appear worth while, we may proceed to a sixth hypothesis,
and so on, until the equations X =0, ¥'= 0, shall be satisfied as exactly as the
logarithmic and trigonometrical tables permit. But it will very rarely be neces-
sary to proceed beyond the fourth system, unless the first hypotheses were very
far from the truth.

122

As the values of the unknown quantities to be assumed in the second and third
hypotheses are, to a certain extent, arbitrary, provided, only, they do not differ
too much from the first hypothesis; and, moreover, as care is to be taken that the
ratio (¢” —a): (8" — &) does not tend to an equality with (a’—a): (0'—0),it is
customary to pute'=a,"=0. A double advantage is derived from this; for, not
only do the formulas for £, 7, become a little more simple, but, also, a part of the
first calculation will remain the same in the second hypothesis, and another part
in the third.

Nevertheless, there is a case in which other reasons suggest a departure from
this custom: for let us suppose X to have the form X’'—z, and ¥ the form
Y’ —y, and the functions X’, Y”, to become such, by the nature of the problem,
that they are very little affected by small errors in the values of #, 7, or that

dX'\ (dX)\ (4T\ (4T’
dz/’ \dy/’ \dzx dy
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may be very small quantities, and it is evident that the differences between the

‘values of those functions corresponding to the system z=2§&, y =, and those
which result from # —4, y =20, can be referred to a somewhat higher order
than the differences § —a, 7 —&; but the former values are X' =¢, ¥' =1, and
the latter X' =a + A, Y'=10-} B, whence it follows, that « + 4, 64 B, are
much more exact values of z, y, than a, . If the second hypothesis is based
upon these, the equations X=0, Y'=0, are very frequently so exactly satisfied,
that it is not necessary to proceed any further; but if not so, the third hypoth-
esis will be formed in the same manner from the second, by making

W'=d +A=a+A+4+ 4, V' =¢+B=b4B4 D,
whence finally, if it is still not found sufficiently accurate, the fourth will be ob-
tained according to the precept of article 120.

123.

We have supposed in what goes before, that the approximate values of the
unknown quantities z,y, are already had in some way. Where, indeed, the
approximate dimensions of the whole orbit are known (deduced perhaps from
other observations by means of previous calculations, and now to be corrected by
new ones), that condition can be satisfied without difficulty, whatever meaning we
may assign to the unknown quantities. On the other hand, it is by no means a
matter of indifference, in the determination of an orbit still wholly unknown,
(which is by far the most difficult problem,) what unknown quantities we may
use; but they should be judiciously selected in such a way, that the approximate
values may be derived from the nature of the problem itself. Which can be done
most satisfactorily, when the three observations applied to the investigation of
an orbit do not embrace too great a heliocentric motion of the heavenly body.
Observations of this kind, therefore, are always to be used for the first determina-
tion, which may be corrected afterwards, at pleasure, by means of observations
more remote from each other. For it is readily perceived that the nearer the ob-
servations employed are to each other, the more is the calculation affected by their
unavoidable errors. Hence it is inferred, that the observations for the first de-
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termination are not to be picked out at random, but care is to be taken, first, that
they be not too near each other, but Zken, also, that they be not too distant from
each other; for in the first case, the calculation of elements satisfying the obser-
vations would certainly be most expeditiously performed, but the elements them-
selves would be entitled to little confidence, and might be so erroneous that they
could not even be used as an approximation: in the other case, we should aban-
don the artifices which are to be made use of for an approximate determination
of the unknown quantities, nor could we thence obtain any other determination,
except one of the rudest kind, or wholly insufficient, without many more hypoth-
eses, or the most tedious trials. But how to form a correct judgment concerning
these limits of the method is better learned by frequent practice than by rules:
the examples to be given below will show, that elements possessing great accu-
racy can be derived from observations of Juno, separated from each other only 22
days, and embracing a heliocentric motion of 7°85’; and again, that our method
can also be applied, with the most perfect success, to observations of Ceres, which
are 260 days apart, and include a heliocentric motion of 62°68’; and can give,
with the use of four hypotheses or, rather, successive approximations, elements
agreeing excellently well with the observations.

124.

We proceed now to the enumeration of the most suitable methods based upon
the preceding principles, the chief parts of which have, indeed, already been ex-
plained in the first book, and require here only to be adapted to our purpose.

The most simple method appears to be, to take for z, 7, the distances of the
heavenly body from the earth in the two observations, or rather the logarithms
of these distances,or the logarithms of the distances projected upon the ecliptic
or equator. Hence, by article 64, V., will be derived the heliocentric places and
the distances from the sun pertaining to those places ; hence, again, by article 110,
the position of the plane of the orbit and the heliocentric longitudes in it; and
from these, the radii vectores, and the corresponding times, according to the prob-
lem treated at length in articles 85-105, all the remaining elements, by which,
it is evident, these observations will be exactly represented, whatever values may
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have been assigned to #, y. If, accordingly, the geocentric place for the time of
the third observation is computed by means of these elements, its agreement or
disagreement with the observed place will determine whether the assumed values
are the true ones, or whether they differ from them ; whence, as a double com-
parison will be obtained, one difference (in longitude or right ascension) can be
taken for X, and the other (in latitude or declination) for ¥. Unless, therefore,
the values of these differences come out at once = 0, the true values of z, 7, may
be got by the method given in 120 and the following articles. For the rest, it is
in itself arbitrary from which of the three observations we set out: still, it is bet-
ter, in general, to choose the first and last, the special case of which we shall speak
directly, being excepted.

This method is preferable to most of those to be explained hereafter, on this
account, that it adnits of the most general application. The case must be ex-
cepted, in which the two extreme observations embrace a heliocentric motion of
180, or 360, or 540, etc., degrees; for then the position of the plane of the orbit
cannot be determined, (article 110). Tt will be equally inconvenient to apply the
method, when the heliocentric motion between the two extreme observations
differs very little from 180° or 360°, etc., because an accurate determination of
the position of the orbit cannot be obtained in this case, or rather, because the
slightest changes in the assumed values of the unknown quantities would citise
such great variations in the position of the orbit, and, therefore, in the values of
X, ¥, that the variations of the latter could no longer be regarded as propor-
tional to those of the former. But the proper remedy is at hand; which is, that
we should not, in such an event, start from the two extreme observations, but from
the first and middle, or from the middle and last, and, therefore, should take for
X, 7, the differences between calculation and observation in the third or first
place. But, if both the second place should be distant from the first, and the
third from the second nearly 180 degrees, the disadvantage could not be removed
in this way ; but it is better not to make use, in the computation of the elements,
of observations of this sort, from which, by the nature of the case, it is wholly
impossible to obtain an accurate determination of the position of the orbit.

Moreover, this method derives value from the fact, that by it the amount of
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the variations which the elements experience, if the middle place changes while
the extreme places remain fixed, can be estimated without difficulty: in this way,
therefore, some judgment may be formed as to the degree of precision to be
attributed to the elements found.

125.

We shall derive the second from the preceding method by applying a slight
change. Starting from the distances in two observations, we shall determine all
the elements in the same manner as before; we shall not, however, compute
from these the geocentric place for the third observation, but will only proceed
as far as the heliocentric place in the orbit; on the other hand we will obtain the
same heliocentric place, by means of the problem treated in articles 74, 75, from
the observed geocentric place and the position of the plane of the orbit; these
two determinations, different from each other (unless, perchance, the true values
of z,y, should be the assumed ones), will furnish us X and Y, the difference be-
tween the two values of the longitude in orbit being taken for X, and the differ-
ence between the two values of the radius vector, or rather its logarithm, for Y.
This method is subject to the same cautions we have touched upon in the pre-
ceding article: another is to be added, namely, that the heliocentric place in orbit
cannot be deduced from the geocentric place, when the place of the earth happens
to be in either of the nodes of the orbit; when that is the case, accordingly, this
method cannot be applied. But it will also be proper to avoid the use of this
method in the case where the place of the earth is very near either of the nodes,
since the assumption that, to small variations of #,y, correspond proportional
variations of X, ¥, would be too much in error, for a reason similar to that which
we have mentioned in the preceding article. But here, also, may be a remedy
sought in the interchange of the mean place with one of the extremes, to which
may correspond a place of the earth more remote from the nodes, except, per-
chance, the earth, in all three of the observations, should be in the vicinity of the
nodes.
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126.

The precediné; method prepares the way directly for the #ird. In the same
manner as before, by means of the distances of the heavenly body from the earth
in the extreme observations, the corresponding longitudes in orbit together with
the radii vectores may be determined. With the position of the plane of the
orbit, which this calculation will have furnished,the longitude in orbit and the
radius vector will. be got from the middle observation. The remaining elements
may be computed from these three heliocentric places, by the problem treated in
articles 82, 83, which process will be independent of the times of the observa-
tions. In this way, three mean anomalies and the diurnal motion will be known,
whence may be computed the intervals of the times between the first and second,
and between the second and third observations. The differences between these
and the true intervals will be taken for X and Y.

This method is less advantageous when the heliocentric motion includes a
small arc only. For in such a case this determination of the orbit (as we have
already shown in article 82) depends on quantities of the third order, and does
not, therefore, admit of sufficient exactness. The slightest changes in the values
of z,y, might cause very great changes in the elements and, therefore, in the val-
ues of X, ¥, also, nor would it be allowable to suppose the latter proportional to
the former. But when the three places embrace a considerable heliocentric mo-
tion, the use of the method will undoubtedly succeed best, unless, indeed, it is
thrown into confusion by the exceptions explained in the preceding articles,
which are evidently in this method too, to be taken into consideration.

127.

After the three heliocentric places have been obtained in the way we have
described in the preceding article, we can go forward in the following manner.
The remaining elements may be determined by the problem treated in articles
85-105, first, from the first and second places with the corresponding interval of
time, and, afterwards, in the same manner, from the second and third places and
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the corresponding interval of time: thus two values will result for each of the
elements, and from their differences any two may be taken at pleasure for X and
Y. One advantage, not to be rejected, gives great value to this method; it is,
that in the first hypotheses the remaining elements, besides the two which are
chosen for fixing X and Y, can be entirely neglected, and will finally be deter-
mined in the last calculation based on the corrected values of z, y, either from
the first combination alone, or from the second, or, which is generally preferable,
from the combination of the first place with the third. The choice of those two
elements, which is, commonly speaking, arbitrary, furnishes a great variety of
solutions; the logarithm of the semi-parameter, together with the logarithm of
the semi-axis major, may be adopted, for example, or the former with the eccen-
tricity, or the latter with the same, or the longitude of the perihelion with any
one of these elements: any one of these four elements might also be combined
with the eccentric anomaly corresponding to the middle place in either calcula-
tion, if an elliptical orbit should result, when the formulas 27-30 of article 96,
will supply the most expeditious computation. But in special cases this choice
demands some consideration ; thus, for example, in orbits resembling the parabola,
the semi-axis maor or its logarithm would be less suitable, inasimuch as excessive
variations of these quantities could not be regarded as proportional to changes of
z,y: in such a case it would be more advantageous to select (11 But we give less
time to these precautions, because the fifth method, to be explained in the follow-
_ing article, is to be preferred, in almost all cases, to the four thus far explained.

128.

Let us denote three radii vectores,obtained in the ‘same manner as in articles
125, 126, by r, 7/, " ; the angular heliocentric motion in orbit from the second to

the third place by 2f, from the first to the third by 2f, from the first to the
second by 2 f”, so that we have

S=r+5;
next, let

Yr'sin2f=mn, r"sin2f =u, r/sin2 " =u";
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lastly, let the product of the constant quantity % (article 2) into the intervals of
the time from the second observation to the third, from the first to the third, and
from the first to the second be respectively, 4, 8’ 6”. The double computation of
the elements is begun, just as in the preceding article, both from r#’ f” and ¢”,
and from 2’7", f, 8 : but neither computation will be continued to the determina-
tion of the elements, but will stop as soon as that quantity has been obtained
which expresses the ratio of the elliptical sector to the triangle, and which is de-
noted above (article 91) by y or — Y. Let the value of this quantity be, in the
first calculation, %, in the second, 7. Accordingly, by means of formula 18, arti-
cle 95, we shall have for the semi-parameter p the two values: —

7/1 U4 nn

Vp="Tg,and yp="1-.
But we have, besides, by article 82, a third value,
___4r77sin fsin f7 sin f7

n—n’—|—n” >

which three values would evidently be identical if true values could have been

taken in the beginning for z and y. For which reason we should have

0’/ 7/171”
T
\ 406"r /1" sin f'sin f* sin f" 06"
n—n = r su:fslmfsmf’: ! ’,n 66" : .
i’ na’ 2naf rr'r” cos f cos [ cos f

Unless, therefore, these equations are fully satisfied in the first calculation, we

can put
qnb”
1'n"0’

=n—n+n" —

X=1log

»' 66"
2 q1f’ r'r” cos feos fTcos f7°

This method admits of an application equally general with the second ex-
plained in article 125, but it is a great advantage, that in this fifth method the
first hypotheses do not require the determination of the elements themselves, but
stop, as it were, half way. It appears, also, that in this process we find that, as it
can be foreseen that the new hypothesis will not differ sensibly from the truth, it
will be sufficient to determine the elements either from r,7, /7, 8”, alone, or from
vy7", f, 8, or, which is better, from r, " f’, §'.

23
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129.

The five methods thus far explained lead, at once, to as many others which
differ from the former only in this, that the inclination of the orbit and the lon-
gitude of the ascending node, instead of the distances from the earth, are taken
for z and y. The new methods are, then, as follows: —

I. From 2 and g, and the two extreme geocentric places, according to articles
74, 75, the heliocentric longitudes in orbit and the radii vectores are determined,
and, from these and the corresponding times, all the remaining elements; from
these, finally, the geocentric place for the time of the middle observation, the
differences of which from the observed place in longitude and latitude will fur-
nish X and Y.

The four remaining methods agree in this, that all three of the heliocentric
longitudes in orbit and the corresponding radii vectores are computed from the
position of the plane of the orbit and the geocentric places. But afterwards: —

II. The remaining elements are determined from the two extreme places only
and the corresponding times; with these elements the longitude in orbit and
radius vector are computed for the time of the middle observation, the differences
of which quantities from the values before found, that i 1s, deduced from the geo-
centric place, will produce X and ¥

III. Or, the remaining dimensions of the orbit are derived from all three
heliocentric places (articles 82, 83,) into which calculation the times do not enter:
then the intervals of the times are deduced, which, in an orbit thus found, should
have elapsed between the first and second observation, and between this last
and the third, and their differences from the true intervals will furnish us with
Xand Y

IV. The remaining elements are computed in two ways, that is, both by the
combination of the first place with the second, and by the combination of the
second with the third, the corresponding intervals of the times being used. These
two systems of elements being compared with each other, any two of the differ-
ences may be taken for X and 1:

V. Or lastly, the same double calculation is only continued to the values of
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the quantity denoted by 7, in article 91, and then the expressions given in the
preceding article for X and Y, are adopted.

In order that the last four methods may be safely used, the places of the earth
for all three of the observations must not be very near the node of the orbit: on
the other hand, the use of the first method only requires, that this condition may
exist in the two extreme observations, or rather, (since the middle place may be
substituted for either of the extremes,) that, of the three places of the earth,
not more than one shall lie in the vicinity of the nodes.

130.

The ten methods explained from article 124 forwards, rest upon the assump-
tion that approximate values of the distances of the heavenly body from the
earth, or of the position of the plane of the orbit, are already known. When
the problem is, to correct, by means of observations more remote from each other,
the dimensions of an orbit, the approximate values of which are already, by
some means, known, as, for instance, by a previous calculation based on other
observations, this assumption will evidently be liable to no difficulty. But it does
not as yet appear from this, how the first calculation is te be entered upon when
all the dimensions of the orbit are still wholly unknown: this case of our problem
is by far the most important and the most difficult, as may be imagined from
the analogous problem in the theory of comets, which, as is well known, has
perplexed geometers for a long time, and has given rise to many fruitless
attempts. In order that our problem may be considered as correctly solved, that
is, if the solution be given in accordance with what has been explained in the
119th and subsequent articles, it is evidently requisite to satisfy the followin«
conditions: — Furst. the quantities #, 7, are to be chosen in such a manner, that
we can find approximate values of them from the very nature of the problem, at
all events, as long as the heliocentric motion of the heavenly body between the
observations is not too great. Secondly, it is necessary that, for small changes in
the quantities #, 7, there be not too great corresponding cha\tnges in the quantities
to be derived from them, lest the errors accidentally introduced in the assumed
values of the former, prevent the latter from being considered as approximate.



180 DETERMINATION OF AN ORBIT FROM [Boox II.

Thirdly and lastly, we require that the processes by which we pass from the quan-
tities #, g, to X, ¥, successively, be not too complicated.

These conditions will furnish the criterion by which to judge of the excellence
of any method: this will show itself more plainly by frequent applications. The
method which we are now prepared to explain, and which, in a measure, is to be
regarded as the most important part of this work, satisfies these conditions so that
it seems to leave nothing further to be desired. Before entering upon the ex-
planation of this in the form most suited to practice, we will premise certain pre-
liminary considerations, and we will illustrate and open, as it were, the way to it,
which might, perhaps, otherwise, seem more obscure and less obvious.

131.

It is shown in article 114, that if the ratio between the quantities denoted
there, and in article 128 by n,#/, %", were known, the distances of the heavenly
body from the earth could be determined by means of very simple formulas.
Now, therefore, if

n
W W
should be taken for z, g,

6 ¢

RN &
(the symbols 4, &, 6”, being taken in the same signification as in article 128) im-
mediately present themselves as approximate values of these quantities in that
case where the heliocentric motion between the observations is not very great:
hence, accordingly, seems to flow an obvious solution of our problem, if two dis-
tances from the earth are obtained from z, 7, and after that we proceed agreeably
to some one of the five methods of articles 124-128. In fact, the symbols 7, "
being also taken with the meaning of article 128, and, analogously, the quotient
arising from the division of the sector contained between the two radii vectores
by the area of the triangle between the same being denoted by 7, we shall have,
_o |
=5

n__ 6 7
e T

nl/
n 0 7’ n
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and it readily appears, that if », 2, #”, are regarded as small quantities of the first
order,n —1, i’ — 1, n” — 1 are, generally speaking, quantities of the second
order, and, therefore,
6 ¢
AN

the approximate values of #,y, differ from the true ones only by quantities
of the second order. Nevertheless, upon a nearer examination of the sub-
ject, this method is found to be wholly unsuitable; the reason of this we
will explain in a few words. It is readily perceived that the quantity (0.1.2),
by which the distances in the formulas 9, 10, 11, of article 114 have been multi-
plied, is at least of the third order, while, for example, in equation 9 the quan-
tities (0. 1. 2), (1. 1. 2), (IL 1. 2), are, on the contrary, of the first order; hence,
it readily follows, that an error of the second order in the values of the quanti-
ties 2, 'i;; produces an error of the order zero in the values of the distances.
Wherefore, according to the common mode of speaking, the distances would be
affected by a finite error even when the intervals of the times were infinitely
small, and consequently it would not be admissible to consider either these dis-
tances or the remaining quantities to be derived from them even as approximate;
and the method would be opposed to the second condition of the preceding
article.

132.
Putting, for the sake of brevity,
(0.1.2)=a, (0.1.2) D'=—1, (0.0.2) D=+, (0.IL2) "=+,
so that the equation 10, article 114, may become

aé":b—l—c;”,- —I-d%:’,
the coefficients ¢ and d will, indeed, be of the first order, but it can be easily
shown that the difference ¢ —d is to be referred to the second order. Then it
follows, that the value of the quantity

en—-dn’
n+nll
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resulting from the approximate assumption that n:n”"=40:6" is affected by an
error of the fourth order only, and even of the fifth only when the middle is dis-
tant from the extreme observations by equal intervals. For this error is
cO0+de cnddn’ 60 (d—c) (' —1)
646" ntn" (646" ('6+4106")
where the denominator is of the second order, and one factor of the numerator
08" (d—¢) of the fourth, the other %” — 7 of the second, or, in that special case,
of the third order. The former equation, therefore, being exhibited in this form,

ad’ _b_l_cni:f”n .n-jl—,n”’

it is evident that the defect of the method explained in the preceding article does
not arise from the fact that the quantities #,#” have been assumed proportional to

8,8", but that, i addition to this, n’ was put proportional to §’. For, indeed, in this‘

046"
0!

way, instead of the factor nj:,"’, the less exact value = 1 is introduced,

from which the true value
06"
14 2 pof'r'r” cos fcos f' cos f*

differs by a quantity of the second order, (article 128).

133.

Since the cesines of the angles f, f/, f, as also the quantities %, " differ from
unity by a difference of the second order, it is evident, that if instead of

n --n"
n
the approximate value
1+ 2m”

is introduced, an error of the fourth order is committed. If, accordingly, in place
of the equation, article 114, the following is introduced,

o b S (14 0

an error of the second order will show itself in the value of the distance ¢’ when
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the extreme observations are equidistant from the middle; or, of the first order in
other cases. But this new form of that equation is not suited to the determina-
tion of J’, because it involves the quantities 7, #/, #”, still unknown.

Now, generally speaking, the quantities T—’,,’;, differ from unity by a quantity
of the first order, and in the same manner also the product :,irj: it is readily
perceived that in the special case frequently mentioned, this product differs
from unity by a quantity of the second order only. And even when the orbit
of the ellipse is slightly eccentric, so that the eccentricity may be regarded as a
quantity of the first order, the difference of ’ can be referred to an order one
degree higher. It is manifest, therefore, that thls error remains of the same order
as before if, in our equation, ;i—,:a is substituted for g;, whence is obtained the

following form,

ad =34 0LI% (14 00,

In fact, this equation still contains the unknown quantity 7/, which, it is evident
nevertheless, can be eliminated, since it depends only on ¢’ and known quantities.
If now the equation should be afterwards properly arranged, it would ascend to
the eighth degree.

. 134.

From the preceding it will be understood why, in our method, we are about
to take for z, g, respectively, the quantities

%”z_P, and 2 (n—j:,n”—].)r/s= Q

For, in the first place, it is evident that if P and @ are regarded as known quanti-
ties, 0’ can be determined from them by means of the equation
c-—l—dP

Q
e e (155),
and afterwards d,0”, by equations 4, 6, article 114, since we have
n_ 1 Q S Q
7—1*4_‘13(1 +593); nl—mb(l +500)-
In the second place, it is manifest that -%{, 0 8” are, in the first hypothesis, the

13
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obvious, approximate values of the quantities P, @, of which the true values are

precisely
¢ 7 706"
6 1f'’ "o cos fcos f’ cos 7

from.which hypothesis will result errors of the first order in the determination of

0", and therefore of d, 0”, or of the second order in the special case several times
mentioned. Although we may rely with safety upon these conclusions, generally
speaking, yet in a particular case they can lose their force, as when the quantity
(0.1. 2), which in general is of the third order, happens to be equal to zero, or so
small that it must be referred to a higher order. This occurs when the geocentric
path in the celestial sphere has a point of contrary flexure near the middle place.
Lastly, it appears to be required, for the use of our method, that the heliocentric
motion between the three observations be not too great: but this restriction, by
the nature of the very complicated problem, cannot be avoided in any way;
neither is it to be regarded as a disadvantage, since it will always be desired to
begin at the earliest possible moment the first determination of the unknown
orbit of a new heavenly body. Besides, the restriction itself can be taken in a
sufficiently broad sense, as the example to be given below will show.

135.

The preceding discussions have been introduced, in order that the principles
on which our method rests, and its true force, as it were, may be more clearly
seen: the practical treatment, however, will present the method in an entirely
different form which, after very numerous -applications, we can recommend as
the most convenient of many tried by us. Since in determining an unknown
orbit from three observations the whole subject may always be reduced to
certain hypotheses, or rather successive approximations, it will be regarded as a
great advantage to have succeeded in so arranging the calculation, as, at the
beginning, to separate from these hypotheses as many as possible of the compu-
tations which depend, not on P and @, but only on a combination of the known
quantities. Then, evidently, these preliminary processes, common to each hypoth-
esis, can be gone through once for all, and the hypotheses themselves are reduced
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to the fewest possible details. It will be of equally great importance, if it
should not be necessary to proceed in every hypothesis as far as the clements,
but if their computation might be reserved for the last hypothesis. In both
these respects, our method, which we are now about to explain, seems to leave
nothing to be desired.

136.

We are, in the first place, to connect by great circles three heliocentric places
of the earth in the celestial sphere, 4, 4", A” (figure 4), with three geocentric
places of the heavenly body, B, B’, B”, and then to compute the positions.of these
great circles with respect to the ecliptic (if we adopt the ecliptic as the funda-
mental plane), and the places of the points B, B’, B”, in these circles.

Let a,d’, ¢” be three geocentric longitudes of the heavenly body, ., £', 87, lat-
itudes; 4,7, ", heliocentric longitudes of the earth, the latitudes of which we put
equal to zero, (articles 117, 72). Let, moreover, y,7’,7” be the inclinations to the
ecliptic of the great circles drawn from 4, 4, 4”, to B, B’, B”, respectively ; and,
in order to follow a fixed rule in the determination of these inclinations, we shall
always measure them from that part of the ecliptic which lies in the direction
of the order of the signs from the points 4, A, A”, so that their magnitudes will
be counted from 0 to 360° or, which amounts to the same thing, from 0 to 180°
north, and from 0 to — 180° south. We denote the arcs AB, A’B’, A”B”, which
may always be taken between 0 and 180°, by d,d",0”. Thus we have for the de-
termination of 7 and J the formulas,

t
[1] tany = (P;H_E‘Zj
__tan(e—1)
[2] tand =———+ —

To which, if desirable for confirming the calculation, can be added the following,

5 sin
sind = é_in_(;’ cos 0 =cos f cos (¢ — 7).

We have, evidently, entirely analogous formulas for determining 7’,d",7”,0”. Now,
if at the same time f# =0, « — /=0 or 180°, that is, if the heavenly body should
24
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be in opposition or conjunction and in the ecliptic at the same time, y would be
indeterminate. But we assume that this is not the case in either of the three
observations. ,

If the equator is adopted as the fundamental plane, instead of the ecliptic,
then, for determining the positions of the three great circles with respect to the
equator, will be required the right ascensions of their intersections with the equa-
tor, besides the inclinations; and it will be necessary to compute, in addition to
the distances of the points B, B, B”, from these intersections, the distances of the
points A, A, A” also from the same intersections. Since these depend on the
problem discussed in article 110, we do not stop here to obtain the formulas.

137.

The second step will be the determination of the positions of these three great
circles relatively to each other, which depend on their inclinations and the places
of their mutual intersections. If we wish to bring these to depend upon clear
and general conceptions, without ambiguity, so as not to be obliged to use
special figures for different individual cases, it will be necessary to premise some
preliminary explanations. Firsily, in every great circle two opposite directions
are to be distinguished in some way, which will be done if we regard one of them
as direct or positive, and the other as retrograde or negative. This being wholly
arbitrary in itself, we shall always, for the sake of establishing a uniform rule, con-
sider the directions from 4, 4’, A” towards B, B, B” as positive; thus, for example,
if the intersection of the first circle with the second is represented by a positive
distance from the point 4, it will be understood that it is to be taken from 4 .
towards B (as D” in our figure); but if it should be negative, then the distance
is to be taken on the other side of 4. And secondly, the two hemispheres, into
which every great circle divides the whole sphere, are to be distinguished by suit-
able denominations; accordingly, we shall call that the superior hemisphere, which,
to one walking on the inner surface of the sphere, in the positive direction along
the great circle, is on the right hand ; the other, the nferior. The superior hemi-
sphere will be analogous to the northern hemisphere in regard to the ecliptic or
equater, the inferior to the southern.
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These definitions being correctly understood, it will be possible conveniently
to distinguish Jo/Z intersections of the two great circles from each other. In iuct,
in one the first cirele tends from the inferior to the superior hemisphere of the
second, or, which is the same thing, the second from the superior to the inferior
hemisphere of the first; in the other intersection the opposite takes place.

It is, indeed, wholly arbitrary in itself which intersections we shall sclect for
our problem ; but, that we may proceed here also according to an invariable rule,
we shall always adopt these (D, 1), D", figure 4) where the third circle A”72” passes
into the superior hemisphere of the second A'Z, the third into that of the first
A B, and the second into that of the first, respectively. The places of these inter-
sections will be determined by their distances from the points A" and A”, .1 and
A", A and A, which we shall simply denote by A'D, A"D, AD', A"D'. AD", A'D".

Which being premised, the mutual inclinations of the cireles will be the angles
which are contained, at the points of intersection D, 2, D", between those parts
of the circles cutting each other that lie in the positive direction; we shall
denote these inclinations, taken always between 0 and 180° by &, &,+”. The de-
termination of these nine unknown quantities from those that are known, evi-
dently rests upon the problem discussed by us in article §5. We have, conse-
quently, the following equations: —

[8] sindesin 4 (4D A"D)=sin} ('—7)sin 3 (7" +7');

[4] sin 4 ecos? (A'D+ A"D)=cos 3 (I’ —17)sin 3 (' —7)

[5] costesind (4D — A"D)=sin} ("' —)cost (7" +7)

[6] cosdecosd (AD— A"D)—=cost (I"—1)cosd(y" —7).
3 (A'D -+ A"D) and sin § ¢ are made known by equations 3 and 4, 3 (A'D— A" D)
and cos # ¢ by the remaining two; hence A'D, A”D and ¢&. The ambiguity in the
determination of the ares 3 (d'D 4 A”D), 3 (A’D— A"D), by means of the tan-
gents, is removed by the condition that sin § ¢, cos 3 &, must be positive, and the
agreement between sin # €, cos # ¢, will serve to verify the whole calculation.

The determination of the quantities A2/, A”D', &, AD", A’D", ¢" is cffected in
precisely the same manner, and it will not be worth while to transcribe here the
eight equations used in this calculation, since, in fact, they readily appear if we
change
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AD|A'D |e |U'—17|y"|¢
for AD |\ A"D' | & |[I"—1|y" |y
orfor AD” |AD" ||l —1|7 |7
respectively.

A new verification of the whole calculation thus far can be obtained from the
mutual relation between the sides and angles of the spherical triangle formed by
joining the three points D, I, D”, from which result the equations, true in gen-
eral, whatever may be the positions of these points,

sin(AD —AD') __ sin(AD—A'D") _ sin (4D — A"D)

sin & sin &' sin &”
Finally, if the equator is selected for the fundamental plane instead of the eclip-
tic, the computation undergoes no cﬁange, except that it is necessary to sub-
stitute for the heliocentric places of the earth A4, A, A” those points of the equa-
tor where it is cut by the circles A B, A’B’, A”B"; consequently, the right ascen-
sions of these intersections are to be taken instead of £, 7,7”, and also instead of
A'D, the distance of the point D from the second intersection, etc.

138.

The ¢hird step consists in this, that the two extreme geocentric places of the
heavenly body, that is, the points B, B”, are to be joined by a great circle, and
the intersection of this with the great circle 4’8’ is to be determined. Let B* be
this intersection, and ¢’— o its distance from the point 4’; let a* be its longitude,
and #* its latitude. We have, consequently, for the reason that B, B* B” lie in
the same great circle, the well-known equation,

0 = tan # sin (e” — a*) — tan *sin (¢” — &) 4 tan B” sin (a* — a),
which, by the substitution of tan y’sin (a* —7) for tan 8% takes the following
form: —

0 = cos (a*—7) (tan f sin («” — ') — tan " sin (¢ — 7))

—sin (a*—7) (tan f cos (¢” —7') + tan 7" sin (¢” — &) — tan $” cos (¢ — 7).

Wherefore, since tan (a*—17) = cos y" tan (0’ — o) we shall have,

) — tan f sin (o — ') — tan f” sin (¢ —7')
tan (0" —o)= cosy (tan f cos (o’ —1") — tan " cos (¢ —¥')) +siny’sin (/ — )"
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Thence are derived the following formulas, better suited to numerical calculations.
Putting,

[7] tan g sin (¢”—1") —tan " sin (¢ — 1) =S,

[8] tanp cos (e” —17') — tan B” cos (¢ —?') = T'sin ¢,

[9] sin (¢” —a) = T cost,
we shall have (article 14, II.)

[10] tan ("'—"):T—Singm-

The uncertainty in the determination of the are (0’— 0) by means of the
tangent arises from the fact that the great circles A'B’, BB”, cut each other in
fwo points; we shall always adopt for B* the intersection nearest the point 5, so
that 0 may always fall between the limits of — 90° and —|— 90° by which means
the uncertainty is removed.

For the most part, then, the value of the arc o (which depends upon the
curvature of the geocentric motion) will be quite a small quantity, and even, gen-
erally speaking, of the second order, if the intervals of the times are regarded
as of the first order.

It will readily appear, from the remark in the preceding article, what are the
modifications to be applied to the computation, if the equator should be chosen
as the fundamental plane instead of the ecliptic. It is, morcover, manifest that
the place of the point B# will remain indeterminate, if the circles 221", 4’1"
should be wholly coincident; this case, in which the four points A, 2, 2, B” lic in
the same great circle, we exclude from our investigation. It is proper in the
selection of observations to avoid that case, also, where the locus of these four
points differs but little from a great circle; for then the place of the point 5%,
which is of great importance in the subsequent operations, would be too much
affected by the slightest errors of observation, and could not be determined with
the requisite precision. In the same manner the point 5%, evidently, remains

indeterminate when the points B, B” coincide, in which case the position of the

T Or when they are opposite to each other; but we do not speak of this case, because our method is

not extended to observations embracing so great an interval.
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circle BB” itself would become indeterminate. Wherefore we exclude this case,
also, just as, for reasons similar to the preceding, those observations will be
avoided in which the first and last geocentric places fall in points of the sphere
near to each other.

139.

Let C, (", C”, be three heliocentric places of the heavenly body in the celestial
sphere, which will be (article 64, IIL) in the great circles A B, A'B’, A”B", respec-
tively, and, indeed, between 4 and B, 4’ and B’, 4” and B"; moreover, the points
C, ', 0" will lie in the same great circle, that is, in the circle which the plane
of the orbit projects on the celestial sphere.

We will denote by 7,7/, 7", three distances of the heavenly body from the sun;
by 0,0, 0", its distances from the earth; by R, R/, R, the distances of the earth
from the sun. Moreover, we put the arcs ¢’ C”, CC”, CC" equal to 2 f, 217, 21",
respectively, and

7 sin 2f =mn, v sin 2 =, rv' sin 2" =n".
Consequently we have
f=r+r, AC+CB=0, A0+ C'B =0, A'C"4 C"B’'=0";

also,
gind __sin AC__sinCB
r ¢ R
gind' _ sind’C’__ sin OB’/
7 - o T R
sind __ sin 470" __sin C"B"
1/[ e Q” =1 R’ ®

Hence it is evident, that, as soon as the positions of the points C, ¢, " are known,
the quantities 7,7/,7”, 9,0’,0” can be determined. We shall now show how the
former may be derived from the quantities
" 4
¥—p2(*tr _1)r=yg,

nl

from which, as we have before said, our method started.
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140.

We first remark, that if V were any point whatever of the great circle €'C’(C”,
and the distances of the points C, ¢, ¢ from the point IV were counted in the
direction from ('to €7, so that in general

NC"—NC'=2f, NO"—NC=2f', NO'—NC=2f",
we shall have
L 0 =sin2fsin VO —sin 2 /" sin NC" -+ sin 2 /7 sin N C”.

We will now suppose IV to be taken in the intersection of the great circles
BB=B", (' (", as in the ascending node of the former on the latter. Let us
denote by C, ¢/, €7, D, D', D", respectively, the distances of the points C, ", ",
D, D', D’ from the great circle B B*B”, taken positively on one side, and nega-
tively on the other. Then sin G, sin ¢/, sin €”, will evidently be proportional to
sin VC, sin N (", sin N (", whence equation L is expressed in the following form:—

0 =-sin 2fsin € — sin 2 /" sin €’ 4 sin 2 /" sin C”;
or multiplying by »+7”,
II. 0 =n7sin € — 74" sin €’ -+ #"»” sin €”".

It is evident, moreover, that sin € is to sin @', as the sine of the distance of the
point € from B is to that of D’ from B, both distances being measured in the
same direction. We have, therefore,

— sin G — sin ®'sin OB
sin (4 D' —)) 9)’
in precisely the same way, are obtained,
— sinG — sin T”sin OB
‘ sin (AD’ 8)’
—sin¢® = sin Tsin O"B*  sin T sin O’ B*
(sin 4’D— 0" +a)" sin (4'D'—§ +-6)’
sin 67 — =m Tsin O __sinT "sin C"B"

sin (4"D — 6") sin (A”D' N
Dividing, therefore, equation I by »”sin C”, there results,

rsin OB sin (4"D' — &) , 7sin C"B*  sin (4"D— ")

= S _ ”
0= n'r" sin 0"B"" sin (4 1 —9) o C"B" sin(A’D— &' +0) +n :




192 DETERMINATION OF AN ORBIT FROM [Boox II

If now we designate the arc ("B’ by z, substitute for , 7/, »” their values in
the preceding article, and, for the sake of brevity, put
Rsin § sin (4" D'—3")
[11] R’ sin §”sin (A — )
R’ sin &' sin (4"D —9")
[12] R’sin & sin (4D — 8’ o)
our equation will become
IIT. 0= an— b/ S2E—9) +”

sin 2

=a7

—3,

The coefficient & may be computed by the following formula, which is easily
derived from the equations just introduced : —

[13] aX Ri;sgﬁ S(ﬁf(;'-y-lt; -ﬁ)a)
For verifying the computation, it will be expedient to use both the formulas 12
and 18. When sin (4’0" —d"4-0) is greater than sin (4'D—d"4-0), the latter
formula is less affected by the unavoidable errors of the tables than the former,

—b.

and so will be preferred to it, if some small discrepancy to be explained in this
way should result in the values of 4; on the other hand, the former formula is
most to be relied upon, when sin (4’D” —d’+ 0) is less than sin (4D — 9"+ o);
a suitable mean between both values will be adopted, if preferred. The follow-
ing formulas can be made to answer for examining the calculation; their not very
difficult derivation we suppress for the sake of brevity.
asin(l"—1 in ({"— in (8' — in (I’ —
0— (R )_'bsm(]lz' l).sm:?nsl 0) +sm(lR’/ l),
R'sin & U cos Bcos f’
R” sin 0" sin (4 D' — ) sin &’
in which (article 138, equation 10,) U expresses the quotient
S Tsin(t+49) .

sin (0’—o) = cos(d’—o)

b=

141.

From P =%” , and equation III. of the preceding article, we have

r” P V4 in (z—
(n—'—n )Pifzbn : s(inz 6);
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thence, and from
R sin ¢’

sinz

Q=2 n_l_,n”— 1)7”3 and 7=

n

is obtained,

. Qsin 2t P11 .
8N 2 - 5y s =0 pj_—‘ sin (z— o), or,

ind
5%3%;& = (6 §$% — cos 0) sin (z— 0) —sin 6 cos (z — o).
S

Putting, therefore, for the sake of brevity,

1
[14] s zramssms — ©

and introducing the auxiliary angle w such that

tan 0 — sin¢
N p P coso
P+a 2
we have the equation
IV, ¢ @sinosin*z =sin (2 — 0 — o),

from which we must get the unknown quantity z. That the angle w may be
computed more conveniently, it will be expedient to present the preceding for
mula for tan © thus: —

(P-4 a)tanc )
P+~

tan w =

Whence, putting,

coso @
[15] 7 =d’

[16] tan ¢ —e,

Cos o

we shall have for the determination of w the very simple formula,

e (P+a)

ta/nw =P——‘}—d-.

We consider as the fourth step the computation of the quantities a, 4, ¢, d, ¢,

25



194 DETERMINATION OF AN ORBIT FROM [Boox 1L

by means of the formulas 11-16, depending on given quantities -alone. The
quantities &, ¢, e, will not themselves be required, only their logarithms.
There is a special case in which these precepts require some change. That
is, when the great circle BB” coincides with A”B”, and thus the points B, B*
with D, D, respectively, the quantities @, 5 would acquire infinite values. Put-
ting, in this case,
' Rsindsin (4’D"— ¢ +o0) —
R sind sin (4D —0) ’
in place of equation ITI. we shall have

7’ sin (2 — 0)

O=mn— =
sin 2z

J

whence, making

e ____ msing
P+ (1 —mcoso)’
the same equation IV. is obtained.

In the same manner, in the special case when 0 — 0, ¢ becomes infinite, and
o = 0, on account of which the factor ¢sin w, in equation IV, seems to be inde-

terminate ; nevertheless, it is in reality determinate, and its value is

PHa
2 R®sin*d’ (b —1) (P+-d)’

as a little attention will show. In this case, therefore, sin z becomes

s a 32(—1) (P4-d)
R'sind \/ R

142.

Equation IV, which being developed rises to the eighth degree, is solved by
trial very expeditiously in its unchanged form. But, from the theory of equa-
tions, it can be easily shown, (which, for the sake of brevity, we shall dispense
with explaining more fully) that this equation admits of two or four solutions by
means of real values. In the former case, one value of sin z will be positive;
and the other negative value must be rejected, because, by the nature of the
problem, it is impossible for #* to become negative. In the latter case, among the
values of sinz one will be positive, and the remaining three negative, — when,
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accordingly, it will not be doubtful which must be adopted,— or three positive
with one negative; in this case, from among the positive values those, if there are
any, are to be rejected which give z greater than d’, since, by another essential
condition of the problem, ¢" and, therefore, sin (’—2z), must be a positive quantity.

When the observations are distant from each other by moderate intervals of
time, the last case will most frequently occur, in which three positive values of
sin z satisfy the equation. Among these solutions, besides that which is true,
some one will be found making z differ but little from ¢, either in excess or
in defect; this is to be accounted for as follows. The analytical treatment of
our problem is hased upon the condition, simply, that the three places of the heav-
enly body in space must fall in right lines, the positions of which are determined
by the absolute places of the eartl, and the observed places of the body. Now,
from the very nature of the case, these places must. in fact, fall in those parts of
the right lines whence the light descends to the earth. But the analytical equa-
tions do not recognize this restriction, and every system of places, harmonizing of
course with the laws of KeprLer, is embraced, whether they lie in these right lines
on this side of the earth, or on that, or, in fine, whether they coincide with the
earth itself. Now, this last case will undoubtedly satisfy our problem, since the
earth moves in accordance with these laws. Thence it is manifest, that the equa-
tions must include the solution in which the points C, ¢”, € coincide with 4,4, 4"
(so long as we neglect the very small variations in the elliptical places of the earth
produced by the perturbations and the parallax). Equation TV, therefore, must
always admit the solution z = ¢’, if true values answering to the places of the
earth are adopted for 2 and ¢. So long as values not differing much from these
are assigned to those quantities (which is always an admissible supposition, when
the intervals of the times are moderate), among the solutions of equation 1V
some one will necessarily be found which approaches very nearly to the value
z=10"

For the most part, indeed, in that case where equation TV. admits of three
solutions by means of positive values of sinz, the third of these (besides the true
one, and that of which we have just spoken) makes the value of z greater than
0%, and thus is only analytically possible, but physically impossible; so that it can-
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not then be doubtful which is to be adopted. But yet it certainly can happen,
that the equation may admit of two distinct and proper solutions, and thus that
our problem may be satisfied by two wholly different orbits. But in such an
event, the true orbit is easily distinguished from the false.as soon as it is possible
to bring to the test other and more remote .observations.

143.

As soon as the angle 2 is got, 7 is immediately had by means of the equation
S — R'sind’

sinz

Further, from the equations P = % and III. we obtain,
Y _ (P+a)R'sind

n  bsin(z—o) °
w1 aY
n_ll_ﬁ'. 7 .

Now, in order that we may treat the formulas, according to which the posi-
tions of the points C, €, are determined from the position of the point ”,in such
a manner that their general truth in those cases not shown in figure 4 may
immediately be apparent, we remark, that the sine of the distance of the point
¢’ from the great circle C'B (taken positively in the superior hemisphere, nega-
tively in the inferior) is equal to the product of sin ¢” into the sine of the distance
of the point ¢ from D", measured in the positive direction, and therefore to

—sin &’ sin ("D" = —sin¢&”sin (2 + A’ D" — d');
in the same manner, the sine of the distance of the point " from the same great
circle is — sin &’ sin C”D'. But, evidently, those sines are as sin C'C" to sin CC”, or
as — to =, or as #'7” to #//’. Putting, therefore, €2 = (", we have
V. ' sin 7 ="7 L gin (e - 4D — 7).

n”

Precisely in the same way, putting €1/ = ¢, is obtained
' i ’ ,
VL. rsin { =20 %02 sin (z—I—AD—d‘)
VIL rsin({+AD"—AD)=+"P Z5sin({"+ A"D— A'D)).
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By combining equations V. and VI. with the following taken from article 139,
VIIL 7 sin (§"—A"D' + §") = R"sin?d”,

IX. rsin(§ —ALD' 4 d) = L sind,
the quantities ¢, ", r, #”,will be thence derived by the method of article 78.
That this calculation may be more conveniently effected, it will not be unaccept-
able to produce here the formulas themselves. Let us put

Rsin g
[17] sin (4 ' —9)

R'sing”
(18] soam—3=*"

:x,

cos (4D —0)
[19] Rsing - l’

cos (A"D'—0d") a4
[20] ey = 1.

The computation of these, or rather of their logarithms, yet independent of P
and @, is to be regarded as the ff72 and last step in the, as it were, preliminary
operations, and is conveniently perforined at the same time with the computation
of @, b, themselves, or with the fourth step, where ¢ becomes equal to Ki
Making, then,
n_’r;’ sin e

,sin (2 4+ A'D—d")=p,

n ‘sineg

7.0 H U4
g sin (2 4D — 08" =y,
x(lp—1)=yg
W (Vp'—1)=¢,
we derive { and » from 7 sin { = p, » cos { = ¢ ; also, £ and +” from " sin £ = p”,
and 7" cost” =¢”. No ambiguity can occur in determining £ and {”, because »
and 7 must, necessarily, be positive quantities. The complete computation can,
if desired, be verified by equation VII.
There are two cases, nevertheless, where another course must be pursued.
That iy, when the point D" coincides with B, or is opposite to it in the sphere,

or when A)—d =0 or 180° equations VI. and IX. must necessarily be iden-
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tical, and we should have x =, A p —1=0, and ¢, therefore, indeterminate.
In this case,’(” and »” will be determined, in the manner we have shown, but
then { and » must be obtained by the combination of equation VII. with VI.or
IX. We dispense with transcribing here the formulas themselves, to be found
in article 78; we observe, merely, that in the case where A0’ —d is in fact
neither = 0 nor = 180°, but is, nevertheless, a very small arc, it is preferable
to follow the same method, since the former method does not then admit of the
requisite precision. And, in fact, the combination of equation VII with VI or IX.
will be chosen according as sin (AD”"— A D') is greater or less than sin (4.0’ —0).

In the same manner, in the case in which the point D', or the one opposite to
it, either coincides with B” or is little removed from it, the determination of {”
and »” by the .preceding method would be either impossible or unsafe. In this
case, accordingly, ¢ and » will be determined by that method, but {” and + by
the combination of equation VII. either with V. or with VIIL, according as sin
(A”D — A"D) is greater or less than sin (4”0 —0").

There is no reason to fear that 2 will coincide af the same time with the points
B, B”, or with the opposite points, or be very near them ; for the case in which
B coincides with B”, or is but little remote from it, we excluded above, in article

138, from our discussion.

144.

The arcs § and {” being found, the positions of the points €, ¢, will be given,
and it will be possible to determine the distance CC"= 2’ from {, {” and &'
Let u, u”, be the inclinations of the great circles A B, A”B” to the great circle CC”
(which in figure 4 will be the angles C”CD" and 180° — C'C”D), respectively),
and we shall have the following equations, entirely analogous to the equations
3-6, article 137 : —

sin f* sin 4 («” 4 w) = sin 4 & sin § (§ - 7),
sin 7’ cos # (4’ 4 u) = cos # &' sin § ({ — &),
cosf” sin # (v’ — u) =sin % & cos # (( 4- ),

cosf’ cos 3 (W' —u) == cos 4 ¢ cos } ({ — L")
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The two former will give 3 («”—u) and sin /7, the two latter 4 (¢ —u) and cos f’;
from sin /" and cos /” we shall havef’. 1t will be proper to neglect in the first
hypotheses the angles 4 («” + ) and # («” —u), which will be used in the last
hiypothesis only for determining the position of the plane of the orbit.

In the same way, exactly, f can be derived from & "D and C”D; also f”
from &”, CD” and C"D”; but the following formulas are used much more con-
veniently for this purpose: —

sin 2 f =7 sin 2f’.;:7,

"
. . n
sin2 7" =+"sin2 7. .,

I
. . . o e n n
in which the logarithms of the quantities ——, =

;-, are already given by the pre-
ceding calculations. Finally, the whole calculation finds a new verification in
this, that we must have
2rt25"=2s";

if by chance any difference shows itself, it will not certainly be of any impor-
tance, if all the processes have been performed as accurately as possible. Never-
theless, occasionally, the calculation being conducted throughout with seven
places of decimals, it may amount to some tenths of a second, which, if it appear
worth while, we may with the utmost facility so distribute between 2 f and 2 f”
that the logarithms of the sines may be equally either increased or diminished,
by which means the equation

2t

T sin2f 7 @
will be satisfied with all the precision that the tables admit. When fand /" differ a
little, it will be sulficient to distribute that difference equally between 2 f and 217,

145.

After the positions of the heavenly body in the orbit have been determined in
this manner, the double calculation of the elements will be commenced, both by
the combination of the second place with the third, and the combination of the
first with the second, together with the corresponding intervals of the times.



200 ' DETERMINATION OF AN ORBIT FROM [Boox 1L

Before this is undertaken, of course, the intervals of the times themselves require
some correction, if it is decided to take account of the aberration agreeably to the
third method of article 118. In this case, evidently, for the true times are to be
substituted fictitious ones anterior to the former, respectively, by 4939, 493¢’,
493¢” seconds. For computing the distances ¢,¢’, ¢”, we have the formulas: —
Rsin(4D'—Y) rsin (4D —0)
= SmC—ADFs . sms ?
r__ R'sin(0'—z) _ 7'sin (0’ —2)

¢ sin z sind®
y_ R'sin (D —{" _ a'sin(4'D—U7)
¢ = G"—A"D 446" sin ¢” :

But, if the observations should at the beginning have been freed from
aberration by the first or second method of article 118, this calculation may be
omitted ; so that it will not be necessary to deduce the values of the distances 0,
¢’y 0”, unless, perhaps, for the sake of proving that those values, upon which the
computation of the aberration was based, were sufficiently exact. Finally, it is
apparent that all this calculation is also to be omitted whenever it is thought
preferable to neglect the aberration altogether.

146.

The calculation of the elements—on the one hand from 7, 7”, 2/ and the
corrected interval of the time between the second and third observations, the
product of which multiplied by the quantity %, (article 1,) we denote by 6, and
on the other hand from 7, #, 2" and the interval of time between the first and
second observations, the product of which by % will be equal to 6" — is to be car-
ried, agreeably to the method explained in articles 88-106, only as far as the
quantity there denoted by #, the value of which in the first of these combinations
we shall call 9, in the latter ”. Let then

o'y v 06" _ ¢
o1 ? rr'naf cos feos fcos 7 7
and it is evident, that if the values of the quantities P, @, upon which the whole
calculation hitherto is based, were true, we should have in the result P’ = P,
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@ = Q. And conversely it is readily perceived, that if in the result P = P,
Q" = @, the double calculation of the elements from both combinations would, if
completed, furnish numbers entirely equal, by which, thercfore, all three observa-
tions will be exactly represented, and thus the problem wholly satisfied. But
when the result is not ' =P, ) = Q, let P’— P, @"— @ he taken for X and ¥,
if, indeed, I’ and @ were taken for 2 and y; it will be still more convenient to put

log P =uz,log Q=y,log P"—log P =X, log ' —log Q=Y.

Then the calculation must be repeated with other values of z, y.

147.

Properly, indeed, here also, as in the ten methods before given, it would be
arbitrary what new values we assume for z and y in the second hypothesis, if
only they are not inconsistent with the general conditions developed above; but
yet, since 1t manifestly is to be considered a great advantage to be able to set out
from more accurate values, in this method we should act with hut little prudence
if we were to adopt the second values rashly, as it were, since it may ecasily be
perceived, from the very nature of the subject, that if the first values of P and @
were affected with slight errors, 2" and @’ themselves would represent much more
exact values, supposing the heliocentric motion to be moderate. Wherefore, we
shall always adopt I’ and @ themselves for the second values of P and @, or
log 7', log @ for the second values of z and y, if log P, log @ are supposed to
denote the first values.

Now, in this second hypothesis, where all the preliminary work exhibited
in the formulas 1-20 is to be retained without alteration, the calculation will he
undertaken anew in precisely the same manner. That is, first, the angle o
will be determined ; after that z, +/, "L;J-, ’::—,’;', Gy 870", 7 f, /7. From the dif-
ferenee, more or less considerable, hetween the new values of these quantities
and the first, a judgment will easily be formed whether or not it is worth while
to compute anew the correction of the times on account of aberration; in the
latter case, the intervals of the times, and therefore the quantities 6 and 6”, will
remain the same as before. Finally, 3, 9" are derived from f, +/, »”, f”, », 7" and

26
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the intervals of the times; and hence new values of ”” and ¢’, which commonly
differ much less from those furnished by the first hypothesis, than the latter from
the original values themselves of P and . The second values of X and ¥ will,
therefore, be much smaller than the first, and the second values of 7', @', will be
adopted as the third values of P, @, and with these the computation will be
resumed anew. In this manner, then, as from the second hypothesis more exact
numbeérs had resulted than from the first, so from the third more exact numbers
will again result than from the second, and the third values of 7/, @ can be taken
as the fourth of P, @, and thus the calculation be repeated until an hypothesis
1s arrived at in which X and ¥ may be regarded as vanishing; but when the
third hypothesis appears to be insufficient, it will be preferable to deduce the val-
ues of P, ¢, assumed in the fourth hypothesis from the first three, in accordance
with the method explained in articles 120, 121, by which means a more rapid
approximation will be obtained, and it will rarely be requisite to go forward to
the fifth hypothesis.

148.

When the elements to be derived from the three observations are as yet
wholly unknown (to which case our method is especially adapted), in the first
hypothesis, as we have already observed, 7
values of I and @, where ¢ and ¢” are derived for the present from the interwals
of the times not corrected. If the ratio of these to the corrected intervals is

expressed by v : 1 and u”: 1, respectively, we shall have in the first hypothesis,

68", are to be taken for approximate

X =1log u — log u” 4 log n — log 7",
Y =1log u + log i’ — log  — log ” ++ Comp. log cos '+ Comp. log cos f’
~+ Comp. log cos f” + 2 log ¥’ — log r — log .

The logarithms of the quantities u, u”, are of no importance in respect to the re-
maining terms; log # and log %", which are both positive, in X cancel each other
in some measure, whence X possesses a small value, sometimes positive, some-
times negative ; on the other hand, in ¥ some compensation of the positive terms
Comp. log cos f; Comp. log cos f’, Comp. log cos f” arises also from the negative
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terms log 7, log 1", but less complete, for the former greatly exceed the latter. 'In
general, it is not possible to determine any thing concerning the sign of log :—7’7,

Now, as often as the heliocentric motion between the observations is small, it
will rarely be necessary to proceed to the fourth hypothesis; most frequently the
third, often the second, will afford sufficient precision, and we may sometimes be
satisfied with the numbers resulting from even the first hypothesis. It will be
advantageous always to have a regard to the greater or less degree of precision
belonging to the ohservations; it would he an ungrateful task to aim at a pre-
cision in the calculation a hundred or a thousand times greater than that which
the observations themselves allow. In these matters, however, the judgment is
sharpened more by frequent practical exercise than by rules, and the skilful
readily acquire a certain faculty of deciding where it is expedient to stop.

149.

Lastly, the elements themselves will be computed in the final hypothesis,
cither from f, »/, #’, or from f”, », 7/, carrying one or the other of the calculations
through to the end, which in the previous hypotheses it had only heen requisite

to continue as far as 1, 1"

; if it should be thought proper to finish both, the
agreement of the resulting numbers will furnish a new verification of the whole
work. It is best, nevertheless, as soon as f, /7, f”, are got, to obtain the elemeuts
from the single combination of the first place with the third, that is, from /7, »”.
and the interval of the time, and finally, for the better confirmation of the com-
putation, to determine the middle place in the orbit by means of the elements
found. |

In this way, therefore, the dimensions of the conic section are made known,
that is, the eccentricity, the semi-axis major or the semi-parameter, the place
of the perihelion with respect to the heliocentric places €, ¢, ¢”, the mean
motion, and the mean anomaly for the arbitrary epoch if the orbit is elliptical, or
the time of perihelion passage if the orbit is hyperbolic or parabolic. It only
remains, therefore, to determine the positions of the heliocentric places in the
orbit with respect to the ascending node, the position of this node with reference

to the equinoctial point, and the inclination of the orbit to the ecliptic (or the
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equator). All this may be effected by the solution of a single spherical tri-
angle. Let @ be the longitude of the ascending node; ¢ the inclination of the
orbit; ¢ and ¢” the arguments of the latitude in the first and third observations;
lastly, let | —Q =4, I"— Q =4". Calling, in figure 4, Q the ascending node,
the sides of the triangle Q AC will be AD"—Z, g, 4, and the angles opposite to
them, respectively, 3, 180° —y,%. 'We shall have, then,

sin 4 sin 3 (9 +A)=sin 3 (4D —{) sin § (y + u)
sin 4¢cos 3 (g + &) =cos 3 (AD' — ) sin 3 (y —u)
cosisin 4 (9 —4h) =sin3 (AD'— ) cos 3 (y + u)
cos$icos$ (g —h)=cos 3 (AD —{)cos 3 (y —u).

The two first equations will give # (9-+7%) and sin % 7, the remaining two % (g—1#%)
and cos #¢; from g will be known the place of the periheli'on with regard to the
ascending node, from % the place of the node in the ecliptic; finally, 7 will be-
come known, the sine and the cosine mutually verifying each other. We can
arrive at the same object by the help of the triangle Q A”(”, in which it is only
necessary to change in the preceding formulas the symbols g, &, 4, £, 7, u into ¢’,
W, A", 0", y",w'. That still another verification may be provided for the whole
work, it will not be unserviceable to perform the calculation in both ways;
when, if any very slight discrepancies should show themselves between the values
of 4, @, and the longitude of the perihelion in the orbit, it will be proper to take
mean values. These differences rarely amount to 0°1 or 0°.2, provided all the
computations have been carefully made with seven places of decimals.

When the equator is taken as the fundamental plane instead of the ecliptic,
it will make no difference in the computation, except that in place of the points
A, A” the intersections of the equator with the great circles AB, A”B” are to be
adopted.
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150.

We proceed now to the illustration of this method by some examples fully
explained, which will show, in the plainest manner, how generally it applies, and
how conveniently and expeditiously it leads to the desired result.*

The new planet Juno will furnish us the first example, for which purpose we
select the following observations made at Greenwich and communicated to us by
the distinguished MASKELYNE.

Mean Time, Greenwich. App. Right Ascension. |App. Declination S.
1804, Oct. 5 10% 51 ¢ | 857° 10’ 22".35 6° 40’ 8"
17 9 58 10 355 43 45 .30 8 47 25

27 9 16 41 855 11 10 .95 10 2 28

From the solar tables for the same times is found

Loflgitude of the Sun . Distance from | Latitude of | Appar. Obliquity of
from App. Equin. Nutation. the Earth. the Sun. P%he Ecligtic.y

17 | 204 20 21 .54 15 .51 | 0.9958968 | 4-0.79 59 .26
27 | 214 16 52 .21 15 .60 | 0.9928540 | —0.15 59 .06

Oct. 5 | 192° 28’ 53".72 $15".43 0.9988839 | — 07.49 | 28° 27/ 59”.48

We will conduct the calculation as if the orbit were wholly unknown: for
which reason, it will not be permitted to free the places of Juno from parallax,
but it will be necessary to transfer the latter to the places of the earth. Accord-
ingly we first reduce the observed places from the equator to the ecliptic, the
apparent obliquity being employed, whence results,

* It is incorrect to call one method more or less exact than another. That method alone can be con-
sidered to have solved the problem, by which any degree of precision whatever is, at least, attainable.
Wherefore, one method excels another in this respect only, that the same degree of precision may be
reached by one more quickly, and with less labor, than by the other.
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App. Longitude of Juno.

App. Latitude of Juno.

Oct.
17
27

354° 44' 54".27 ‘
352 34 44 .51
351 34 51.57

— 4° 59" 31".59
—6 21 56.25
—7 17 52.70

We join directly to this calculation the determination of the longitude and
latitude of the zenith of the place of observation in the three observations: the
rigcht ascension, in fact, agrees with the right ascension of Juno (because the
observations have been made in the meridian) but the declination is equal to the

altitude of the pole, 51°28 89”. Thus we get

Long. of the Zenith. |'

Lat. of the Zenith.

Oct. 5 24° 29’ 46° 53’
17 23 25 47 24
27 28 1 47 36

Now the fictitious places of the earth in the plane of the ecliptic, from which
the heavenly body would appear in the same manner as from the true places of
the observations, will be determined according to the precepts given in article 72.
In this way, putting the mean parallax of the sun equal to 8”.6, there results,

Reduction of Longitude. | Reduction of Distance. | Reduction of Time.

— 22".39 ’

Oct. 5 0.0003856 —0°.19
17 —27 .21 0.0002329 —0 .12
27 — 35 .82 —- 0.0002085 —0 .12

The reduction of the time is added, only that it may be seen that it is wholly
insensible. .

After this, all the longitudes, both of the planet and of the earth, are to be
reduced to the mean vernal equinox for some epoch, for which we shall adopt
the beginning of the year 1806; the nutation being subtracted the precession is
to be added, which, for the three observations, is reSpectivély 117.87, 10”.23, 8”.86,
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so that — 3”.56 is to be added for the first observation, — 5”.28 for the second,
— 6”.74 for the third.

Lastly the longitudes and latitudes of Juno are to be freed from the aberra-
tion of the fixed stars; thus it is found by well-known rules, that we must sub-
tract from the longitudes respectively 197.12, 177.11, 14”.82, but add to the lati-
tudes 07.53, 17.18, 1”.75, by which addition the absolute values are diminished,

since south latitudes are considered as negative.

151.

All these reductions being properly applied, we have the correct data of the

problem as follows: —

Times of the observations reduced

to the meridian of Paris Oct. 5.458644 17.421885 27.393077
Longitudes of Juno, ¢, ¢, ¢” 354°44’ 31”7.60 | 352°34'22".12 | 351°34'30".01
Latitudes, 8, 3, 8”7 . . —4 59 31.06 —6 21 55 .07 |—7 17 50 .95
Longitudes of the cartl, Z, 7', 7" 12 28 27 .76 | 24 1949 .06} 34 16 9 .65
Logs. of the distances, R, I/, R” 9.9996826 | 9.9980979 9.9969678

Hence the calculations of articles 136, 137, produce the following numbers,

75757 196° 0 87.36 | 191°58' 07.33 | 190° 41’ 40”17
0, 0", 0” 18 23 59 20| 32 19 24 93| 43 11 42 .05
logarithms of the sines . 9.4991995 9.7281105 9.8353631
AD,AD, AD" 232 626 4421312 29 82209 43 T 47
A"D, A"D'. A D" 241 51 15 .22 | 234 27 0 .90 | 221 13 57 .87
g &, e, S 2 19 34 .00 713 87 .70 | 4 55 46 19
logarithms of the sines . 8.6083885 9.0996915 8.9341440
log sin 3 & 8.7995259 |
log cos # ¢ 9.9991357 |
Moreover, according to article 138, we have

log tanf3 . 8.9412494n  log tan 8" . 9.1074080 n

log sin (o —17") 9.7332391n log sin (& — ") 9.6935181 n

log cos (e —1') 9.9247904 log cos (¢ — ') 9.9393180
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Hence
log (tan 8 cos (a” — ') — tan " cos (¢ —1')) =log T'sin? 8.5786513
log sin (¢" — ) =1log T'cos ¢ : 8.7423191n
Hence £ = 145° 32’ 5778 log T . 8.8260683
¢ty =337 30 58 .11 log sin (£ 7') . 0.5825441 7
Lastly
log (tan 8 sin (¢” — ') — tan §”sin (¢ — 7)) =log S . 8.2033319
log T'sin (£ 1 7) C e e .. ... 840861247
9.7947195

whence log tan (0" — o)

0’ — 0 =231°56"11".81, and therefore 6 = 0° 23’ 13" 12

According to article 140 we have

A"D — 09" = 191°15"18".85
AD —¢ = 194 48 50 .62 3
A"D —9” =198 39 33 .17 o
AD —d +0=200 10 14 .63 %
AD"—¢ =191 19 8 .27 «
AD—& 40=189 17 46 .06  «
Hence follow,
log a 9.5494437,
log b 9.8613533.

logsin 9.2904352n

(44

«

«

«

«

9.4075427 n
9.5050667 n
9.5375909 7
9.2928554 n
9.2082723 n

log cos 9.991§661

¢«

¢«

@ = - 0.3543592

9.9853301 n

Formula 13 would give log 4 = 9.8613531, but we have preferred the former

value, because sin (4D — 0"+ o) is greater than sin (4'D" —
Again, by article 141 we hayve,

o'+ o).

7.8092153 and therefore log ¢ = 2.6907847

3 log R’ sin 0’ 9.1786252
log 2 0.3010300
logsino . 7.8295601
log b 0.8613533
logcoso . 9.99994901

9.8613632



Secr. 1.] THREE COMPLETE OBSERVATIONS. 209

whence (%; = (0.7267135. Hence are derived
d=—1.5625052, loge—=8.3929518
Finally, by means of formulas, article 143, are obtained,
logz . . . . 0.0913394#
logx” . . . . 05418957 %
logh . . . . 048644807
log” . . . . 01592352

152.

The preliminary calculations being despatched in this way, we pass to the
first hypothesis. The interval of time (not corrected) between the second and
third observations is 9.971192 days, between the first and second is 11.963241.
The logarithms of these numbers are 0.9987471, and 1.0778489, whence

log 8 = 9.2343285, log 6” = 9.3154303.

We will put, therefore, for the first hypothesis,

z=1log P = 0.0791018

y = log Q = 8.5477588
Hence we have P =1.1997804, P 4 o = 1.5641396, P 4+ d = — 0.1627248;
loge . . . 8.5929518%
log (P +a). 01914900
C.log (P +d) 0.7885463 n
logtanw . . 9.3729881, whence o = 18°16'51".89, w 4 0 = - 13°40’ 5”.01.

losQ . . . 85477588
loge . . . 26907847
logsinw . . 93612147

log Qesino . 0.5997582
The equation

Qcsin o sin®* z— sin (z — 13°40" 5”.01)
is found after a few trials to be satisfied by the value z=14°35" 4”.90, whence
we have logsinz=19.4010744, log » =0.3251340. That equation admits of three
other solutions besides this, namely,

27
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z= 32° 228"
2=137 27 59
=193 418
The third must ‘be rejected because sinz is negative; the second because z is
greater than J; the first answers to an approximation to the orbit of the earth
of which we have spoken in article 142.
Further, we have, according to article 143,

log 2o .. 08648551
log(P+a) . . . . . 01914900
C.logsin(z—o0o). . . . 0.6103578
log™ . . . . . . . 06667029
logP. . . . . . . . 00791018
logZ2 . . . . . . . 05876011

2+ AD—0"=2+4199°47 1”561 =214°22" 6".41; logsin = 9.7516736 n
2+ AD"—0==2-+4188 54 32 .94 =203 29 37 .84; log sin = 9.6005923 »
Hence we have log p = 9.9270735 n, log p” = 0.0226459 n, and then
log ¢ = 0.2930977 %, log ¢ =0.2580086 1,

whence result
£ =203°1731".22 log » =0.3300178
¢"=110 10 58 .88 log»’ = 0.3212819
Lastly, by means of article 144, we obtain
$ (v +u) = 205°18'10".53
(v —u)=—3 14 2 .02
f'= 3 48 14 .66

logsin2f" . . . 91218791 logsin2f . . . 91218791
logr . . . . . 03300178 logr” . . . . . 03212819
Clog™C . . . . 03332071 ClogZr . . . . 04123989
logsin2f . . . 87851940 logsin2f” . . . 8.8555599
2f= 3°29746'.03 2/ = 4° 643”28

The sum 2 f - 2 f” differs in this case from 2 f’ only by 0”.01.
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Now, in order that the times may be corrected for aberration, it is necessary to
compute the distances ¢, ¢/, ¢” by the formulas of article 145, and afterwards to
multiply them by the time 493°, or 02.005706. The following is the calculation,

log» . . . . 033002 log+ . . . 0325613 logs+”. . . . 0.32128
log sin (AD'—{) 9.23606  logsin (0" —2z) 9.48384  logsin(4”"2'—(")9.61384
C.logsin® . . 0.50080 C.logsine’ . 027189 C.logsine” . . 0.16464
logp . . . 006688 loge” . . . 00808 logg”. . . . 0.09976
log const. . . 7.756633 7.75633 7.75633
log of reduction 7.82321 7.83719 7.85609
reduction = 0.006656 0.006874 0.007179
Observations. Corrected times. Intervals. Logarithms.
1. Cet. 5451988
L 17.415011 114963023 1.0778409
TIL 97385898 9.970887 0.9987339

The corrected logarithms of the quantities 6, 8”, are consequently 9.2343153 and
9.3134223. By commencing now the determination of the eclements from f, #/,
7", 8 we obtain log = 0.0002285, and in the same manner from f”, r, s/, é"we
get logn”=0.0003191. We need not add here this calculation explained at
length in section IIL of the first hook.

Finally we have, by article 146.

logé” . . . . 9.3134223 2log7” . . . . 0.6502680
Clogd . . . . 07656847 C.logrs” . . . 9.3487003

logn . . . . 0.0002285 logée¢” . . . . 8.5477376
Clogn” . . . 9.9996809 Clogny” . . . 9.9994524

log?” . . . . 00790164 C.logcosf . . . 0.0002022
C.logcosf'. . . 0.0009579

I C.logcosf” . . 0.0002797
log@ . . . . . 85475981

The first hypothesis, therefore, results in X = — 0.0000854, ¥ = — 0.0001607.
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153.

In the second hypothesis we shall assign to P, @, the very values, which in the
first we have found for 7, @ We shall put, therefore,
z=1log P = 0.0790164
y =log @ = 8.5475981

Since the calculation is to be conducted in precisely the same manner as in
the first hypothesis, it will be sufficient to set down here its principal results: —

O . . ... . 1301538713 | &7 . . . . . 210° 824798
oo . . . . 133851.25 | logr. . . . . 03307676
log Qesinw . . 0.5989389 | logr” . . . . 0.3222280
2. . . . .. 143319.00 | (' Fu). . . 2052215 .58
log#. . . . . 03250918 | #(u’—u). . . —3 14 4.79
log®C . . . . 06675103 | 2/ . . . . . 73453.32

o 2F + « o 4 . 329 0.8
log=r « + . 0.5885029 | g9 . . . . 4 553.12
. . . . . . 2031638.16

It would hardly be worth while to compute anew the reductions of the times
on account of aberration, for they scarcely differ 1° from those which we have
got in the first hypothesis.

The further calculations furnish logn =0.0002270, logn” =0.0003173, whence
are derived '

log P’ = 0.0790167 X =4 0.0000003
log @ = 8.5476110 ¥ = 4+ 0.0000129

From this it appears how much more exact the second hypothesis is than the
first.

154.

In order to leave nothing to be desired, we will still construct the third hypothe-
sis, in which we shall again choose the values of P, ¢, obtained in the second
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hypothesis, as the values of P, Q. Putting, therefore,
z=1log P =10.0790167
Y= log Q — 8.0476110
the following are found to be the principal results of the calculation: —

w .. . . 18°15887.39 & .. o .. 2100 825765

w—+o . . . . 133851 .51 logr. . . & = 0.3307640
logQesinw . . 0.5989542 | logr” . . . . 0.3222239
Z . . « « « . 143319 .50 $ (v 4uw). . . 2052214 .57
logr/'. . . . . 0.3259878 | #(u'—w). . . —3 14 4 .78
log™C . . . . 06675154 | 2/ « » o o o 7345373

o 98f . . . . . 829 039

10g7 B e e e 05884:987 Zf” - = 4 5 53 34
Eo & & m w « 203 16 38 41

All these numbers differ so little from those which the second hypothesis fur-
nished, that we may safely conclude that the third hypothesis requires no further
correction.* We may, therefore, proceed to the determination of the elements
from 2 f7, r, 7/, &, which we dispense with transcribing here, since it has already
been given in detail in the example of article 97. Nothing, therefore, remains
but to compute the position of the plane of the orbit by the method of article
149, and to transfer the epoch to the beginning of the year 1805. This computa-
tion is to be based upon the following numbers : —

AD —{= 9°55'51"41

3 (y+u»)=202 18 13 .855

3 (y—u)=—06 18 5 495
whence we obtain

3 (g4 %)= 196°4514”.62

3 (g—h)=—4 3724 41

30 = 6 3322.05

*If the calculation should be carried through in the same manner as in the preceding hypotheses,
we should obtain X =0, and = 0.0000003, which value must be regarded as vanishing, and,

in fact, it hardly exceeds the uncertainty always remaining in the last decimal place.
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We have, therefore, # =201° 20°39".03, and so Q=7—A==171° 7°48".73; fur-
ther, g = 192° 5'50”.21, and hence, since the true anomaly for the first observa-
tion is found, in article 97, to be 310°5529”.64, the distance of perihelion from
the ascending node in the orbit, 241° 10°20”.57, the longitude of the perihelion
52°18 97.30; lastly, the inclination of the orbit, 13° 6'447.10. If we prefer to
proceed to the same calculation from the third place, we have,
A"D — ("= 24°1835".25
3(y"+u") =196 24 54 .98
3 (y"—u")=—>5 43 14 .81
Thence are derived '
(9" +2")= 211°24'32"45
3 (9" —H')=—11 43 48 48
) = 6 33 22 .05

and hence the longitude of the ascending node, I” — 4’ = 171° 7’ 48”72, the lon-
gitude of the perihelion 52°18 9”.30, the inclination of the orbit 13° 6"44".10,
Just the same as before.

The interval of time from the last observation to the beginning of the year
1805 is 64.614102 days; the mean heliocentric motion corresponding to which is
53293".66 —14°48"13".66 ; hence the epoch of the mean anomaly at the begin-
ning of the year 1805 for the meridian of Paris is 349° 34" 12".38, and the epoch
of the mean longitude, 41° 52" 21”.68.

155.

That it may be more clearly manifest what is the accuracy of the elements
just found, we will compute from them the middle place. For October 17.415011
the mean anomaly is found to be 332°28 54”.77, hence the true is 315° 1’ 23".02
and log »”, 0.3269877, (see the examples of articles 13, 14); this true anomaly
ought to be equal to the true anomaly in the first observation increased by the
angle 2 77, or to the true anomaly in the third observation diminished by the
angle 2 f, that is, equal to 315° 1'22”.98; and the logarithm of the radius vector
should be 0.3259878: the differences are of no consequence. If the calculation
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for the middle observation is continued to the geocentric place, the results dif-
fer from observation only by a few hundredths of a second, (article 63;) these
differences are absorbed, as it were, in the unavoidable errors arising from the
want of strict accuracy in the tables.

We have worked out the preceding example with the utmost precision, to
show how easily the most exact solution possible can be obtained by our method.
In actual practice it will rarely be necessary to adhere scrupulously to this
type. It will generally be sufficicut to use six places of decimals throughout;
and in our example the second hypothesis would have given results not less accu-
rate than the third, and even the first would have been entirely satisfactory. We
imagine that it will not be unacceptable to our readers to have a comparison of
the elements derived from the third hypothesis with those which would result
frem the use of the second or first hypothesis for the same object. We exhibit
the three systems of elements in the following table: —

From hypothesis IIL

From hypothesis II.. From hypothesis I.

|
Epoch of mean long. 1805 | 41°52'217.68 | 41°52'18".40 | 42°12'37".83

|
Mean daily motion . . 824".7989 | 824".7983 | 8238".5025
Peribelion . . . . . 52 18 9 .30 52 18 6 .66 52 41 9 .81
5 0o o o o o o o 14 12 1 .87 ‘ 14 11 59 .94 14 24 27 49
| Log of semi-axis major . 0.4224389 0.4224392 0.4228944
Ascending node . . .| 171 7 48.73 171 7 49.15 | 171 5 48 .86

13 645 .12 13 2 37.50

Inclination of the orbit . ‘ 13 6 44.10

|

By computing the heliocentric place in orbit for the middle observation from
the second system of elements, the error of the logarithm of the radius vector is
found equal to zero, the error of the longitude in orbit, 0”03 ; and in comput-
ing the same place by the system derived from the first hypothesis, the error of
the logarithm of the radius vector is 0.0000002, the crror of the longitude in
orbit, 1”.31. And by continuing the calculation to the geocentric place we have,
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We shall take the second example from Pallas, the following observations of
which, made at Milan, we take from von Zacw’s Monatliche Correspondenz, Vol.

XIV., p. 90.

DETERMINATION OF AN ORBIT FROM

From hypothesis II.

From hypothesis I.

Geocentric longitude
Error d
Geocentric latitude .
HLTOL™ % & & s

352° 34’ 22".26
0.14

6 21 55.06
0.01

352° 34’ 19".97
2.15

6 21 54 .47
0.60

156.

Mean Time, Milan.

App. Right Ascension.

App. Declination S.

1805, Nov. 5714% 14m 4s

Dec. 611 51 27

1806, Jan. 15 8 50 36

78° 20" 37".8
73 8 48 .8
67 14 11.1

27° 16’ 56".7
32 52 44 .3
28 38 8.1

We will

ecliptic, and we will make the computation as if the orbit.were still wholly un-
known. In the first place we take from the tables of the sun the following data

for the given dates: —

We reduce the longitudes of the sun, the precessions {-7".69, 4-3".36, —2".11,
being added, to the beginning of the year 1806, and thence we afterwards derive
the right ascensions and declinations, using the mean obliquity 23° 27 563”.63 and

here take the equator as the fundamental plane instead of the

Longitude of the Sun Distance from Latitude of

from mean Equinox. the Earth. the Sun.
Nov. 5 223° 14" 7".61 ~0.9804311 0".59
Dec. 6 254 28 42.59 0.9846753 0.12
Jan. 15 295 5 47 .62 0.9838153 —0.19

taking account of the latitudes. In this way we find
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Right ascension of the Sun.| Decl. of the Sun 8.

Nov. 5 220° 46’ 44”.65 15° 49 437.94
Dec. 6 253 9 23 .26 22 33 39 .45
Jan. 15 207 2 51.11 21 8 12 .98

These places are referred to the centre of the earth, and are, therefore, to be
reduced by applying the parallax to the place of observation, since the places of
the planet cannot be freed from parallax. The right ascensions of the zenith to
be used in this calculation agree with the right ascensions of the planet (because
the observations have been made in the meridian), and the declination will be

throughout the altitude of the pole, 45°28". Hence are derived the following
numbers: —

Right asc. of the Earth. Decl. of the Earth N. | Log of dist. from the Sun.

Nov. 5 40° 46" 48".51 15° 49" 48".59 9.9958575
Dec. 6 73 9 23 .26 22 33 42 .83 9.9933099
Jan. 15 117 2 46 .09 21 8 17 .29 9.9929259

The observed places of Pallas are to be freed from nutation and the aberra-
tion of the fixed stars, and afterwards to be reduced, by applying the precession,
to the beginning of the year 1806. On these accounts it will be necessary to
apply the following corrections to the observed places: —

Observation I. Observation II. Observation IIIL.
Right asc. = Declination. Right asc. | Declination. § Right asc. | Declination.
| =
Nutation —12".86 — 37.08 | —13".68 — 38”42 | —18".06 | — 3".75 ]

Aberration | —18.13 — 9.89 | —21.51 | — 1.63 | —15.60 | - 9.76

Precession | 4+ 5.43 + 0.62 |+ 2.55| 4+0.39 | — 1.51 , — 0.33
|.
I

Sum —25.56 | —12.35 | —32 .64 | — 4.66 | —30.17 | 4 5.68

28
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Hence we have the following places of Pallas, for the basis of the compu-
tation: —

Mean Time, Paris. Right Ascension. Declination.
Nov. 5.574074 78° 20" 12".24 —27° 17" 9".05
36.475035 73 8 16.16 —32 52 48 .96
76.349444 67 13 40 .93 —28 38 2 .42
157.

Now in the first place we will determine the positions of the great circles
drawn from the heliocentric places of the earth to the geocentric places of the
planet. We take the symbols %A, %', A", for the intersections of these circles
with the equator, or, if you please, for their ascending nodes, and we denote the
distances of the points B, B, B” from the former points by 4, 4, 4”. In the
greater part of the work it will be necessary to substitute the symbols %, 2, A",
for A, A, A", and also 4, 4, 4" for d, ¢’,0”; but the careful reader will readily
understand when it is necessary to retain 4, 4', 4", d, ¢, ", even if we fail to
advise him.

The calculation being made, we find

Right ascensions of the

points %, o', A" . 933° 5457710 | 253° §'577.01 | 276°40 25”.87
127 7" 51 17 15 .74 90 1 3.19 | 181 59 58 .03
A, 4,4 . 215 58 49 27 | 212 5248 .96 | 220 9 12 .96
3,8, 0" . . 56 26 34 .19 55 26 31.79 | 69 10 57 .84
A'D, AD, AD" . 923 54 52 .13 30 18 8 .25 29 8 43 .32
A"D, W'D, WD 33 326.35 31 59 21 .14 22 20 6 .91.
&, & . 47 154 69 89 34 57 .17 42 33 41 .17
logarithms of the sines 9.8643525 9.9999885 9.8301910
log sin % &’ . 9.8478971

log cos % & 9.8510614
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The right ascension of the point U’ is used in the calculation of article 138
instead of /. In this manner are found

log 7'sin ¢
log 7" cos ¢

8.4868236 n
0.2848162 n

Hence ¢ =189° 248".83, log 7"=9.2902527 ; moreover, ¢+ 5’ =279° 3'52".02,

log S .

log T'sin (4 7') .
whence 4" — 0 = 208° 1'55".64, and 0 = 4° 50’ 53".32.

In the formulas of article 140 sin d, sin ¢’, sin 0” must be retained instead of

9.0110566 »
9.2847950 n

a, b and f? and also in the formulas of article 142. For these calculations we

have

WD — A" = 171° 50" 8".18
ND — A =174 19 13 .98
W'D —A" =172 54 13 .39
UD — A4+ 0 =175 52 56 49
D' — A =173 9 54 .05

WD'— A 46 =174 18 11 27
Hence we deduce
log % = 0.9211850,
log #” = 0.8112762,
log @ = 0.1099088,
log b = 0.1810404,
log? = 0.0711314,

whence we have log & = 0.1810402.

mean between these two nearly equal values.

log sin 9.1523306

«

&«

«

[13

«

&«

«

«

«

«

8.9954722
9.0917972
8.8561520
9.0756844
8.9967978

log cos 9.9955759 %
“« « 0.9978629 n

log2 = 0.0812057 n
log 1" = 0.0319691 »

o=} 1.2879790

We shall adopt log 4 = 0.1810403 the

Lastly we have

log ¢ = 1.0450295
d = - 0.4489906
log ¢ = 9.2102894

with which the preliminary calculations are completed.
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The interval of time between the second and third observations is 39.874409
days, between the first and second 30.900961: hence we have
' log 6 = 9.83627567, log 6”|= 9.7255533.

We put, therefore, for the first hypothesis,
z =log P — 9.8892776
y=1log @ =9.5618290
The chief results of the calculation are as follows: —
w4 0 =20° 8§ 46”.72
log Q¢ sin 0 = 0.0282028
Thence the true value of 2z is 21°11’24".30, and of log7, 0.3609379. The three
remaining values of z satisfying equation IV, article 141, are, in this instance,
z= 63°41'12"
=101 12 58
z=199 24 7

the first of which is to be regarded as an approximation to the orbit of the earth,
the deviation of which, however, is here much greater than in the preceding
example, on account of the too great interval of time. The following numbers
result from the subsequent calculation : —

E o o v o o .« 195°12 2748

" & = @ = » 196 67 60 .78

logr. . s & % 0:3647022

log?” . . . . 0.3355758

(o' 4u). . . 266 4750 47

(/' —u). . .—4339 5.33

27 .+ .+ . . 223240 .86

2 . . . . . 13 54107

27/ . . . & s 9 27 0.05
We shall distribute the difference between 2 f” and 2 f+ 2 f”, which in this case
is 0”.36, between 2 f and 2 /" in such a manner as to make 2/=13° 5 40".96,
and 2 /"= 9° 26’ 59".90.

The times are now to be corrected for aberration, for which purpose we are to
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put in the formulas of article 145,
A.D’—— p- — Q[D/_J + d\ — C’ AIIDI— CIIZ ?«(,’DI—'Z’”—I— 6”—C”.
We have, therefore,

logr . . . . 036470 log»" . . . 035094 log»” . . . . 0.33557
log sin (AD'—¢) 9.76462  logsin (0" —=z) 9.75038  logsin (A”D'—(")9.84220
C.logsind . . 0.07918 C.logsind” . 0.08431 C.logsind” . . 0.02932
logconst. . . 7.75633 logconst. . . 7.75633 logconst. . . T7.756633
_ 7.96483 7.94196 7.96342
roeton ol 0000222 0.008749 0.009192
the time
Hence follow,
Observations. Corrected times. Intervals. Logarithms.
L Nov. 5.564852
IL 36.466236 304901434 1.4899785
11L 16.340252 39 .873966 1.6006894

whence are derived the corrected logarithms of the quantities 8, 8” respectively
9.8362708 and 9.72566699. DBeginning, then, the calculation of the elements
from », 7", 2 f, 6, we get logn = 0.0081921, just as from 7, #, 2 f”, 8" we obtain
log " = 0.0017300. Hence is obtained

log P'=9.8907512 log Q"= 9.5712864,
and, therefore, _

X = 40.0014736 Y= 4 0.0094574

The chief results of the second hypothesis, in which we put

z = log P = 9.8907512
y =log @ = 9.5712864

are the following: —

o—+o . . . . 20° 8 0”87 E.o o o o o . 1956°16"5697.90
log @csinw . . 0.0373071 ¢ « « « . . 196 52 40 .63
2. . « ¢ eoas 2112 6.09 | logr « « s & 0.3630642

log7. . . & . 0.3507110 logr’ & 4 & 0.3369708
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$(+u). . . 267 610”75 | 2 . . . . . 22°32 869
t(' —u). . .—4339 4.00 | 2f . . . . . 183 154 .65
277 . . . . . 93014 .38
The difference 0.”34, between 2 f" and 2+ 2" is to be so distributed, as to
make 2 =13° 1'54”.45, 2" = 9° 30’ 14".24.

If it is thought worth while to recompute here the corrections of the times,
there will be found for the first observation, 0.009169, for the second, 0.008742,
for the third, 0.009236, and thus the corrected times, November 5.564905, Novem-
ber 36.466293, November 76.340280. Hence we have

logé . . . . . . 98362703 ’ logn”. . . . . . 00017413
logd” . . . . . . 972556594 ' logP . . . . . . 9.8907268
logn . . . . . . 00031790 | log@ . . . . . . 95710593
Accordingly, the results from the second hypothesis are
X =—0.0000244, ¥ = — 0.0002271.
Finally, in the third hypothesis, in which we put

z=log P = 9.8907268
y=1log @ = 9.5710593

the chief results of the calculation are as follows: —

w40 . . . . 2008 1762 log#” . . . . 0.3369536
log Qesino . . 0.0370857  #(v"4w). . . 267 5 53.09
z . . 21 12 4 .60 (' —u). . .—43 39 4.19
logr/ . . o . . 0.3507191 27 . . . . . 2232 7.67
C . . « « . .195 16 54 .08 2f . . .+ . . 13 157 42
& . . . . . .196 52 44 45 27 % % v 9 30 10 .63
logr . . . o . 0.3630960 |
The difference 0”.38 will be here distributed in such a manner as to make
2f=13° 1'57".20, 2" = 9° 80" 10”.47*

* This somewhat increased difference, nearly equal in all the hypotheses, has arisen chiefly from

this, that ¢ had been got too little by almost two hundredths of a second, and the logarithm of & too
great by several units.
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Since the differences of all these numbers from those which the second
hypothesis furnished are very small, it may be safely concluded that the third
hypothesis requires no further correction, and, therefore, that a new hypothesis
would be superfluous. Wherefore, it will now be proper to proceed to the calcu-
lation of the elements from 2f”, &, r,#”: and since the processes comprised in
this calculation have been most fully explained above, it will be sufficient to add
here the resulting elements, for the benefit of those who may wish to perform the

computation themselves:—

Right ascension of the ascending node on the equator . . . . 158°40"38".93
Inclination of the orbit to the equator . . . . . . . . . 11 42 49 13
Distance of the perihelion from the ascending node . . . . . 323 14 56 .92
Mean anomaly for the epoch 1806 . . . . . . . . . . . 335 4 13 .05

Mean daily (sidereal) motion . o « « & &+ o o o & o 77072662

Angle of eccentricity, ¢ . . . . . ¢ ¢ ¢ ¢ ¢ o o . . 14 9 3.91

Logarithm of the semi-axis major . . . . . . . « . . . 0.4422438
158.

The two preceding examples have not yet furnished occasion for using the
method of article 120: for the successive hypotheses converged so rapidly that
we might have stopped at the second, and the third scarcely differed by a sensible
amount from the truth. We shall always enjoy this advantage, and be able to do
without the fourth hypothesis, when the heliocentric motion is not great and the
three radii vectores are not too unequal, particularly if, in addition to this, the
intervals of the times differ from each other but little. But the further the con-
ditions of the problem depart from these, the more will the first assumed values
of P and @ differ from the correct ones, and the less rapidly will the subsequent
values converge to the truth. In such a case the first three hypotheses are to
be completed in the manner shown in the two preceding examples, (with this
difference only, that the elements themselves are not to be computed in the third
hypothesis, but, exactly as in the first and second hypotheses, the quantities 7, 9,”,
P, @, X, Y); but then, the last values of P, @ are no longer to be taken as
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the new values of the quantities P, @ in the new hypothesis, but these are to
be derived from the combination of the first three hypotheses, agreeably to the
method of article 120. It will then very rarely be requisite to proceed to the
fifth hypothesis, according to the precepts of article 121. We will now explain
these calculations further by an example, from which it will appear how far our
method extends.

159.

For the third example we select the following observations of Ceres, the first
of which has been made by Orpers, at Bremen, the second by Harping, at Got-
tingen, and the third by BesseL, at Lilienthal.

Mean time of place of observation. -Right Ascension. North declination.
1805, Sept. 5718* 8™ 54 95° 59/ 25" 22° 21/ 25"
1806, Jan. 17 10 58 51 101 18 40.6 30 21 22.3
1806, May 23 10 23 53 121 56 7 28 2 45

As the methods by which the parallax and aberration are taken account of,
when the distances from the earth are regarded as wholly unknown, have already
been sufficiently explained in the two preceding examples, we shall dispense
with this unnecessary increase of labor in this third example, and with that
object will take the approximate distances from von Zacw's: Monatliche Corre-
spondenz, Vol. X1, p. 284, in order to free the observations from the effects of
parallax and aberration. The following table shows these distances, together
with the reductions derived from them : — '

Distance of Ceres from the earth . . . 2.899 1.638 2.964
Time in which the light reaches the earth 23749 13m28° 24m21¢
Reduced time of observation . . . . .| 12*45™ 5 | 10*45m23° 9" 59m 32
Sidereal time in degrees . . . . . . 355° 55 97° 59 210° 41’
Parallax in right ascension . . . . .| 1790 —+ 0”.22 — 1797
Parallax in declination . . . . . . .| —208 | —190 — 2.04
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Accordingly, the data of the problem, after being freed from parallax and
aberration, and after the times have been reduced to the meridian of Paris, are as
follows: —

Times of the observations. Right Ascension. Declination.

1805, Sept. 5, 12* 19™ 14* 95° 597 23".10 22° 21’ 27".08
1806, Jan. 17,10 15 2 101 18 40 .38 30 21 24 .20
1806, May 23, 9 33 18 121 56 8.97 28 2 47.04

From these right ascensions and declinations have been deduced the longi-
tudes and latitudes, using for the obliquity of the ecliptic 23° 27" 55”.90, 23° 27
54”.59, 28° 27" 53".27 ; the longitudes have been afterwards freed from nutation,
which was for the respective times 417731, 4 177.88, 4 18”.00, and next re-
duced to the beginning of the year 1806, by applying the precession 4 15”.98,
— 2”39, —19”.68. Lastly, the places of the sun for the reduced times have
been taken from the tables, in which the nutation has been omitted in the longi-
tudes, but the precession has been added in the same way as to the longitudes of
Ceres. The latitude of the sun has been wholly neglected. In this manner have
resulted the following numbers to be used in the calculation: —

Times, 1806, September 5.61336 139.42711 265.39813
d, o, .o L. 95° 32" 18".56 99°49" 5”.87 118° 5'28".85
B, 8,87 & & < « = —0 59 34 .06 -+ 7 16 36 .80 -+7 38 49 .39
LU,I" « < s 5 = = 342 54 56 .00 117 12 43 26 241 58 50 .71
log R, log R, log R" . 0.0031514 9.9929861 0.0066974

The preliminary computations explained in articles 136-140 furnish the fol-
lowing: —

B A A 358°55 28".09 166° 52 11”7.49 170° 48" 44".79
0,0, . . . .. 112 37 9 .66 18 48 39 81 123 32 52 13
AD,AD, AD" . . . 15 32 41 .40 2562 42 19 .14 186 2 22 .38
A"D, A"D, A'D". . . 138 45 4 .60 6 26 41 .10 368 5 67 .00
e e, .. . . .. 29 18 8 .21 170 32 59 .08 156 6 25 .25

29
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=852 47.05
* loga = 0.1840193 1, a = — 1.5276340
log b = 0.0040987

log e = 0.8568244
log * = 0.1611012
logx” = 9.9770819
log ¢ =2.0066735 log . = 9.91640907%
=117.560873 log . =9.7320127n
The interval of time between the first and second observations is 133.91375
days, between the second and third, 125.97102: hence

log 6 =0.3358520, log 8" =0.3624066, log%,=0.0265546, log 66" = 0.6982586 .
We now exhibit in the following table the principal results of the first three

hypotheses: —

L II. IIL
logP == 0.0265546 0.0256968 0.0266275
log 9=y 0.6982586 0.7390190 0.7481066
w-+to 7°16'13".623 7°14'47".139 7°14'45".071
log Qcsinw 1.1546650 n 1.1973925% 1.2066327 n
2 7 3569 .018 7T 232 .870 7 216-.900
log?’ 0.4114726 0.4129371 0.4132107
¢ 160 10 46 .74 160 20 7 .82 160 22 9 .42
g 262 6 1.03 262 12 18 .26 262 14 19 49
log » 0.4323934 0.4291773 0.4284841
log »” 0.4094712 0.4071975 | 0.4064697
3 (v +u) 262 55 23 22 262 67 6 .83 262 57 31 .17
(v —u) 273 28 50 .95 273 29 16 .06 273 29 19 .56
2f 62 34 28 40 62 49 56 .50 62 53 57 .06
2f 31 8 30 .03 31 15 59 .09 31 18 13 .83
27" 31 25 58 43 31 33 67 .32 31 36 43 .32
logn 0.0202496 0.0203158 0.0203494
log " 0.0211074 0.0212429 0.02127561
log P’ 0.0256968 0.0266276 0.0256289
log ¢ 0.7390190 0.7481055 0.7502337
X — 0.0008578 — 0.0000693 ~+ 0.0000014
Y —+ 0.0407604 —+ 0.0090865 ~+ 0.0021282"
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If we designate the three values of X by 4, A, A”; the three values of ¥ by
B, B, B”; the quotients arising {rom the division of the quantities A'B"—A"F’,
A"B — AB", AB'— A’ B, by. the sum of these quantities, by £, &', 2”, respectively,
so that we have 244 +%"=1; and, finally, the values of log 7" and log ¢ in the
third hypothesis, by M and 4V, (which would become new values of z and # if it
should be expedient to derive the fourth hypothesis from the third, as the third
had been derived {rom the second): it is easily ascertained {rom the forinulas of
article 120, that the corrected value of z is M — £ (4" 4 A”)
rected value of y, N—Fk (L' + B")— kDB
former becomes 0.0256331, the latter, 0.7509143. Upon these corrected values
we construct the fourth lypothesis, the chief results of which are the following: —

— ' A”, and the cor-
The calculation being made, the

w+to . 7°14'457247 = log+” 0.4062033
log Q¢sinw 1.2094284n 3 ("4 u) . 262°5738".78
2. . . s 5 T 212 .736 (0 —u) . 273 29 20 .73
logr'. . . . . 0. 413"817 2f 62 55 16 .64
E. . . . . . 160 2245 .38 27 . 3119 1 49
¢. . .« . 26215 3.90 27" . 31 36 15 .20
logr . = & L 0.4282792
The difference between 2 /" and 2 f+ 2 /" proves to be 0”.05, which we shall
distribute in such a manner as to make 2/=231°19" 1747, 2 /" = 31° 36’ 15".17.

If now the elements are determined [rom the two extreme places, the (ollowing
values result: —

True anomaly for the first place 289° 73975

True anomaly for the third place . . . . 352 2 56 .39
Mean anomaly for the first place 297 41 35 .65
Mean anomaly for the third place . 353 15 22 49
Mean daily sidereal motion - 769".6755
Mean anomaly for the beginning of the year 1806 . 322 35 52 .51
Angle of eccentricity, ¢ 4 37 57 .78
Logarithm of the semi-axis major . 0.4424661

By computing from these elements the heliocentric place for the time of the
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middle observation, the mean anomaly is found to be 326°19 25".72, the loga-
rithm of the radius vector, 04132825, the true anomaly, 320° 48’ 54”.87 : this last
should differ from the true anomaly for the first place by the quantity 2 f”, or
from the true anomaly for the third place by the quantity 2 f, and should, there-
fore, be 320° 43’ 54”.92, as also the logarithm of the radius vector, 0.4132817:
the difference 0”.05 in the true anomaly, and of eight units in the logarithm, is
to be considered as of no consequence.

If the fourth hypothesis should be conducted to the end in the same way as
the three preceding, we would have X =0, ¥'= 0.0000168, whence the follow-
ing corrected values of # and y would be obtained,

z=1log P = 0.0256331, (the same as in the fourth hypothesis,)
Y= log Q = 0.7608917. 5

If the fifth hypothesis should be constructed on these values, the solution would
reach the utmost precision the tables allow: but the resulting eléménts would
not differ sensibly from those which the fourth hypothesis has furnished.

Nothing remains now, to obtain the complete elements, except that the posi-
tion of the plane of the orbit should be computed. By the precepts of article
149 we have o '

From the first place. From the third place.

G v e e e e e . . 304° 944722 g . . .. 8775 0791

ko « o o . 261 56 6.94 A”. . . . 161 0 1.61

2. « « « = « « « .« 103733.02 10 37 33 .00

Q@ 4+ &+ s« & & w s 80 68 49.06 " 80 58 49 .10

D.1stancev0f the Rerlhehon} 65 2 4 AT 65 9 4 59
from the ascending node

Longitude of the perihelion 146 0 53 .53 146 0 53 .62

The mean being taken, we shall put=10° 37’ 33".01, @ = 80° 58’ 49”.08, the
longitude of the perihelion —146° 0 53".57. Lastly, the mean longitude for
the beginning of the year 1806 will be .108° 36" 46”.08.



Secr. 1] THREE COMPLETE OBSERVATIONS. 229

160.

In the exposition of the method to which the preceding investigations have
been devoted, we have come upon certain special cases to which it did not apply,
at least not in the form in which it has been exhibited by us. We have scen
that this defect occurs firsf, when any one of the three geocentric places coincides
either with the corresponding heliocentric place of the earth, or with the oppo-
site point (the last case can evidently only happen when the heavenly body
passes between the sun and earth): secend, when the first geocentric place of the
heavenly body coincides with the third ; 7kird, when all three of the geocentric
places together with the second heliocentric place of the earth are situated in the
same great circle.

In the first case the position of one of the great circles AB, A'B’, A”B”, and in
the second and third the place of the point B% will remain indeterminate. In
these cases, therefore, the methods before explained, by means of which we have
shown how to determine the heliocentric from the geocentric places, if the quan-
tities P, @, are regarded as known, lose their efficacy : but an essential distinction
is here to be noted, which is, that in the first case the defect will be attributable
to the method alone, but in the second and third cases to the nature of the prob-
lem; in the first case, accordingly, that determination can undoubtedly be effected
if the method is suitably altered, but in the second and third it will be absolutely
impossible, and the heliocentric places will remain indeterminate. It will not be
uninteresting to develop these relations in a few words: but it would be out of
place to go through all that belongs to this subject, the more so, because in all
these special cases the exact determination of the orbit is impossible where it
would be greatly affected by the smallest errors of observation. The same defect
will also exist when the observations resemble, not exactly indeed, but nearly,
any one of these cases; for which reason, in selecting observations this is to be
recollected, and properly guarded ag:minét, that no place be chosen where the
heavenly body is at the same time in the vicinity of the node and of opposition
or conjunction, nor such observations as where the heavenly body has nearly re-
turned in the last to the geocentric place of the first observation, nor, finally, such
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as where the great circle drawn from the middle heliocentric place of the earth to

-the middle geocentric place of the heavenly body makes a very acute angle with
the direction of the geocentric motion, and nearly passes through the first and
third places.

161.

We will make three subdivisions of the first case.

* I. If the point B coincides with A4 or with the opposite point, & will be equal
to zero, or to 180°; 7, &, &’ and the points 2, D", will be indeterminate; on the
other hand, ¢/, ", ¢ and the points D, B* will be determinate; the point € will
necessarily coincide with 4. By a course of reasoning similar to that pursued in
article 140, the following equation will be easily obtained : —

00— sin. (z— d). Vi si.n ¢’ sin (4" D — ") —a
sin z R”sin ¢” sin (4"D— & o)
It will be proper, therefore, to apply in this place all which has been explained in

articles 141, 142, if, only, we put a =0, and & is determined by equation 12,
article 140, and the quantities #, 7/, % , 7—':7, will be computed in the same manner
as before. Now as soon as z and the position of the point " have become
known, it will be possible to assign the position of the great circle C(’, its inter-
section with the great circle A”B”, that is the point C”, and hence the arcs C'C”,
ce”, 0’0" or 27", 2f,2f. Lastly, from these will be had
. w'r'sin2f ,  w'rsin2f”
= wsmef T T Wsnes”

II. Every thing we have just said can be applied to that case in which B”
coincides with 4” or with the opposite point, if, only, all that refers to the first
place is exchanged with what relates to the third place.

III. But it is necessary to treat a little differently the case-in which B’ coin-
cides with A" or with the opposite point. There the point ¢’ will coincide with
A" ¥, & & and the points D, D", B*, will be indeterminate: on the other hand,
the intersection of the great circle BB” with the ecliptic;+ the longitude of which

T More generally, with the great circle AA”: but for the sake of brevity we are now considering
that case only where the ecliptic is taken as the fundamental plane.
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may be put equal to /' 7, may be determined. By reasonings analogous to
those which have been developed in article 140, will be obtained the equation

Rsindsin(A4"D — ") sin 7

P / l : //
0=n R"sin 8" sin (4D'— 9) +w'r R sin (("— ' — ) T

Let us designate the coefficient of #, which agrees with «, article 140, by the
same symbol @, and the coefficient of #'#' by $: @ may be here also determined
by the formula

Rsin (I'4+r—1)

e - STY (g g

We have, therefore,
0 =an -+ Bu'r' + ',

which equation combined with these,

P="1 0=2("F"—1) "

produces
ﬂ(P‘I‘l) P Q =0,

whence we shall be able to get 7/, unless, indeed, we should have § = 0, in which
case nothing else would follow from it except = —a. Further, although we
might not have # = 0 (when we should have the third case to be considered in
the following article), still # will always be a very small quantity, and therefore
P will necessarily differ but little from — @: hence it is evident that the deter-
mination of the coefficient
pP+1)
P+a
is very uncertain, and that 7/, therefore, is not determinable with any accuracy.
Moreover, we shall have

E’ﬂ o P+ta 'Y P —|— a

n B — gP "
after this, the following equations will be easily developed in the same manner as

in article 143,

o rsm;/ " 7
romé=-———; sin (" —1'),
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005
5 g n’7’ sin
7‘I/ sin Q” —_ 7

sin (I —1),

n"sin &
“ no__ ',, siny . . 0 5=0
rsin (§ —AD)=r Pﬁ7s1n(§ —A"D’),
from the combination of which with equations VIII. and IX. of article 143, the

quantities 7, {, 7, 5" can be determined. The remaining processes of the calcula-
tion will agree with those previously described.

162.

In the second case, where B” coincides with B, I will also coincide with them
or with the opposite point. ~Accordingly, we shall have A0’ — ¢ and 4"D'—¢”
either equal to 0 or 180°: whence, from the equations of article 143, we obtain

w'r sin & R sin d
n ~ —sinesin (z+4'D—¢’)’
n'r sin ¢’ B sin 6"

7 =L v G+ 4D —7)"

R sin 0 sin & sin (z 4+ A'D" —d') = PR"sin 0" sin e sin (z + A'D — &').
Hence it is evident that z is determinable by P alone, independently of @, (\un-
less it should happen that 4’D” = A’'D, or = A’D + 180°, when we should have
the third case): z being found, 7 will also be known, and hence, by means of
the values of the quantities &

%T’, "—;,Trl, also % and %;
and, lastly, from this also
__ofn n’ 3
e=2(3+5—1)
Evidently, therefore, P and @ cannot be considered as data independent of each
other, but they will either supply a single datum only, or inconsistent data. The
positions of the points €, " will in this case remain arbitrary, if they are only
taken in the same great circle as (.
In the third case, where 4', B, B, B”,lie in the same great circle, D ard D" will
coincide with the points B”, B, respectively, or with the opposite points: hence is
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obtained from the combination of equations VIL, VIIL, IX.,, article 143,
P— Rsindsine”  Rsin('—10)
R7sin§"sine R’sin (I"—10)"
In this case, therefore, the value of P is had from the data of the problem, and,
therefore, the positions of the points C, ¢, €, will remain indeterminate.

163.

The method which we have fully explained from article 136 forwards, is prin-
cipally suited to the first determination of a wholly unknown orbit: still it is em-
ployed with equally great success, where the object is the correction of an orbit
already approximately known by means of three observations however distant
from each other. DBut in such a case it will be convenient to change some things.
When, for example, the observations embrace a very great heliocentric motion, it
will no longer be admissible to consider —5/- and 06" as approximate values of the
quantities P, @: but much more exact values will be obtained from the very
nearly known elements. Accordingly, the heliocentric places in orbit for the
three times of observation will be computed roughly by means of these elements,
whence, denoting the true anomalies by v, ¢/, ¢”, the radii vectores by =, ¥, +”, the
semi-parameter by p, the following approximate values will result: —

Pan(v—v) 0= 4?"731@%(v'—a*)si~n%(z/’—v')-

7’ sin (v —')’ peos g (v —v)
With these, therefore, the first hypothesis will be constructed, and with them, a
little changed at pleasure, the second and third: it would be of no advantage
to adopt P’ and ¢ for the new values, since we. are no longer at liberty to sup-
pose that these values come out more exact. For this reason all three of the
hypotheses can be most conveniently despatched af the same ime: the fourth will
then be formed according to the precepts of article 120. Finally, we shall not
object, if any person thinks that some one of the ten methods explained in arti-
cles 124-129 is; if not more, at least almost equally expeditious, and prefers to
use it.

30
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SECOND SECTION.

4
DETERMINATION OF AN ORBIT FROM FOUR OBSERVATIONS, OF WHICH TWO
ONLY ARE COMPLETE.

164.

WE have already, in the beginning of the second book (article 115), stated
that the use of the problem treated at length in the preceding section is lim-
ited to those orbits of which the inclination is neither nothing, nor very small,
and that the determination of orbits slightly inclined must necessarily be based
on four observations. But four complete observations, since they are equivalent
to eight equations, and the number of the unknown quantities amounts only to
six, would render the problem more than determinate: on which account it will
be necessary to set aside from two observations the latitudes (or declinations),
that the remaining data may be exactly satisfied. Thus a problem arises to
which this section will be devoted: but the solution we shall here give will ex-
tend not only to orbits slightly inclined, but can be applied also with equal suc-
cess to orbits, of any inclination however great. Here also, as in the problem of
the preceding section, it is necessary to separate the case, in which the approxi-
mate dimensions of the orbit are already known, from the first determination
of a wholly unknown orbit: we will begin with the former.

165.

The simplest method of adjusting a known orbit to satisfy four observations
appears to be this. Let z, 7, be the approximate distances of the heavenly body
from the earth in two complete observations: by means of these the correspond-

ing heliocentric places may be computed, and hence the elements; after this,
(234)
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from these elements the geocentric longitudes or right ascensions for the two
remaining observations may be computed. If these happen to agree with the
observations, the elements will require no further corrcction: but if not, the
differences X, Y, will be noted, and the same calculation will be repeated twice,
the values of #, y being a little changed. Thus will be obtained three svstems
of values of the quantities z, 7, and of the differences X, ¥, whence, according
to the precepts of article 120, will be obtained the corrected values of the quan-
tities #, y, to which will correspond the values X=10, ¥'=10. From a similar
calculation based on this fourth system elements will be found, by which all four
observations will be correctly represented.

If it is in your power to choose, it will be best to retoin those observations
complete from which the situation of the orbit can be determined with the great-
est precision, therefore the two extreme observations, when they embrace a helio-
centric motion of 90° or less. But if they do not possess equal accuracy, you
will set aside the latitudes or declinations of those you may suspect to be the

less accurate.

166.

Such places will necessarily be used for the first determination of an entirely
unknown orbit from four observations, as include a heliocentric motion not too
great; for otherwise we should be without the aids for forming conveniently the
first approximation. The method which we shall give directly admits of such
extensive application, that observations comprehending a heliocentric motion of
30° or 40° may be used without hesitation, provided, only, the distances from the
sun are not too unequal: where there is a choice, it will be best to take the
intervals of the times between the first and second, the second and third, the
third and fourth but little removed from equality. But it will not be necessary
to be very particular in regard to this, as the annexed example will show, in
which the intervals of the times are 48, 55, and 59 days, and the heliocentric
motion more than 50°.

Moreover, our solution requires that the second and third observations be
complete, and, therefore, the latitudes or declinations in the extreme observations
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are neglected. We have, indeed, shown above that, for the sake of accuracy, it is
generally better that the elements be adapted to two extreme complete observa-
tions, and to the longitudes or right ascensions of the intermediate ones; never-
theless, we shall not regret having lost this advantage in the first determination
of the orbit, because the most rapid approximation is by far the most important,
and the loss, which affects chiefly the longitude of the node and the inclina-
tion of the orbit, and hardly, in a sensible degree, the other elements, can after-
wards easily be remedied.

We will, for the sake of brevity, so arrange the explanation of the method,
as to refer all the places to the ecliptic, and, therefore, we will suppose four longi-
tudes and two latitudes to be given: but yet, as we take into account the latitudé
of the earth in our formulas, they can easily be transferred to the case in which
the equator is taken as the fundamental plane, provided that right ascensions and
declinations are substituted in the place of longitudes and latitudes.

Finally, all that we have stated in the preceding section with respect to nuta-
tion, precession, and parallax, and also aberration, applies as well here: unless,
therefore, the approximate distances from the earth are otherwise known, so that
method I, article 118, can be employed, the observed places will in the beginning
be freed from the aberration of the fixed stars only, and the times will be cor-
rected as soon as the approximate determination of the distances is obtained in
the course of the calculation, as will appear more clearly in the sequel.

167.

We preface the explanation of the solution with a list of the principal sym-
bols. We will make

t,¢,1,¢", the times of the four observations,

a, o, ¢”, o, the geocentric longitudes of the heavenly body,
B, 8, 87, 8", their latitudes,

r, 7', 7", 7", the distances from the sun,

0, ¢, 0", 0", the distances from the earth,

4, 1',1",1", the heliocentric longitudes of the earth,
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B, B, B”, B"”, the heliocentric latitudes of the earth,

R, R, R", R”, the distances of the earth from the sun,

(n01), (12), (223), (n02), (n13), the duplicate areas of the triangles which
are contained between the sun and the first and second places of the heavenly
body, the second and third, the third and fourth, the first and third, the second
and fourth respectively; (7 01), (1 12), (1 23) the quotients arising from the
division of the areas % (1 01), 3 (2 12), # (» 23), by the areas of the correspond-
ing sectors ;

i (n12) v (n12)
P= (»01)’ _(7123)’

s ((01)4(n12) ', v [((12) 4 (n 23) 7
= (% 02) '—1)’3’Q _< (n 13) _1)“ E

v, v, v, v", the longitudes of the heavenly body in orbit reckoned from an arbi-
trary point. Lastly, for the second and third observations, we will denote the
heliocentric places of the earth in the celestial sphere by 4, 4”, the geocentric
places of the heavenly body by B’, B”, and its heliocentric places by C’, C”.
These things being understood, the first step will consist, exactly as in the
problem of the preceding section (article 136), in the determination of the posi-
tions of the great circles A'C"’, A”C” 3", the inclinations of which to the eclip-
tic we denote by 7’,7”: the determination of the arcs A'B'=0", A" B"=10" will be
connected at the samme time with this calculation. Hence we shall evidently have
7 =\ (00 + 2 ¢'R cos o’ + R'R)
=\ (0"¢" + 2 ¢"R" cos 0" 4 R'R"),
or by putting ¢' + R cosd’ =2/, 0"+ R” cos 0" =2", B'sind’ =d/, R"sind"=da",
¥ =\ (¥ 4 dd)
v = (2" +a"a").

168.

By combining equations 1 and 2, article 112, the following equations in sym-
bols of the present discussion are produced : —
0=(n12) R cos Bsin ({—ea)— (12 02) (¢’ cos §’sin (¢’ — &) + R’ cos B'sin (I'—a))
+ (2 01) (¢” cos f” sin (" — &) 4+ R” cos B” sin (I" — at)),
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0= (n23) (¢’ cosp’sin (¢"— ') 4 R’ cos B’ sin (¢’ —1"))
— (n13) (¢” cosB”sin (& — &) 4+ R” cos B” sin (¢ —1"))
+ (n12) B" cos B” sin (& —1"").
These equations, by putting

R cos B'sin (I'—a)
cos ' sin (of — ar)

R cosd’' =1V,

R’ cos B sin (e""—1"
‘cos f’ sin (u’g’ oc”)) B cos 8" =1V,
R' cos B'sin (¢ —1')
cos ' sin («””
R’ cos B"sin (I" — a)
cos [ sin (o — &)
RcosBsin(l—a) =
cos f”sin (of —a) ~
R//I cos B’l/ Sin (a”’ l,’/) l//’
cos ' sin (& — ')
cos f'sin (¢ —a)
cos f’sin (' —at) s

"__ ll)

— R'cos 0’ =/,

—d)

— Rl/ cos ‘}\H — xl’,

[

cos f’sin (o
cos f'sin (¢ — o) — =

and all the reductions being properly made, are transformed into the following: —

W (14 P gg’+”> =o' ¥ 4P,
11
' (@ da)t

w1+ P (_,L,.:I_{_ ) = + e + VP,
(IR
(@2 4 aar)?

or, by putting besides,
— 1 — AP =d, W(1+P)=d
— A —V"P'=¢, W14+ P =4,
into these,

L ¢y LD

J

(@ +a'a) g
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H. . z/ o 0,, + dll (1:” +Q,€II)

(:L/’:L'” + aII all) %

With the aid of these two equations 2’ and 2” can be determined from o/, %', ¢, &,
Q.d", 8, ¢, d", Q". If, indeed, 2’ or z” should be eliminated from them, we should
obtain an equation of a very high order: but still the values of the unknown
quantities 2/, #’, will be deduced quickly enough from these equations by indi-
rect methods without any change of form. Generally approximate values of
the unknown quantities result if, at first, @' and @” are neglected ; thus: —
ORI il i 0 B
= 1—dd" ’

I+ dl (br_l_ 0”) + dldllbll
—d'd

But as soon as the approximate value of either unknown quantity is obtained,
values exactly satisfying the equations will be very easily found. Let, for ex-
ample, £’ be an approximate value of 2/, which being substituted in equation I,
there results 2’ =2§"; in the same manner from 2” =¢§” being substituted in
equation II, we may have #/ = X’; the same processes may be repeated by sub-
stituting for 2’ in L, another value &’ 4+, which may give 2" =2§" 4 »"; this
value being substituted in II,, may give 2’ = X'+ XN'. Thereupon the corrected
value of 2’ will be

;o F—=X) YN —XW
§+( ) - N —y ?

and the corrected value of z”,

En+ & —X’) v”.

If it is thought worth while, the same processes will be repeated with the cor-
rected value of 2/ and another one slightly changed, until values of #, 2” satisfy-
ing the equations I, IL. exactly, shall have been found. Besides, means will not
be wanting even to the moderately versed analyst of abridging the calculation.
In these operations the irrational quantities (2’2’ + a'a')%, (22" d"a ")2 are
conveniently calculated by introducing the arcs #, 2”, of which the tangents are
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4 I’

. o d
respectively —, —, whence come

V(o o) = &

smz’ cos 2’
V(@24 dd")=+"= it <
—sin?~ cos?
These auxiliary arcs, which must be taken between 0° and 180° in order that
7,7, méy come out positive will, manifestly, be identical with the arcs C'B’, C"B”,
whence it is evident that in this way not only ' and »”, but also the situation of
the points ¢, C”, are known.
This determination of the quantities #/, 2 requires &, a”, ¥/, 0", ¢, ¢’, ', d", €,
Q" to be known, the first four of which quantities are, in fact, had from the data
of the problem, but the four following depend on 7, P”. Now the quantities
P, P’ @, Q" cannot yet be exactly determined; but yet, since
: [
I P= f_f%
v U'—t (72
IV. P'— j‘{—gé’;,
V. Q’=%/c/c(f_t)(t"—z')’-§( - S S— —is
701) (712) cos 4 (v —v) cos & (" —v) cos L (& — o')
’7’" (712) (7 23) cos & ("—7) ccl)s«l " —v") cos 3 (V" =)
the approximate values are immediately at hand,

t’—t’ —t
P=o— = gi—»

Ql — 4 kk (t' t) (t” _ t,), QII — $kk (t” (t,” . t”),

on which the first calculation will be based.

'V'I' Q”= & ]ck (t/[ t’) (t’”— t”)

169.

The calculation of the preceding article being completed, it will be necessary
first to determine the arc ¢"C”. Which may be most conveniently done, if, as
in article 137, the intersection D of the great circles A'C"B’, A” C"B”, and their
mutual inclination ¢ shall have been previously determined: after this,will be
found from e, ¢'D =2+ B'D, and C"D =2"+ B"D, by the same formulas
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which we have given in article 144, not only ¢"C” =1¢" —7/, but also the angles
(v, v”,) at which the great circles A'B’, A”B”", cut the great circle ¢'C”.
After the arc " —2' has been found, ' — », and » will be obtained from a
combination of the equations
7" sin (v — ')
rE—,
14 P! 7/ sin (" —7)
; ;
O %
and in the same manner, »” and ¢ — ¢ from a combination of these: —

__7/sin (" —9)
=7

rsin (v —ov) =

rsin (v —ov 0" —0 )= :

rlll Sin (7}’” . vll)

¥ sin (v — "+ —') = l—ifi sin(" —+) ;,,LJ) .
147
All the numbers found in this manner would be accurate if we could set out in
the beginning from true values of 7, ¢, j"’, Q": and then the position of the
plane of the orbit might be determined in the same manner asin article 149,
either from A’C, «' and 7/, or from A”C”, «” and #”; and the dimensions of the
orbit either from +, ", ¢, ¢’, and v” — ¢/, or, which is more exact, from », ", i,
", ¥ —wv. DBut in the first calculation we will pass by all these things, and will
direct our attention chiefly to obtaining the most approximate values of' /”, P".
@, @'. We shall reach this end, if by the method cxpla'ined in 88 and the fol-
lowing articles,
from r, #/, o' — v, ¥ —¢ we obtain (5 01)
“« Pl —v, =1 « (n 12)
“« =" = (m 23).
We shall substitute these quantities, and also the values of 7,7/, 7",7", cos § (v'—2),
etc.,, in formulas 111.-VI.,, whence the values of 77, ¢, P”, @ will result much
more exact than those on which the first hypothesis had been constructed. With
these, accordingly, the second hypothesis will be formed, which, if it is carried to
a conclusion exactly in the same manner as the first, will furnish much more
exact values of 7, ¢, P”, ", and thus lead to the third hypothesis. These
processes will continue to be repeated, until the values of 7/, ¢, P”, ¢" scem to
31
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require no further correction, how to judge correctly of which, frequent practice
will in time show. When the heliocentric motion is small, the first hypothesis
generally supplies those values with sufficient accuracy: but if the motion in-
cludes a greater arc, if, moreover, the 'intervals of the times are very unequal,
hypotheses several times repeated will be wanted; but in such a case the first
hypotheses do not demand great preciseness of calculation. Finally, in the last
hypothesis, the elements themselves will be determined as we have just indicated.

170.

It will be necessary in the first hypothesis to make use of the times ¢, ¢, ", ¢,
uncorrected, because the distances from the earth cannot yet be computed: as
soon, however, as the approximate values of the quantities #/, #’ have become
known, we shall be able to determine also those distances approximately. But

yet, since the formulas for ¢ and ¢

come out here a little more complicated, it
will be well to put off the computation of the correction of the times until the
values of the distances have become correct enough to render a repetition of the
work unnecessary. On which account it will be expedient to base this operation
on those values of the quantities 2, 2, to which the last hypothésis but one leads,
so that the last hypothesis may start with corrected values of the times and of
the quantities P, P”, ¢, @”. The following are the formulas to be employed

for this purpose : —
VIL ¢’ =4 — R cosd,
VIL ¢"=4"— R" cosd”,
IX. ¢cosfp=— Rcos B cos(a—1)
14 P’ 0 7 P v 7
—|—————Q,(Q cosf’ cos (&' —ea) 4 R cos B’ cos (I —a))
P—Q——|—7,a) ,
—Tl,; (Q”cos B” cos (e —a) 4 R”cos B” cos (I" — a)) ,
2 JE
X. osinf=—RsinB+} Lo (
L)

— le (¢” sin B” + R"sin B”),

¢’ sin '+ L' sin B)
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XI. QIII COS ())I// —— RIII cos BI/I cos (alll _Z/ll)
+ ”1+ P’ ,<QII cos ﬁ” cos (a"’—a")—]— R'l cos BII cos (a'”— Z”))
P’ (1+ )
—%,7 (Q’ cos ' cos (¢ — ') + R’ cos B’ cos ("' — l')),
XIL ¢”sinf” —=— R"sn B” - 2T (o”sin g L R”sin B")
P (147
— (¢ sin '+ B/ sin B).

The formulas IX.—XII are derived without difficulty from equations 1, 2, 3, article
112, if, merely, the symbols there used are properly converted into those we here
employ. The formulas will evidently come out much more simple if B, B, B”
vanish. Not only g, but also $ will follow from the combination of the formulas
IX. and X, and, in the same manner, besides 7, also 8 from XI. and XII.: the
values of these, compared with the observed latitudes (not entering into the
calculation), if they have been given, will show with what degree of accuracy
the extreme latitudes may be represented by elements adapted to the six remain-

ing data.

171.

A suitable example for the illustration of this mvestigation is taken from Vesta,
which, of all the most recently discovered planets, has the least inclination to
the ecliptic* We select the following ebservations made at Bremen, Paris,
Lilienthal, and Milan, by the illustrious astronomers OLBERS, Bouvarp, BEssEL, and
ORraNI: —

* Nevertheless this inclination is still great enough to admit of a sufficiently safe and accurate deter-
mination of the orbit based upon three observations: in fact the first elements which had been derived
in this way from observations only 19 days distant from each other (see voN Zacu’s Monatlicke Cor-
respondenz, Vol. X V. p. 595), approach nearly to those which were here deduced from four observa-
tions, removed from each other 162 days.
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Mean time of place of observation. Right Ascension. Declination.

1807, March 30, 12* 33™ 17 183° 52’ 40".8 11° 54’ 27".0 N.
May 17, 8 16 & 178 36 42.3 11 39 46.8
July 11,10 30 19 189 49 7.7 3 9 10.1N.
Sept. 8, 7 22 16 212 50 3.4 8 38 17.0S.

We find for the same times from the tables of the sun,

Longitude of the S . Dist fi Latitude of | A bliqui

from app. Equinox. | Nutation. | DHIFCT | “he Sun. | * of the Ecliptie.
March 30 9°21' 59".5 | 4168 | 09996448 | 4 07.23 | 23° 27’ 50".82
May 17 | 55 56 20.0 | 4162 | 1.0119789 | —0.63 49 .83
July 11 | 108 34 53.3 | +17.3 | 1.0165795 | —0.46 49 .19
Sept. 8 | 165 857.1 | 4167 | 1.0067421 | 40.29 | 23 27 49 .26

The observed places of the planets have, the apparent obliquity of the eclip-
tic being used, been converted into longitudes and latitudes, been freed from
nutation and aberration of the fixed stars, and, lastly, reduced, the precession
being subtracted, to the beginning of the year 1807; the fictitious places of the
earth have then been derived from the places of the sun by the precepts of arti-
cle 72 (in order to take account of the parallax), and the longitudes transferred
to the same epoch by subtracting the nutation and precession; finally, the times
have been counted from the beginning of the year and reduced to the meridian
of Paris. In this manner have been obtained the following numbers: —

LY, T . . 89.505162 |  137.344502 | 192.419502 |  251.288102
o, o’ . . | 178°43788".87 | 174° 1/307.08 | 187°45'427.23 | 213°84’ 157.63
3,8,6%687 . | 1227 616| 10 8 7.80| 6 4725.51| 4 2021 .63

LI, 07,0 . . | 189 21 83 .71 (235 56 0 .63 | 288 35 20 .32 | 345 9 18 .69
log R, R',R", R" 9.9997990 0.0051376 | 0.0071739 0.0030625
Hence we deduce
7' =168°32"41".34, 0’ = 62°23 4”88, log & = 9.95626104,
"=173 515 .68, 0”=100 45 1 .40, log o = 9.9994889,
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¥ =—11.009449, »' —=—1.083306, log . —0.0728800, logu =—9.7139702
0" =— 2.082036, »"—=—-6.322006, logh”=10.0798512~ logu”—=9.8387061
AD= 37°1751".50, A"D=  89°24’'11".84, e=9° &5 5”48
B'D—=—25 513 .38, B"D=—11 20 49 .56.
These preliminary calculations completed, we enter upon the first Aypothesis.
From the intervals of the times we obtain
log £ (¢ — ¢) = 9.9153666
log 7 (" — ) = 9.9765359
log & (" —¢")=0.0054651,
and hence the first approximate values
log P’ = 0.06117, log (1 + P') = 0.33269, log @ = 9.59087
log P"=9.97107, log (14 P")=0.28681, log Q"= 9.67997,
hence, further,
¢ = —7.68361, log d’ = 0.04666 2
¢'= 4 2.20771, log d” = 0.125652.
With these values the following solution of equations I, IL, is obtained, after a
few trials: —
2’ = 2.04856, 7 =23°38'17", log 7 = 0.34951
2" = 1.95745, Z'=27 2 0, logr” = 0.34194.
From #, 2” and ¢, we get
C0 =v'—v =177 b":
hence v —w, r, v — ", ", will be determinable by the following equations: —
log 7 sin (o' —v) = 9.74942, log r sin (¢/ —v 4 17° 7" 5”)=0.07500
logr” sin (v"—¢")=9.84729,  log+”sin(»""—o"4 17 7 §”) = 0.10733
whence we derive
V' —v=14°14'32", logr = 0.35865
v""—v"=18 48 33, log»”" = 0.33887.
Lastly, is found
log (2 01) = 0.00426, log (% 12)=10.00599, log(z23)=0.00711,

and hence the corrected values of 7, P”, ¢, @”,
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log P’ = 0.05944, log @"=9.60374,
log P"=19.97219, log @"= 9.69581,
ubon which the second hypothesis will be constructed. The principal results of this
are as follows:—
¢ = —"7.67820, logd’” = 0.045736n
¢'= - 2.21061, logd” = 0.126054
2’ =2.03308, 2/ = 23° 47" 54", log » = 0.346747,
2" =1.94290, 2" = 27 12 25, logr”" = 0.339373
CC'=v"—v=17° 8 0"
v —ov = 14°21"36", log r = 0.354687
v""—1v”"=18 50 43, logr” = 0.334564
log (2 01) = 0.004359, log(n12) = 0.006102, log (= 23) = 0.007280.

Hence result newly corrected values of 7', P”, @', @”,

log 7’ = 0.059426,  log Q' = 9.604749
log P" =9.972249,  log Q" = 9.697564,
from which, if we proceed to the third hypothesis, the following numbers result : —
¢ =—"7.67815, logd = 0.045729 n
¢’ =+ 2.21076, log d’= 0.126082
2 = 2.03255, 2 = 23° 48" 14", log »' = 0.346653
2’ =1.94235, #'=27 12 49, logr"= 0.339276
C'0'=v"—v=17 8§ 4"
v —v= 14°21"49", log r = 0.354522
v"—o"=18 51 7, logr”=10.334290
log (» 01) = 0.004363, log (% 12) = 0.006106, log (» 23) = 0.007290.

If now the distances from the earth are computed according to the precepts of
the preceding article, there appears: —

o' =1.5635, 0" =2.1319

log ¢ cos # = 0.09876 log 0" cos 8 = 0.42842
log 0 sin § = 9.44252 log 0" sin #” = 9.30905
B = 12°26" 40" B =4°20'39”

log o = 0.10909 log 0" = 0.42967.
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Hence are found

Corrections of the Times. Corrected Times.

L 0.0073356 89.497827
1. | 0.008921 135.335581
II1. 0.012165 192.407337
IV. 0.015346 2561.272756

whence will result newly corrected values of the quantities 7, P”, ¢, Q”,

log P'=0.059415,  log @' = 9.604782,
log P”= 9.972253, log @ = 9.697687.

Finally, if the fourth hypothesis is formed with these new values, the following
numbers are obtained : —
¢ =—"1.678116, logd = 0.045723
¢"= 2210773, logd’=0.126084
2 =2.032473, #Z=23°4816"7, log s = 0.346638
= 1942281, 2"=27 12 51 .7, log+”"=0.339263 )
V' — o =17 & 5”1, (v «')=176° 7 50".5, } (u"—u’)=4°33'23".6
v —ov =14 21 51 .9, log r = 0.354503
v"—v"=18 61 9 .5, logr""=0.334263

These numbers differ so little from those which the third hypothesis furnished,
that we may now safely proceed to the determination of the elements. In
the first place we get out the position of the plane of the orbit. The inclina-
tion of the orbit 7° 8 14”.8 is found by the precepts of article 149 from 7/, «,
and A'C" =0"— 7, also the longitude of the ascending node 103°16"37".2, the
argument of the latitude in the second observation 94°36" 4”.9, and, there-
fore, the longitude in orbit 197°52"42”.1; in the same manner, from 7", ”, and
A" 0" =0"—2", are derived the inclination of the orbit = 7° 8" 14".8, the longi-
tude of the ascending node 103°16"37”.5, the argument of the latitude in the
third observation 111° 44" 9”.7, and therefore the longitude in orbit 215° 0"47”.2.
Hence the longitude in orbit for the first observation will be 183° 30" 50”.2, for
the fourth 233°51'656”.7. If now the dimensions of the orbit are determined
from ¢ —¢, 7, 7", and v —» = 50° 21" 6".5, we shall have,
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True anomaly for the first place . . . . . . . 298°38343"7
True anomaly for the fourth place . . . . . . 343 54 50 .2
Hence the longitude of the perihelion . . . . . 249 67 6 .6
Mean anomaly for the first place . . . . . . . 3802 33 32 .6
Mean anomaly for the fourth place . . . . . . 846 32 25 2
Mean daily sidereal motion . . . 978".7216
Mean anomaly for the beginning of the year 1807 278 13 39 .1
Mean longitude for the same epoch . . . . . . 168 10 45 .6
Angle of eccentricity ¢ . . . . . . . . . . 5 2881
Logarithm of the semi-axis major . . . . . . 0.372898

If the geocentric places of the planet are computed from these elements
© for the corrected times ¢, 7, ¢”, ¢”, the four longitudes agree with e, ¢/, ¢”, @’”, and
the two intermediate latitudes with 8/, 8, to the tenth of a second; but the
extreme latitudes come out 12°26’43".7 and 4° 20’ 40”.1. The former in error
22”4 in defect, the latter 18”5 in excess. But yet, if the inclination of the
orbit is only increased 6”, and the longitude of the node is diminished 4’ 40", the
other elements remaining the same, the errors distributed among all the latitudes
will be reduced to a few seconds, and the longitudes will only be affected by the
smallest errors, which will themselves be almost reduced to nothing, if, in addition,
2"is taken from the epoch of the longitude.



THIRD SECTION.

THE DETERMINATION OF AN ORBIT SATISFYING AS NEARLY AS POSSIBLE ANY
NUMBER OF OBSERVATIONS WHATEVER.

172.

Ir the astronomical observations and other quantities, on which the computa-
tion of orbits is based, were absolutely correct, the elements also, whether deduced
from three or four observations, would be strictly accurate (so far indeed as the
motion is supposed to take place exactly according to the laws of KrpLEr), and,
therefore, if other observations were used, they might be confirmed, but not cor-
rected. But since all our measurements and observations are nothing more than
approximations to the truth, the same must be true of all calculations resting
upon them, and the highest aim of all computations made concerning concrete
phenomena must be to approximate, as nearly as practicable, to the truth. But
this can be accomplished in no other way than by a suitable combination of
more observations than the number absolutely requisite for the determination of
the unknown quantities. This problem can only be properly undertaken when
an approximate knowledge of the orbit has been already attained, which is after-
wards to be. corrected so as to satisfy all the observations in the most accurate
manner possible.

It then can only be worth while to aim at the highest accuracy, when the
final correction is to be given to the orbit to be determined. But as long as it
appears probable that new observations.will give rise to new corrections, it will
be convenient to relax more or less, as the case may be, from extreme precision,
if in this way the length of the computations can be considerably diminished.
We will endeavor to meet both cases.

32 (249)
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173.

In the first place, it is of the greatest importance, that the several positions of
the heavenly body on which it is proposed to base the orbit, should not be
taken from single observations, but, if possible, from several so combined that the
accidental errors might, as far as may be, mutually destroy each other. Obser-
vations, for example, such as are distant from each other by an interval of a few

days, as an interval of fifteen or twenty days,—

are not to be used in the calculation as so many different positions, but it would
be better to derive from them a single place, which would be, as it were, a mean
among all, admitting, therefore, much greater accuracy than single observations
considered separately. This process is based on the following principles.

The geocentric places of a heavenly body computed from approximate ele-
ments ought to differ very little from the true places, and the differences between
the former and latter should change very slowly, so that for an mterval of a
few days they can be regarded as nearly constant, or, at least, the chan«res may
be regarded as proportional to the times. If, accordingly, the observations should
be regarded as free from all error, the differences between the observed places

?”, and those which have been computed from

corresponding to the times 7, 7, ¢”,
the elements, that is, the differences between the observed and the computed
longitudes and latitudes, or right ascensions and declinations, would be quanti-
ties either sensibly equal, or, at least, uniformly and very slowly increasing or de-
creasing. Let, for example, the observed right ascensions e, o/, «”, ¢, etc., cor-
respond to those times, and let ¢+ d,a’ 4 &', " 40", «” 4 0", etc, be the
computed ones; then the differences 0, ¢’, 0”, 0", ete. will differ from the true
deviations of the elements so far only as the observations themselves are errone-
ous: 1if, therefore, these deviations can be regarded as constant for all these ob-
servations, the quantities d, ¢, 0", 0", etc. will furnish as many different determi-
nations of the same quantity, for the correct value of which it will be proper to
take the arithmetical mean between those determinations, so far, of course, as
there is no réason for preferring one to the other. DBut if it seems that the same

degree of accuracy cannot be attributed to the several observations, let us-assume -
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that the degree of accuracy in each may be considered proportional to the num-
bers ¢, ¢, ¢”, €”, etc. respectively, that is, that errors reciprocally proportional to
these numbers could have been made in the observations with equal facility;
then, according to the principles to be propounded below, the most probable
mean value will no longer be the simple arithmetical mean, but
eed e+ "0 e 0" 4 ete.
ce 07 77 17 Fete.
Putting now this mean value equal to 4, we can assume for the true right ascen-
sions, @ +0-—4,d' + 0" — 4, a”"4-0"— A, &/’ 0""— 4, respectively, and then
it will be arbitrary, which we use in the calculation. But if either the observa-
tions are distant from each other by too great an interval of time, or if suffi-

ciently approximate elements of the orbit are not yet known, so that it would
not be admissible to regard their deviations as constant for all the observations, it
will readily be perceived, that no other difference arises from this except that the
mean deviation thus found cannot be regarded as common to all the observa-
tions, but s to be referred to some intermediate time, which must be derived from
the individual times in the same manner as 4 from the corresponding deviations,
and therefore generally to the time
eet 4 e'e’t'+e”e"t"+e’”e.'”t”’ - ete.
ee + 8,8, + 8”8” + e”'e"' + etc. °

Consequently, if we desire the greatest accuracy, it will be necessary to compute
the geocentric place from the elements for the same time, and afterwards to free
it from the mean error 4,in order that the most accurate position may be ob-
tained. But it will in general be abundantly sufficient if the mean error is
referred to the observation nearest to the mean time. What we have said here

of right ascensions, applies equally to declinations, or, if it is desired, to longitudes
and latitudes: however, it will always be better to compare the right ascensions
and declinations computed from the elements immediately with those observed;
for thus we not only gain a much more expeditious calculation, especially if we
make use of the methods explained in articles 53-60, but this method has the ,
additional advantage, that the incomplete observations can also be made use of’;
and besides, if every thing should be referred to longitudes and latitudes, there
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would be cause to fear lest an observation made correctly in right ascension,
but badly in declination (or the opposite), should be vitiated in respect to both
longitude and latitude, and thus become wholly useless. The degree of precision
to be assigned ‘to the mean found as above will be, according to the principles to
be explained hereafter,

V(ee+ € €' + &"¢” 4 etc.);

so that four or nine equally exact observations are required, if the mean is to
possess a double or triple accuracy.

174.

If the orbit of a heavenly body has been determined according to the methods
given in the preceding sections from three or four geocentric positions, each one
of which has been derived, according to the precepts of the preceding article,
from a great many observations, that orbit will hold a mean, as it weye, among
all these observations; and in the differences between the observed and*computed
places there will remain no trace of any law, which it would be possible to re-
move or sensibly diminish by a correction of the elements. Now,when the whole
number of observations does not embrace too great an interval of time, the best
agreement of the elements with all the observations can be obtained, if only
three or four normal positions are judiciously selected. How much advantage
we shall derive from this method in determining the orbits of new planets or
comets, the observations of which do not yet embrace a period of more than
one year, will depend on the nature of the case. When, accordingly, the orbit
to be determined is inclined at a considerable angle to the ecliptic, it will be
in general based upon three observations, which we shall take as remote from
each other as possible: but if in this way we should meet with any one of the
cases excluded above (articles 160-162), or if the inclination of the orbit should
seem too small, we shall prefer the determination from four positions, which, also,
we shall take as remote as possible from each other.

But when we have a longer series of observations, embracing several years,
more normal positions can be derived from them; on which account, we should
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not insure the greatest accuracy, if we were to select three or four positions only
for the determination of the orbit, and neglect all the rest. But in such a case,
if it is proposed to aim at the greatest precision, we shall take care to collect
and employ the greatest possible number of accurate places. Then, of course,
more data will exist than are required for the determination of the unknown
quantities: but all these data will be liable to errors, however small, so that it
will generally be impossible to satisfy all perfectly. Now as no reason exists,
why, from among those data, we should consider any six as absolutely exact, but
since we must assume, rather, upon the principles of probability, that greater or
less errors are equally possible in all, promiscuously ; since, moreover, generally
speaking, small errors oftener occur than large ones; it is evident, that an orbit
which, while it satisfies precisely the six data, deviates more or less from the
others, must be regarded as less consistent with the principles of the calculus of
probabilities, than one which, at the same time that it differs a little from those
six data, presents so much the better an agreement with the rest. The investiga-
tion of an orbit having, strictly speaking, the mazinum probability, will depend
upon a knowledge of the law according to which the probability of errors de-
creases as the errors increase in magnitude: but that depends upon so many
vague and doubtful considerations — physiological included — which cannot be
subjected to calculation, that it is scarcely, and indeed less than scarcely, possible
to assign properly a law of this kind in any case of practical astronomy. Never-
theless, an investigation of the connection between this law and the most prob-
able orbit, which we will undertake in its utmost generality, is not to be regarded
as by any means a barren speculation.

175.

To this end let us leave our special problem, and enter upon a very general
discussion and one of the most fruitful in every application of the calculus to
natural philosophy. Let V, V7, V", etc. be functions of the unknown quantities
P> ¢ 7. S, ete, w the number of those functions, » the number of the unknown
quantities ; and let us suppose that the values of the functions found by direct
observation are V=M, V' =M, V'=M", etc. Generally speaking, the
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determination of the unknown quantities will constitute a problem, indetermi-
nate, determinate, or more than determinate, according as u<v, u=vw, or
p>v*  We shall confine ourselves here to the last case, in which, evidently, an
exact representation of all the observations would only be possible when they
were all absolutely free from error. And since this cannot, in the nature of
things, happen, every system of values of the unknown quantities p, ¢, 7, s; etc.,
must be regarded as possible, which gives the values of the functions V' — A
V'— M, V" — M", etc., within the limits of the possible errors of observation;
this, however, is not to be understood to imply that each one of these systems
would possess an equal degree of probability.

Let us suppose, in the first place, the state of things in all the observations to
have been such, that there is no reason why we should suspect one to be less
exact than another, or that we are bound to regard errors of the same magnitude
as equally probable in all. Accordingly, the probability to be assigned to each
error 4 will be expressed by a function of 4 which we shall denote by p 4. Now
although we cannot precisely assign the form of this function, we can at least
affirm that its value should be a maximum for 4 = 0, equal, generally, for equal
opposite values of 4, and should vanish, if, for 4 is taken the greatest error, or a
value greater than the greatest error: ¢ 4, therefore, would appropriately be re-
ferred to the class of discontinuous functions, and if we undertake to substitute
any analytical function in the place of it for practical purposes, this must be of
such a form that it may converge to zero on both sides, asymptotically, as it were,
from 4 =0, so that beyond this limit it can be regarded as actually vanishing.
Moreover, the probability that an error lies between the limits 4 and 4 d 4
differing from each other by the infinitely small difference d 4, will be expressed
by ¢ 4 d 4 ; hence the probability generally, that the error lies between D and

* If, in the third case, the functions ¥, P”, 7" should be of such a nature that g + 1 — » of them,
or more, might be regarded as functions of the remainder, the problem would still be more than determi-
nate with respect to these functions, but indeterminate with respect to the quantities p, ¢, r, s, ete. ; that
is to say, it would be impossible to determine the values of the latter, even if the values of the func-
tions V, V7, V", etc. should be given with absolute exactness: but we shall exclude this case from our
discussion.
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D', will be given by the integral f¢ 4.d 4 extended from 4 =D to 4=1D.
This integral taken from the greatest negative value of 4 to the greatest positive
value, or more generally from 4 —=—o0 to 4= -} « must necessarily be equal
to unity. Supposing, therefore, any determinate system of the values of the
quantities p, ¢, r, s, etc., the probability that observation would give for ¥V the
value M, will be expressed by ¢ (M — V'), substituting in V for p, ¢, r, s, etec,
their values; in the same manner ¢ (M'—7V), ¢ (M"—V"), ete. will express the
probabilities that observation would give the values M’, M”, etc. of the func-
tions V7, V", etc. Wherefore, since we are authorized to regard all the observa-
tions as events independent of each other, the product

¢ (M—V) ¢ (M'—TV") ¢ (M'—V") ete., = 2

will express the expectation or probability that all those values will result to-
gether from observation.

176.

Now in the same manner as, when any determinate values whatever of the
unknown quantities being taken, a determinate probability corresponds, previ-
ous to observation, to any system of values of the functions V, V', V", etc.;so,
inversely, after determinate values of the functions have resulted from ohserva-
tion, a determinate probability will belong to every system of values of the un-
known quantities, from which the values of the functions could possibly have
resulted : for, evidently, those systems will be regarded as the more probable in
which the greater expectation had existed of the event which actually occurred.
The estimation of this probability rests upon the following theorem : —

If, any hypothesis H being made, the probability of any determinate event K ds h, and
of, another hypothesis H' being made excluding the former and equally probable in viself, the
probability of the same event s ' : then I say, when the event B has actually occurred, that
the probability that X was the true hypothesis, is to the probability that H' was the true
hypothesis, as h to .

For demonstrating which let us suppose that, by a classification of all the cir-
cumstances on which it depends whether, with  or H” or some other hypothesis,
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the event, £ or some other event, should occur, a system of the different cases is
formed, each one of which cases is to be considered as equally probable in itself
(that is, as long as it is uncertain whether the event Z, or some other, will occur),
and that these cases be so distributed,.

that among them in which should be assumed | in such a mode as would give
may be found the hypothesis occasion to the event..
m H E
n H different from &
m’ H E
n' H different from %
m’ different from A and A’ E
n’ | different from A and H’ different from &

Then we shall have

h /4

— m — m’ .
T ma’ 7 T o a?
moreover, before the event was known the probability of the hypothesis 7 was

m—4n
m-+n+m/+nl+mll+nll7
but after the event is known, when the cases %, #/, #” disappear from the number
of the possible cases, the probability of the same hypothesis will be

m .
m-m’ - m"’
in the same way the probability of the hypothesis ZZ” before and after the event,
respectively, will be expressed by |
- m’ -’ nd ™ .
m—ntm o +m” Ja’ 5 m—4m' +m"’
since, therefore, the same probability is assumed for the hypotheses Z and H’
before the event is known, we shall have
m 4 n=m 4+,
whence the truth of the theorem is readily inferred.

Now, so far as we suppose that no other data exist for the determination of
the unknown quantities besides the observations V=M, V'=M, V' =M",



Secr. 3. ANY NUMBER OF OBSERVATIONS. 257

ete., and, therefore, that all systems of values.of these unknown quantities were
equally probable previous to the observations, the probability, evidently, of any
determinate system subsequent to the observations will be proportional to £2.
This is to be understood to mean that the probability that the values of the un-
known (uantities lie between the infinitely near limits p and p+dp, ¢ and ¢—}-dg,
r and 7 dr, s and s ds, ete. respectively, is’expressed by
L2dpdgdrds........ , ete,
where the quantity 4 will be a constant quantity independent of p, ¢, , s, ete.:
and, indeed, % will, evidently, be the value of the integral of the order v,
S?Ldpdgdrds........ , ete,,

for each of the variables p, ¢, 7, 8, etc, extended from the value — o to the
value 4 .

177.

Now it readily follows from this, that the most probable system of values of
the quantities p, ¢, 7, s, etc. is that in which £2 acquires the maximum value, and,
therefore, is to be derived from the » equations

dR dL d d
. @=O,E=O, =0 7;=0, etc.
These equations, by putting
7 4 (4 d A /
V—_M=y, VV'— M =7, V"— M"=1", etc., and #ﬂ:tp 4,

assume the following form:—
dov do 7 7

/ dl/, (/4
19 v—|—E(pv +d7 ¢v" 4 ete.= 0,
dv dv ,, d , 4,
E¢I”+ﬁ?” -I—ngv + ete.=0,
d""‘/ do do , ,
9 v—|—§;cpv + 37 9" +ete.= 0,
dv , dos v’ , ,
£¢ v+ 3597 + 7797 Fete.=0.
Hence, accordingly, a completely determinate solution of the problem can be
obtained by elimination, as soon as the nature of the function ¢’ is known. Since

33
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this cannot be defined @ priori, we will, approaching the subject from another
point of view, inquire upon what function, tacitly, as it were, assumed as a
base, the common principle, the excellence of which is generally acknowledged,
depends. It has been customary certainly to regard as an axiom the hypothesis
that if any quantity has been determined by several direct observations, made
under the same circumstances and with equal care, the arithmetical mean of the
observed values affords the most probable value, if not rigorously, yet very
nearly at least, so that it is always most safe to adhere to it. By putting,
therefore, }
V=V =V"ete. =p,

we ought to have in general,

¢ (M —p)+ ¢ (M —p) + ¢ (M’ —p) + ete. =0,
if instead of p is substituted the value

%(M—|- M4 M - ete),
whnatever positive integer u expresses. By supposing, therefore,
M=M= ete. =M—puN,
we shall have in general, that is, for any positive integral value of u,
¢ (w—1) N=(1—p)g (—N),
whence it is readily inferred that 5’%4 must be a constant quantity, which we will
denote by £ Hence we have

log 9 4 = 4 kA4 4 + Constant,

¢4 =netk00,
denoting the base of the hyperbolic logarithms by e and assuming
Constant =log x.

Moreover, it is readily perceived that # must be negative, in order that 2 may
really become a maximum, for which reason we shall put

and since, by the elegant theorem first discovered by Lapracg, the integral
/‘e—hhAA d4 '



Sker. 3.] ANY NUMBER OF OBSERVATIONS, 269

from 4 =— o tod =+ is %’E, (denoting by m the semicircumference of
the circle the radius of which is unity), our function becomes

QJ == \;—‘ﬂ e—hhlA,

178.

The function just found cannot, it is true, express rigorously the probabilities
of the errors: for since the possible errors are in all cases confined within certain
limits, the probability of errors exceeding those limits ought always to be zero.
while our formula always gives some value. However, this defect, which every
analytical function must, from its nature, labor under, is of no importance in
practice, because the value of our function decreases so rapidly, when %24 has
acquired a considerable magnitude, that it can safely be considered as vanishing.
Besides, the nature of the subject never admits of assigning with absolute rigor
the limits of error.

Finally, the constant %z can be considered as the measure of precision of the
observations. For if the probability of the error 4 is supposed to be expressed
in any one system of observations by

A ,—nnaa
vz ’

and in another system of observations more or less exact by

4 ’

= A8
the expectation, that the error of any observation in the former system is con-
tained between the limits — d and - d will be expressed by the integral

h —nnaa

,/‘Wt é dd

taken from 4 = —J to 4 = 0'; and in the same manner the expectation, that
the error of any observation in the latter system does not exceed the limits — ¢’
and - ¢’ will be expressed by the integral

f B e—1IAA ] 4
Vr
extended from 4 =—d" to 4=+ 0": but both integrals manifestly become
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equal when we have 20 =#40". Now, therefore, if for example 2= 2 4, a double
error can be committed in the former system with the same facility as a single
error in the latter, in which case, according to the common way of speaking, a
double degree of precision is attributed to the latter observations.

179.

We will now develop the conclusions which follow from' this law. It is evi-
dent, in order that the product
Q — kyn—jpe—hh(vv-{-c’c’-l-v"i’-l- ..... )

may become a maximum, that the sum

vo -+ o' 4 "V 4 ete,
must become a minimum. Terefore, that will be the most probable system of values of
the unknown quantities p, q, 1, 8, elc., in which the sum of the squares of the differences
between the observed and computed values of the functions V, V', V", efc. is a mimmum, if
the same degree of accuracy is to be presumed in all the observations. This prin-
ciple, which promises to be of most frequent use in all applications of the mathe-
matics to natural philosophy, must, everywhere, be considered an axiom with
the same propriety as the arithmetical mean of several observed values of the
same quantity is adopted as the most probable value.

This principle can be extended without difficulty to observations of unequal
accuracy. If, for example, the measures of precision of the observations by
means of which V=M, V' =M, V" = M", etc. have been found, are expressed,
respectively, hy &, #, 2", etc., that is, if it is assumed that errors reciprocally pro-
portional to these quantities might have been made with equal facility in those
observations, this, evidently, will be the same as if, by means of observations of
equal precision (the measure of which is equal to unity), the values of the func-
tions AV, X'V, K" V", etc, had been directly found to be AM, KM, k' M, ete.:
wherefore, the most probable system of values of the quantities p, ¢, 7, s, etc,
will be that in which the sum of Akvv 4 KAVY + B'K'v"v" + ete., that is, in which
the sum of the squares of the diferences between the actually observed and computed values
mulliplied by numbers that measure the degree of precision, is o minimum. In this way it
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is not even necessary that the functions ¥, V7, V", etc. relate to homogeneous
quantities, but they may represent heterogeneous quantities also, (for example,
seconds of arc and time), provided only that the ratio of the errors, which might
have been committed with equal facility in each, can be estimated.

180.

The principle explained in the preceding article derives value also from this,
that the numerical determination of the unknown quantities is reduced to a very
expeditious algorithm, when the functions V, V7, V", etc. are linear. Let us
suppose

V—M=v=—m-+ap+bqg—+ cr+ ds-+ ete.
V— M =V =—mwl+dp+bq+r+ ds- etc
V'—M'=v'=—m"+d'p+ 9+ 'r 4+ d’s 4 ete.
etc., and let us put

av + v + a"v" 4 ete. = P

bv + 0V 4 8" + ete. = @

ev + v+ "V 4 ete. =R

dv +dv 4+ &'+ ete. = §

etc. Then the v equations of article 177, from which the values of the unknown

.

quantities must be determined, will, evidently, be the following: —

P =10, =0, R = 0,.8 =0 ete;
provided we suppose the observations equally good; to which case we have shown
in the preceding article how to reduce the others. We have, therefore, as many
linear equations as there are unknown quantities to be determined, from which
the values of the latter will be obtained by common elimination.

Let us see now, whether this elimination is always possible, or whether the
solution can become indeterminate, or even impossible. It is known, from the
theory of elimination, that the second or third case will occur when one of the
equations -

P=0,Q=0, R=0,8=0, etc,

being omitted, an equation can be formed from the rest, either identical with the
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omitted one or inconsistent with it, or, which amounts to the same thing, when
it is possible to assign a linear function

aP +3Q+ yR 408+ ete, 5
which is identically either equal to zero, or, at least, free from all the unknown
quantities p, ¢, 7, s, etc. Let us assume, therefore,
aP 4+ BQ4 7R+ 0S8+ ete. ==

We at once have the identical equation

(v 4m)v+ (' +m') '+ (v 4 m") v+ ete. =pP +9Q + rR+ sS4 ete.
If, accordingly, by the substitutions
p=cz,q=_0zr—=yz s=0z, etc.
~we suppose the functions ¢, ¢, »”, to become respectively,
—m 4 Az, —m' + Vo, —m” + L'z, etc,
we shall evidently have the identical equation
(AL 42V 422 4 ete) zz — (Am 4 V'm' 4 1"m” ete.) x = xz,
that is, :
M 42V 4172+ ete. =0, x4 Am + M’ 4 L"m” 4 ete. = 0:

hence it must follow that A = 0,1 =0, 1" =0, etc. and also x = 0. Then it is
evident, that all the functions V, V' V", are such that their values are not
changed, even if the quantities p, ¢, 7, s, etc. receive any increments or decre-
ments whatever, proportional to the numbers e, §, 7, d, etc.: but we have already
mentioned before, that cases of this kind, in which evidently the determination
of the unknown quantities would not be possible, even if the true values of the
functions ¥, V7, V", etc., should be given, do not belong to this subject.

Finally, we can easily reduce to the case here considered, all the others in
which the functions ¥V, V7, V", etc. are not linear. Letting, for instance, =, 7, ¢,
o, etc, denote approximate values of the unknown quantities p, ¢, 7, s, etc.,, (which
we shall easily obtain if at first we only use » of the p equations V=M, V'=M",
V"= M", etc.), we will introduce in place of the unknown quantities the others,
Y, ¢,7, ¢, ete, putting p=n+p,¢g=1+¢,r=0+r,s=0-45, etc.: the
values of these new unknown quantities will evidently be so small that their
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squares and products may be neglected, by which means the equations become
linear. If; after the calculation is completed, the values of the unknown quanti-
ties p', ¢', 7, &, ete, prove, contrary to expectation, to be so great, as to make it
appear unsafe to neglect the squares and products, a repetition of the same pro-
cess (the corrected values of p, g, 7, s, etc. being taken instead of =, 7, ¢, 0, ete.),
will furnish an easy remedy.

181.

When we have only one unknown quantity p, for the determination of which
the values of the functions ap -+ n, o'p 44/, a”p 4 n”, etc. have been found, re-
spectively, equal to M, M’, M", etc, and that, also, by means of observations
equally exact, the most probable value of p will be

A —om + o'm’ + o"m” + ete.
aa—+ad'a +a'd’" -+ ete. ?
putting m, m’, m”, respectively, for M —n, M" —u', M" —x", ete.

In order to estimate the degree of accuracy to be attributed to this value, let

us suppose that the probability of an-error 4 in the observations is expressed by

\7_7: p—hBAA
Hence the probability that the true value of p is equal to 4 + p" will be propor-
tional to the function

o= (@p—mP+(@p—mt(@p—m) 't eto.)

if A + p’ is substituted for p. The exponent of this function can be reduced to
the form,
—hh(aa 4 dd 4+ a'd’ + ete.) (pp—2p A+ B),
in which B is independent of p: therefore the function itself will be propor-
tional to
e—hh(ua-l-a’a’-i—a”a”-l—ew.)P’P'.

It is evident, accc;rdingly, that the same degree of accuracy is to be assigned to
the value 4 as if it had been found by a direct observation, the accuracy of which
would be to the accuracy-of the original observations as Ay/(aa+d'a’4-a"a"+ etc.)
to %, or as \/ (aa 4 d'd’ 4 a"a” 4 etc.) to unity.
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182.

It will be necessary to preface the discussion concerning the degree of accu-
racy to be assigned to the values of the unknown quantities, when there are sev-
eral, with a more careful consideration of the function v» 4 2%+ »"»" + ete,
which we will denote by W.

I Let us put
daw

bgp=r=Lltap+Bg+yr+dsiete,

also

W—L2E — yp,

o
and it is evident that we have »’ = P, and, since
aw' _dw_ 2p'dp’
dp = dp a dp =
that the function W is independent of p. The coefficient @ = aa + a'a’+ «"a"+-
etc. will evidently always be a positive quantity.
II. In the same manner we will put

b = =N By 7'r - Po ete,

also
W—q‘;,—q,= w”,
and we shall have
aw ‘dp' ’ daw”
¢ = @—%(—1%=Q—§p, and =0

whence it is evident that the function W"” is independent both of p and 4.
This would not be so if ' could become equal to zero. But it is evident
that W’ is derived from »v - ¢'s" 4 0”2 4 etc., the quantity p being eliminated
from v, ¢/, »”, etc., by means of the equation p»'=0; hence, 8’ will be the sum of
the coefficients of ¢¢ in vo, o'V, v, ete, after the elimination; -each of these
coefficients, in fact, is a square, nor can all vanish at once, except in the case
excluded above, in which the unknown quantities remain indeterminate. Thus
it is evident that $’ must be a positive quantity.
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11I. By putting again,

dW” / / /" / '7,
- =7 =1+7"r+40"s4 etc, and W’ —77

we shall have

— "
= W,

r=R—lpy—Fd,

also 1" independent of p, and ¢, as well as . Finally, that the coefficient of »”
must be positive is proved in the same manner as in II. In fact, it is readily per-
ceived, that y” is the sum of the coefficients of »7 in v, 0'v/, v"0”, etc., after the
quantities » and ¢ have been eliminated from v, ¢/, v”, etc.,, by means of the equa-
tions p' =0, ¢/ =0.

IV. In the same way, by putting

d l’r/l/
- =8¢ =1"+40"s+ etc, W*=W"—

ds —

§s
Fi/)
we shall have

/i J ’ 0"
$ —S—;p—gg—7r’,

W™ independent of p, g, 7, s, and 0" a positive quantity.
V. In this manner, if besides p, ¢, 7, s, there are still other unknown quanti-
ties, we can proceed further, so that at length we may have

1 1 ’ 1 , 1
W=—pp'+ ' 77 + 7 17" + 5w 8's’ + ete. 4 Constant,
in which all the coefficients will be positive quantities.
VI. Now the probability of any system of determinate values for the quan-
tities p, ¢, r, s, ete. is proportional to the function e=**"; wherefore, the value of

the quantity p remaining indeterminate, the probability of a system of determi-

nate values for the rest, will be proportional to the integral

. fe—thdp

extended from p—=—w to p—= -}, which, by the theorem of LaprrACE, becomes
1 ,,, 1 1,
}l-la—in}c—hh (F q’q +7r’f+Fss +etc.) ;

therefore, this probability will be preportional to the function e=**". 1In the
same manner, if, in addition, ¢ is treated as indeterminate, the probability of a

34
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system of determinate values for 7, s, etc. will be proportional to the integral

' f ek 7,
extended from ¢ =— o0 up to ¢= -} oo, which is
BB/ —tmte—hh (—},;r‘f-}-(—;,—,,s’s’-l-em.) ;

or proportional to the function e=**"". Precisely in the same way, if » also is
considered as indeterminate, the probability of the determinate values for the rest,
s, ete. will be proportional to the function e=**" and so on. Let us suppose.the
number of the unknown quantities to amount to four, for the same conclusion
will hold good, whether it is greater or less. The most probable value of s will
be — %';,l,, and the probability that this will differ from the truth by the quantity
o, will be proportional to the function e=*#"¢7; whence we conclude that the
measure of the relative precision to be attributed to that determination is ex-
pressed by /0", provided the measure of precision to be assigned to the original

observations is put equal to unity.

183.

By the method of the preceding article the measure of precision is conven-
iently expressed for that unknown quantity only, to which the last place has
been assigned in the work of elimination; in order to avoid which disadvantage,
it will be desirable to express the coefficient 0" in another manner. From the
equations

P=y
Q=4+ % 4
R=y+Lq+1p
S=d+51"+5¢+37,
it follows, that ¢/, ¢/, 7/, &, can be thus expressed by means of P, Q, R, S,

pP=2P .
/=@+UP
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¥y=R+3BQ+ AP

8/ — S+ GI/R + %// Q + %III.P’
so that 9 A, B, A", B”, €” may be determinate quantities. We shall have,
therefore (by restricting the number of unknown quantities to four),

l/// QLI/ %VI G’/ 1
Hence we deduce the following conclusion. The most probable values of the

unknown quantities p, ¢, 7, s, etc., to be derived by elimination from the equations
P=0,Q=0,R=0,§=0, etc,

will, if P, @, R, §, etc., are regarded for the time as indeterminate, be expressed
in a linear form by the same process of elimination by means of P, @, B, S, etc,
so that we may have
p=L+AP+ BQ+ CR+ DS+ etc.
g=L+ AP+ DB'Q+4 "R+ DS+ ete.
r=L'+A"P+DB"Q+C"R+D"S+ ete.
s=I1"4+A"P+B"Q+C"R+D"S + ete.
ete.
This being done, the most probable values of p, ¢, 7, s, etc,, will evidently be
L, L, L", L', etc., respectively, and the measure of precision to be assigned to
these determinations respectively will be expressed by
1 1 1 1
VA VB o D
the precision of the original observations being put equal to unity. That which

we have before demonstrated concerning the determination of the unkncwn
quantity s (for which 517, answers to D) can be applied to all the others by the

simple interchange of the unknown quantities.

184.

In order to illustrate the preceding investigations by an example, let us sup-

pose that, by means of observations in which equal accuracy may be assumed,
we have found
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p—g+2r=3
3p+2¢9q—5r=5
4p+ 9+4r=21,
but from a fourth observation, to which is to be assigned one half the same
accuracy only, there results
—2p+ 694 6r=28.
We will substitute in place of the last equation the following : —

—p+39+3r=14

and we will suppose this to have resulted from an observation possessing equal
accuracy with the former. Hence we have

P=2Tp+ 6¢ — 88
Q= 6p+15¢+»r — 70
R= g+ 54r—107,

and hence by elimination,
19899 p =49154 4 809 P—324 Q-+ 6 R
B7¢g= 2617T— 12P+4 54Q—R
6633 r =127074+ 2P— 9@+ 123 R.

The most probable values of the unknown quantities, therefore, will be

g=23551
r—=1.916

and the relative precision to be assigned to these determinations, the precision of
the original observations being put equal to unity, will be

forp ...... \/%ggg = 4.96
forg...... % = 3.69

forr...... \/ Ei_i_l = 7.34.
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185.

The subject we have just treated might give rise to several elegant analytical
investigations, upon which, however, we will not dwell, that we may not be too
much diverted from our object. For the same reason we must reserve for another
occasion the explanation of the devices by means of which the numerical calcu-
lation can be rendered more expeditious. I will add only a single remark.
When the number of the proposed functions or equations is considerable, the
computation becomes a little more troublesome, on this account chiefly, that the
coefficients, by which the original equations are to be multiplied in order to ob-
tain P, @, R, S, etc., often involve inconvenient decimal fractions. If in such
a case it does not seem worth while to perform these multiplications in the most
accurate manner by means of logarithmic tables, it will generally be sufficient
to employ in place of these multipliers others more convenient for calculation,
and differing but little from them. This change can produce sensible errors in
that case only in which the measure of precision in the determination of the
unknown quantities proves to be much less than the precision of the original
observations.

186.

In conclusion, the principle that the sum of the squares of the differences
between the observed and computed quantities must be a minimum may, in the
following manner, be considered independently of the calculus of probabilities.

When the number of unknown quantities is equal to the number of the ob-
served quantities depending on them, the former may be so determined as exactly
to satisfy the latter. Buf when the number of the former is less than that of the
latter, an absolutely exact agreement cannot be obtained, unless the observations
possess absolute accuracy. In this case care must be taken to establish the best
possible agreement, or to diminish as far as practicable the differences. This idea,
however, from its nature, involves something vague. For, although a system of
values for the unknown quantities which makes o/ the differences respectively
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less than another system, is without. doubt to be preferred to the latter, still the
choice between two systems, one of which presents a better agreement in some
observations, the other in others, is left in a measure to our judgment, and innu-
merable different principles can be proposed by which the former condition is
satisfied. Denoting the differences between observation and calculation by 4,
A4’y A", ete., the first condition will be satisfied not only if 44 + 4’4"+ 4"4" +
ete., is a minimum (which is our principle), but also if 4* 4 4%+ 4™ 4 ete., or
A°+ 4%+ 4"+ ete, or in general, if the sum of any of the powers with an
even exponent becomes a minimum. But of all these principles ours is the most sim-
ple; by the others we should be led into the most complicated calculations.

Our principle, which we have made use of since the year 1795, has lately
been published by Legespre in the work Nouvelles methodes pour la determination des
orbites des cometes, Paris, 1806, where several other properties of this principle have
been explained, which, for the sake of brevity, we here omit.

If we were to adopt a power with an infinite even exponent, we should be
led to that system in which the greatest differences become less than in any other
system.

Laprace made use of another principle for the solution of linear equations the
number of which is greater than the number of the unknown quantities, which
had been previously proposed by Boscovics, namely, that the sum of the errors
themselves taken positively, be made a minimum. It can be easily shown, that a
system of values of unknown quantities, derived from this principle alone, must
necessarily * exactly satisfy as many equations out of the number proposed, as
there are unknown quantities, so that the remaining equations come under consid-
eration only so far as they help to defermine the choice : if, therefore, the equation
V = M, for example, is of the number of those which are not satisfied, the sys-
ten1 of values found according to this principle would in no respect be changed,
even if any other value V had been observed instead of M, provided that, denot-
ing the computed value by n, the differences M — n, N —n, were affected by the
same signs. Besides, Laprace qualifies in some measure this principle by adding

* Except the special cases in which the problem remains, to some extent, indeterminate.
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a new condition: he requires, namely, that the sum of the differences, the signs
remaining unchanged, be equal to zero. Hence it follows, that the number of
equations exactly represented may be less by unity than the number of unknown
quantities; but what we have before said will still hold good if there are only
two unknown quantities.

187.

From these general discussions we return to our special subject for the sake
of which they were undertaken. DBefore the most accurate determination of
the orbit from more observations than are absolutely requisite can be com-
menced, there should be an approximate determination which will nearly satisfy
all the given observations. The corrections to be applied to these approximate
elements, in order to obtain the most exact agreement, will be regarded as the
objects of the problem. And when it can be assumed that these are so small
that their squares and products may be neglected, the corresponding changes.
produced in the computed geocentric places of a heavenly body, can be obtained
by means of the differential formulas given in the Second Section of the First
Book. The computed places, therefore, which we obtain from the corrected ele-
ments, will be expressed by linear functions of the corrections of the elements,
and their comparison with the observed places according to the principles before
explained, will lead to the determination of the most probable values. These
processes are so simple that they require no further illustration, and it appears at
once that any number of observations, however remote from each other, can
be employed. The same method may also be used in the correction of the para-
bolic orbits of comets, should we have a long series of observations and the best
agreement be required.

188.

The preceding method is adapted principally to those cases in which the
greatest accuracy is desired: but cases very frequently occur where we may,
without hesitation, depart from it a little, provided that by so doing the calcula-
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tion is considerably abridged, especially when the observations do not embrace a
great interval of time; here the final determination of the orbit is not yet
proposed. In such cases the following method may be employed with great
advantage. '

. Let complete places L and L’ be selected from the whole number of observa-
tions, and let the distances of the heavenly body from the earth be computed
from the approximate elements for the corresponding times. Let three hypothe-
ses then be framed with respect to these distances, the computed values being
retained in the first, the"first distance being changed in the second hypothesis,
and the second in the third hypothesis; these changes can be made in proportion
to the uncertainty presumed to remain in the distances. According to these
three hypotheses, which we present in the following table,

Hyp. L. Hyp. IL. Hyp. IIL

Distance * corresponding to the first place, D D+-9 D
Distance corresponding to the second place, D )4 D439

let three sets of elements be computed from the two places L, L', by the methods
explained in the first book, and afterwards from each one of these sets the geo-
centric places of the heavenly body corresponding to the times of all the remain-
ing observations. Let these be (the several longitudes and latitudes, or right
ascensions and declinations, being denoted separately),

in the firstset . . . . M M, M, etc.
in the second set . . . M—+ta, M+ o, M+ ", ete.
in the thirdset . . . . M8, M B, M"+ B, ete.

Let, moreover, the observed
places be respectively . . . . . N, N, N, ete:

Now, so far as proportional variations of the individual elements correspond .

* It will be still more convenient to use, instead of the distances themselves, the logarithms of the
curtate distances.
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to small variations of the distances D, I, as well as of the geocentric places
computed from them, we can assume, that the geocentric places computed from
the fourth system of elements, based on the distances from the earth D - zd.
D+ g0, are respectively M +az—+ By, M ez~ By, M+ o"z 4 "y, ete.
Hence, z, y, will be determined, according to the preceding discussions, in such a
manner (the relative accuracy of the observations being taken into account), that
these quantities may as far as possible agree with &V, N7, N”, ete., respectively.
The corrected system of elements can be derived either from Z, L’ and the dis-
tances D + 2d, D'+ 2z, or, according to well-known rules, from the three first
systems of elements by simple interpolation.

189.

This method differs from the preceding in this respect only, that it satisfies
two geocentric places exactly, and then the remaining places as nearly as possi-
ble ; while according to the other method no one observation has the preference
over the rest, but the errors, as far as it can be done, are distributed among all.
The method of the preceding article, therefore, is only not to be preferred to the
former when, allowing some part of the errors to the places Z, Z/, it is possible to
diminish considerably the errors in the remaining places: but yet it is generally
easy, by a suitable choice of the observations Z, I/, to provide that this difference
cannot become very important. It will be necessary, of course, to take care that
such observations are selected for Z, I/, as not only possess the greatest accuracy,
but also such that the elements derived from them and the distances are not
too much affected by small variations in the geocentric places. It will not, there-
fore, be judicious to select observations distant from each other by a small inter-
val of time, or those to which correspond nearly opposite or coincident heliocen-
tric places.

35



FOURTH SECTION.

ON THE DETERMINATION OF ORBITS, TAKING INTO ACCOUNT THE
PERTURBATIONS.

190.

Tre perturbations which the motions of planets suffer from the influence of
other planets, are so small and so slow that they only become sensible after a
long interval of time; within a shorter time, or even within one or several entire '
revolutions, according to circumstances, the motion would differ so little from the
motion exactly described, according to the laws of KEpPLER, in a perfect ellipse,
that observations cannot show the difference. Aslong as this is true, it would
not be worth while to undertake prematurely the computation of the perturba-
tions, but it will be sufficient to adapt to the observations what we may call an
osculating conic section: but, afterwards, when the planet has been accurately
observed for a longer time, the effect of the perturbations will show itself in such
a manner, that it will no longer be possible to satisfy exactly all the observations
by a purely elliptic motion ; then, accordingly, a complete and permanent agree-
ment cannot be obtained, unless the perturbations are properly connected with
the elliptic motion.

Since the determination of the elliptic elements with which, in order that the
observations may be exactly represented, the perturbations are to be combined,
supposes a knowledge of the latter; so, inversely, the theory of the perturbations
cannot be accurately settled unless the elements are already very nearly known:
the nature of the case does not admit of this difficult task being accomplished
with complete success at the first trial: but the perturbations and the elements

can be brought to the highest degree of perfection only by alternate corrections
(274)
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often repeated. Accordingly, the first theory of perturbations will be constructed
upon those purely elliptical elements which have been approximately adjusted to
the observations; a new orbit will afterwards be investigated, which, with the
addition of these perturbations, may satisfy, as far as practicable, the observa-
tions. If this orbit differs considerably from the former, a second determination
of the perturbations will be based upon it, and the corrections will be repeated
alternately, until observations, elements, and perturbations agree as nearly as

possible.

191.

Since the development of the theory of perturbations from given elements is
foreign to our purpose, we will only point out here how an approximate orbit
can be so corrected, thz;t, joined with given perturbations, it may satisfy, in
the best manner, the observations. This is accomplished in the most simple
way by a method analogous to those which we have explained in articles 124,
165, 188. The numerical values of the perturbations will be computed from the
equations?for the longitudes in orbit, for the radii vectores, and also for the helio-
centric latitudes, for the times of all the observations which it is proposed to use,
and which can either be three, or four, or morve, according to circumstances: for
this calculation the materials will be taken from the approximate elliptic ele-
ments upon which the theory of perturbations has been constructed. Then two
will be selected from all the observations, for which the distances from the earth
will be computed from the same approximate elements: these will constitute the
first hypothesis, the second and third will be formed by changing these distances
a little. After this, in each of the hypotheses, the heliocentric places and the
distances from the suu will be determined from two geocentric places; from those,
after the latitudes have been freed from the perturbatious, will be deduced the
longitude of the ascending node, the inclination of the orbit, and the longi-
tudes in orbit. The method of article 110 with some modification is useful in
this calculation, if it is thought worth while to take account of the secular varia-
tion of the longitude of the node and of the inclination. If 8, §’,denote the
heliocentric 1:titudes freed from the periodical perturbations; A, X', the heliocen-
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trie longitudes; Q, @ 4 4, the longitudes of the ascending node; 47+ d, the
inclinations of the orbit; the equations can be conveniently given in the follow-
ing form: —
tan § = tan¢sin (A —Q),
tanz ’ o s .
@ﬁ tan f'=tanssin (A’ — 4 —Q).

an—%%_-af) acquires all the requisite accuracy by substituting an
approximate value for ¢: ¢ and @ can afterwards be deduced by the common

This value of

methods.

Moreover, the sum of the perturbations will be subtracted from the longitudes
in orbit, and also from the two radii vectores, in order to produce purely elliptical
values. But here also the effect, which the secular variations of the place of the
perihelion and of the eccentricity exert upon the longitude in orbit and radius
vector, and which is to be determined by the differential formulas of Section I.
of the First Book, is to be combined directly with the periodical perturbations,
provided the observations are sufficiently distant from each other to make it
appear worth while to take account of it. The remaining elements will be deter-
mined from these longitudes in orbit and corrected radii vectores together with
the corresponding times. Finally, from these elements will be computed the
geocentric places for all the other observations. These being compared with the
observed places, in the manner we have explained in article 188, that set of
distances will be deduced, from which will .follow the elements sa_ti‘;fying in the
best possible manner all the remaining observations.

192.

The method explained in the preceding article has been prmecipally adapted
to the determination of the firs¢ orbit, including the perturbations: but as soon
as the mean elliptic elements, and the equations of the perturbations have both
become very nearly known, the most accurate determination will be very con-
veniently made with the aid of as many observations as possible by the method
of article 187, which will not require particular explanation in this place. Now
if the number of the best observations is sufficiently great, and a great interval
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of time is embraced, this method can also be made to answer in several cases for
the more precise determination of the masses of the disturbing planets, at least
of the larger planets. Indeed, if the mass of any disturbing planet assumed in
the calculation of the perturbations does not seem sufficiently determined, besides
the six unknown quantities depending on the corrections of the elements, yet
another, u, will be introduced, putting the ratio of the correct mass to the assumed
one as 1 4w to 1; it will then be admissible to suppose the perturbations them-
selves to be changed in the same ratio, whence, evidently, in each one of the com-
puted places a new linear term, containing u, will be produced, the development
of which will be subject to no difficulty. The comparison of the computed places
with the observed according to the principles above explained, will furnish, at the
same time with the corrections of the elements, also the correction u. The
masses of several planets even, which exert very considerable perturbations, can
be more exactly determined in this manner. There is no doubt but that the mo-
tions of the new planets, especially Pallas and Juno, which suffer such great per-
turbations from Jupiter, nay furnish in this manner after some decades of years,
a most accurate determination of the mass of Jupiter; it may even be possible
perhaps, hereafter, to ascertain, from the perturbations which it exerts upon the

others, the mass of some one of these new planets.






APPENDIX.

1.f
Tne value of ¢ adopted in the Solar Tables of Haxsey and Ovursen, (Copen-
hagen, 1853,) is 365.2563582. Using this and the value of u,

1
= 351936°

from the last edition of LaprLacE’s Systéme du Monde, the computation of % is

log2zx . . . . . . . . 07981798684
Compl. log¢ . . . . . . T.4374022154
Compl. log ¢ (14u) . . . 9.9999993882
logk . . . . . . . . . 8.2355814720

kE=. . . . . . . 0.01720210016.

11.

The following method of solving the equation
M=F—esinF,

is recommended by ENckE, Berliner Astronomisches Jahrbuch, 1838.
Take any approximate value of %, as ¢, and compute

M —e¢—¢"sine,

* The numbering of the Notes of the Appendix designates the articles of the original work to

which they pertain.
(279)
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¢” being used to denote e expressed in seconds, then we have

dM =dE (1 —ecos E),
or
M—M —=FE—e—¢"(sin E—sine)
= (£ —¢) (1 —ecose),
if #—¢ is regarded as a small quantity of the first order, and quantities of
the second order are neglected for the present : — so*that the correction of & is

M-
—1—ecose’
and a new approximate value of & is
M— M

8+1—ecoss’

with which we may proceed in the same manner until the true value is obtained.
It is almost always unnecessary to repeat the calculation of 1—ecose. Gener-
ally, if the first ¢ is not too far from the. truth, the first computed value of
1 — ¢ cos ¢ may be retained in all the trials.

This process is identical with that of article 11, for 4 is nothing more than

dlogsin £ cos E
dE = sin B’

=

if we neglect the modulus of Briaas’s system .of logarithms, which would subse-
quently disappear of itself, and

__dlog(d"sinE) 1

T d(¢"sinkE) T esin B’

therefore,
g 1
p—*i~ l—ccos B’

and

. ) p _ M—-M
v = b (M4 sine—e) = (M— M) = 2,

and the double sign is to be used in such a way that A shall always have the same
sign as cos . In the first approximations when the value of & differs so much
from Z that the differences of the logarithms are uncertain, the method of this
note will be found most convenient. But when it is desired to insure perfect
agreement to the last decimal place, that of article 11 may be used with
advantage.
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As an illustration, take the data of the example in article 13.

Assume ¢ = 326°, and we find

logsine  9.74756n log cos e 9.91857
loge” 470415 log e 9.38973
loge”sine  4.45171n log e cos & 9.30830
¢’ sin e = — 28295" = —7° 51’ 85" 1—ecose=.79662
M —e— ¢ sine—=833° 51" 35" log (1—ecose) 9.90125
M— M =—4960" log M— M’ 3.69548n
MM _6226” log 2= 3794287
= —1°43"46".

And for a second approximation,
¢ =326°—1°43 46" = 324° 16" 14"
logsine  9.7663820%

loge” 47041513
loge”sine  4.4705333 %

¢’ sin e = — 20548”.36 = — §° 12’ 28".36
M = 332°28' 42,36 log (1—ecose)  9.90356
M— M = 412741 log (M— M)  1.09377

M— M’ " M—M
o — 1 15"50 log;——— 119021

which gives
E—324°16"14" 4 15".50 = 324° 16"29".50.

18.
Putting

q = % p = perihelion distance,
r="1L\3%,

log » = 8.0850664436,

—\/ Lk,
T=1 \/ o
we have

tan v+ 3tan* do=1x<,
r=%(3 tan%v—l—t&n"{v);
36



282 APPENDIX.

a table may be computed from this formula, giving » for values of 7 as the argu-
ment, which will readily furnish the true anomaly corresponding to any time
from the perihelion passage. Table Il; is such a table. It is taken from the
first volume of Annales de I’ Observatoire Impériale de Paris, (Paris, 1855,) and differs
from that given in DeLamBrE'S Astronomy, (Paris, 1814,) Vol. IIL, only in the
intervals of the argument, the coefficients for interpolation, and the value of %
with which it was computed.

The true anomaly corresponding to any value of the argument is found by
the formula

v =1y~ A (T —7) + 4y (T — %2+ (v — 7o)8 A3+ A, (T — 7).

The signs of 4,, 4;, 43, are placed before the logarithms of these quantities
in the table.

BurckrarDT’s table, Bowprrcr’s Appendix to the third volume of the Mecanique
Celeste, is similar, except that log 7 is the argument instead of <.

Table Il contains the true anomaly corresponding to the time from peri-
helion passage in a parabola, the perihelion distance of which is equal to the
earth’s mean distance from the sun, and the mass p equal to zero. For if we put
¢g=1,u=0, we have v =%.

By substituting the value of x in the equation

7:5;(3 tan % v -+ tan® § »)
it becomes

T=27.40389544 (3 tan $ v 4 tan®  v)
= 1.096155816 (75 tan 4 v 425 tan® 4 v;
and therefore, if we put "= 0.912279061,

Totandv 4 25tan® o =u'<7
log »' =9.9601277069

Barker’s Table, explained in article 19, contains »' = for the argument ».
The Mean daily motion or the quantity M, therefore, of BArkER's Table may be
obtained from table Ila, for any value of », by multiplying the corresponding
value of ¢ by «.

The following examples will serve to illustrate the use of the table.

Given, the perihelion distance ¢=—0.1; the time after perihelion passage
1 =16"5690997, to find the true anomaly.
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‘Assuming u =0, we find
7 = 208.42561

7o = 200.
t—1,—= 842561
vy = 110° 24’ 46”.69
4, (v—1y) =+1°1442"42

4, (t—r)=— 272019
4 (v—r1) =+ 4”76
A (t—7)=— 0”.16
v=111°3718"52 ~
or
v =208.42561
T, = 210.

T — 7y = —1.57439
o= 111° 50 16".87

A (r—T)=— 1258796
A (v —7)=— 4”35
A (v —7)=— 0”.03
A (t—1) =— 0”.00

v =111°37"13".63
The latter form of calculation is to be preferred because the value of 7— <,
is smaller, and therefore the terms depending on (v — 1), (v — %)%, (7 — 7,)? are
smaller, and that depending on (v — 7,)* is insensible; and it is the only form
of which all the appreciable terms are to be found in the table.
Beyond 7 =40000, the limit of the table, we can use the formula,

 tane 1\3 1 1\&
v =180°— [6.0947259] (1)’ — [6.87718] (}) — [7.13] (3)’, ete,
in which the coefficients expressed in arc are given by their logarithms.
For = = 40000, for example, we have
v=180°—10°6"6".87 —3'8"41 —0".44
= 169° 650" 44".28.
If v is given, and it is required to find =, we have

'r—q,'o:v;lv"—%j(r—ro)?—ijf(r—10)3.
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For a first approximation the terms depending on the square and third power
of ©— 7, may be neglected, and the value of 7= — 7, thus found can be corrected

so as to exactly satisfy the equation.
If » exceeds 169°, the formula

7 =[1.9149336] tan % » 4 [1.4378123] tan® 1 »

may be used instead of the table.
Thus, for ¥ — 169° 50" 44”.28,

logtan 4 ». .1.0613610

1.9149336

925.33 2.9662946
log tan® $ ». .3.1540830

14378123

39074.67 4.59189563

7 =40000.00

This method will often be found more convenient than the table, even where
v 1s less than 169°.

35.

Table Vo contains Brsser’s table here referred to, in a slightly modified
form; and also a similar table by Posser, for the coefficients ¢’ and »” in the
formula of article 34, '

w=uv-+0v 4 00¢" 4 %" 4 etc,

it is taken from ENckE's edition of OLBERS Abkandlung iiber die leichteste und bequemste
Methode die Bahn eines Cometen zu berechnen (Weimar, 1847). The following
explanation of its construction and use is taken from the same work, with
such changes as are needed to adapt it to the notation of the preceding
articles: — ‘
If we put
J—=tan $w
7 — tan i‘ v
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the formulas of article 34 become

1 a3 9 .5
§T—35T —27T
w—ov-+4* 2 L))

Ty
+ T = — T — &+ S+ 2% &2
(L2
I S Lun o L
e (R
4+ = Ts 9 — 5 9° + 35 9° 4 334 9 413 9° 43, O 52
(LF 09

The second equation, in which » is expressed in terms of », is that given by
Besser, Monatliche Correspondenz, Vol. X1I, p. 197. He also gives the third coeffi-
cient of the series, but has computed a table of only the first two. PosseLr, in
the Zeitschrift fiir Astronomie und verwandte Wissenschaften, Vol. V., p. 161, has given
the first equation; he has also given three coefficients of the series, but a table of
the second only, since BEesser’s table will give the first coefficient simply by
changing the sign. Possert has changed the sign of the second coefficient also.

Instead of the logarithms as given in the tables of BesseL and Possert, the
corresponding numbers are given in table Vg, and to avoid large numbers, (.91
is taken as the unit of J.

Putting :
tan 3 » =

the table contains

___TIG' s _'1'93"53_'_%47)’ §5+§%%§7+'}2§9+7g’6 5119065)65
— 10000 (1 + 5% s
— Sl A A T — P — gy S
S 16 = 16 = 16 - 560 © 5 = 305 90Q9F
B = 10000 (1 4 &5* 206265

So that when # = w we have
v=w-4 A(1000) 4 B (1000)?
And when 2 = »,
w=v—A(1000)— B (1000)*

It seems unnccessary to recompute the table in order to be certain of the
accuracy of the last place, or to extend it further, as its use is limited. For
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absolute values of d greater than 0.03, and for values of z considerably greater
than 90° the terms here given would not be sufficient. In such cases the
method of 37 and the following articles should be used.

Example. — For HALLEY’S comet,

log 0 = 8.5099324, and # = 6343592, we have

by table Ilq, - w=199°36"55".91
and by table Va, A= 441745  1st cor. -+ 22730".63
B=+4 3111  2d cor. 4+  327.57
v =99° 59" 59".11
which, rigorously, should be 100°; so that d is in this case too great.
Inversely, we find, for » = 100°,
»=100° 0’ 00".00
A=-4426.78 1st cor. — 28" 0".83
B=+4 0297 2d cor. — 3711
' w= 99° 36’ 56".06
which agrees nearly with the preceding value. The change of the table to the
present form has been made under the supervision of D’ARREsT.

39.
When table Ils is used instead of BARKER’s table, w is the value of », which
corresponds to the argument

at
T = ——.
%®
40.
If we put
1
E=Ya—3a10)
_1—t44C
E=1ria10C

the formulas for computing the true anomaly and radius vector are

tan v = F,y tan $ w
r=F, ¢sec® .
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Table I. for the Ellipse contains log £, and log Z, for the argument 4, to-
gether with the logarithms of their differences corresponding to a change of a unit
in the seventh decimal place of the argument. It was computed by Prof. J. S.
HusBarp, and has been used by him for several years. Since it was in type, a
similar table, computed by Mr. A. MartH, has appeared in the Astronomische Nach-
richten, Vol. XLIIL, p. 122. The example of article 43 will furnish an illustra-
tion of its use.

Formulas expressing the differentials of the true anomaly and radius vector
in a very eccentric ellipse, in terms of the differentials of the time of perihelion
passage, the perihelion distance and the eccentricity may be obtained from the
equations of this article.

If we put B=1, (=0, we have, article 39,

tan%zu+z}tan3ézo—9‘—t

which, by article 20, gives

dw (3 3 at
Teost T — 75 4 5,75 44 +75d“

We also have, article 40,
log tan $ v = log tan $ w— 3 log (1 — ¢ B tan® $ w) 4 log ¥

and, therefore,

_dv cos?twdw +d7 24 df
25in12~vcos§v 2sintwecos’lw (1 —4%4) +1—§A‘3
dv o cos?Lw di— 3 atcos’tw
smo 75tanlw(l—§A) 2q75tan2w(1—§A)
t cos? 5 d?’ ‘A dﬁ
+75taniw(1 d += +1—§A[3
which, by putting
o cos? L w
L= T5tantw (1 —% 4)
3
1=
9
M= 5059
N 4

0+ (F90)
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_ 34
1—34
10
—T—9@F99

is reduced to

L o KiT—EKLtdg+[EMi—N—0Plde,
observing that d{ = — d7, if 7' denotes the time of perihelion passage.
If we differentiate the equation
—9(+e
~— 1-Fecosv

we find

2 ¢%sin -11; r?esinv
0t yaror et sat g 4

These formulas are given by Nicorat, (Monatliche Correspondens, Vol. XXVIL,
p- 212). The labor of using them is greatly abridged by the fact that K, Z,
M, etc,, are computed once for all, and that the quantities needed for this pur-

pose are those required for computing the true anomaly and radius vector.
If the ellipse so nearly approaches the parabola that, in the coefficients, we
may assume
tan 3 o=y tan $ w
ky2cos? v

==
2q%tan12~v

the values of dv and dr assume a much more simple form. In this case we
should have
k\/2cosalvsmlv lc\/2cos‘iv ky2q

Ksnov= 2 tan o A >
b 4 0tngv].
(&N~ OP)Sm”—[(l—i-e) +99 7a+990”
ML | I D
—L{dF¢ 0F99 T (14¢) (149¢)

and consequently,

__ WTagp_ 3k, eyE s Btn s
dv= = dT— ey —d +[ 21599 (1+e)(1—{-9e)]de'
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This form is given by Excke (DBerliner Astronomisches Juhrbuch, 1822, page 184.)

If we put e=1 in the coefficient of de¢ it becomes

v _ o MV?q—gtan%v.

If we substitute the value of /v in the expression for &r given above, it

may be reduced to the form
kisne 15 7 tan® 3 v) de.

e
(=

B o
dr—=—-—-sinvd T+ cosvd
V2g ™ 7T V2q
41.
The time / may be found from table I, by multiplying the value of = cor-
responding to » by
% B

7

45.
Table Ix for the hyperbola is similar to that for the ellipse, and contains

log I, and log E, for the formulas
tan v =L, y tan 4 w

r—=FE, sec’3v.
The differential formulas of article 40, of the Appendix, can be applied to

the hyperbola also, by changing the sign of A and of 1— ¢ in the coefficients.

50.

As the solution here referred to may sometimes be found more convenient
than the one given in articles 53-57, the formulas sufficient for the use of prac-

tical computers are given below.
Using the notation of 50 and the following articles, the expressions for the

rectangular codrdinates referred to the equator are, —

Z=—7rCcosucos Q —rsinusin Q cos?
(1) 7 =rcosusin Q cose—} rsin ucos Q cos?cose— rsin u sin ¢ sin &
2=rcosusin Q sin&—} rsin % cos  coszsin e 4 7 sinu sinicose

37
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which can be put in the form

# =rsina sin (4 -+ u)
(2) Y =rsinbsin (B 4 u)
z=rsincsin (0 u)

or
# =rsinasin 4 cosu - 7 sin @ cos 4 sin u
(3) y=rsinb sin B cosu -} r sin b cos B sin u
z=rsincsin Ccosu -} rsinccos Csinu

equations (3), compared with (1) give

sin @ cos A —=—sin Q cos ¢

sin & cos B = cos § coscose—sinssine
sin ¢ cos (' = cos Q cos ¢ sin & -} sin cos &.

sin ¢ sin A — cos
(4) sinésin B=sin Q cose
sinesin € —sin § sin &

By introducing the auxiliary angle #

tan ¢
tan £ = =g

we shall find
cotan A — —tan Q cos %

cotan B — cos? cos (B--¢)
tan Q cos & cos ¢

___ cos¢sin (E-4¢)
cotan 0'= tan Q cos & sin ¢

. cos sin Q cos
SIn @ — — & = — &
sin 4 cos A

. sin @ cos&  cos § cos ¢ cos & —sin¢ sin &
sin b — s — =
sin B cos B

. sin Q sing  cos § cos < sin e} sin ¢ cose
sSin ¢ — 2 — .
sin ¢ cos O
I

sin @, sin b, sinc are always positive, and the quadrants in which 4, B, €' are to

be taken, can be decided by means of equations (4).
The following relations between these constants, easily deducible from the

foregoing, are added, and may be used as checks:

R — smbsn}csm.(O—B)
sin @ sin A
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cos @ =sin Q sins
cos b = — cos Q sin ¢ cos & — ¢0s 7 sin &
cos¢ — —cos Q sin ¢ sin & -+ cos?7 cos e
sin® @ -} sin’ 6 - sin® ¢ = 2
cos’ @+ cos’b+cos’c =1
cos (4 —B) = — cotan a cotan b
cos (B— (') = — cotan & cotan ¢

cos (A — C) = — cotan a cotan c.

58.
If in the formulas of article 56 of the Appendix, the ecliptic is adopted as
the fundamental plane, in which case e=0; and if we put
nw=  long. of the perihelion
sme=#k A=K, —(n— Q)
simb=% B=K,—(n—Q)
sme=#k C=K —(n— Q)
we shall have
k. sin (K,—(mn— Q)) =cos @
k. cos (K, — (m — Q)) = —sin Q cos?
k,sin K, = cos @ cos (n — Q) —sin  sin (7 — Q) cos?
k.cos K, = —[cos Q sin (1 — Q) —-sin Q cos (7w — ) cosi]

which can easily be reduced to the form,

k. sin If, = cos* $ i cos T +-sin® 4 4 cos (T — 2 Q)
k.cos K, — — [cos? $ isinw 4 sin® $ isin (m — 2 Q)]
and in like manner we should find
IfysinK'yzcosz%z’sinn—sinzéz'sin(n—;? Q)
k,cos K, — cos? 3 { coswt —sin®* $ scos (m — 2 Q)
k. sin K, = sin¢sin (1 — Q)
k.cos K, = sin¢sin (. — Q)
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If these values are substituted in the general expression for codrdinates,

ak cos ¢ cos K sin '+ a sin K (cos I/ —e)
and if we put

acosp=="b

acos’ $icos 1—|—tan% A —

cos

—obcofisinm (1 —+ tan® 4 ¢ M_} = /4]

sin ;¥

acos’$isinm h—tan 34 S“‘(L?_SB) — A
sin 7z j

cos (@ —2Q)] —F

Cos @

bcos’ticosm l—tan X

esinisin (n— Q)=4"
bsinicos (1 — Q) =5B"
the cot}rdinates will be

t=A (cosE—e¢)4+B smnE=A4 (1—esecE)+4 B sinE
y=A (cosE—e)+B sinE=4" (1—esecE)+ B sinE
z2=A" (cosE—e¢)4 B"sinE=4"(1 —e¢sec E) + B” sin E.

If the equator is adopted as the fundamental plane instead of the ecliptic,
the same formulas may be used, if Q, w, and ¢ are referred to the equator by
the method of article 55. Thus, if @, denote the right ascension of the node
on the equator, for @, @, and ¢, we must use Q,, ,+(n— Q)— 4, and ¢
respectively.

This form has been given to the computation of codrdinates by Prof PEircE,
and is designed to be used with Zrcw's Tables of Addition and Subtraction Logarithms.

FErxample. — The data of the example of articles 56 and 58, furnish
Q = 158° 30" 50”43, m = 122°12'23".55, i =11° 43’ 52”.89 when the equator
is adopted as the fundamental plane ; and also log & = 0.4288533.

Whence we find

log cos (7 —2 Q) 9.9853041 % logsin (7 —2 Q) 9.4079143
log sec 7 027329487  log cosec 0.0725618
log tan® 3 ¢ 8.0234332 log tan® 4 ¢ 8.0234332

loge 8.2820321 log¢’ 7.5039093
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add. log% 0.0082354 C. sub. log % 9.9916062
log cos 7 9.7267052 log cos 9.7267062
log cos® 4 ¢ 9.9964404 log cos® $ ¢ 9.9954404
log 0.4423790 log & 0.4288533

log A 0.1727600 » log B’ 0.1426041 7
add. log 3 0.0013836 C. sub. log -, 9.9986120
log sin 7 9.9274382 log sin 7 9.9274382
log cos? 4 ¢ 9.9954404 log cos® 4 ¢ 9.9954404
log & 0.4288533 log a 0.4423790

log B 0.3531156 n log 4 0.3638696

This method may also be used to compute %z and K for the general formula
of article 57. Thus:—

add. log 0.008235¢  C.sub.log> 9.9916052
log cos 7 9.7267052 log cos 7 9.7267052 n
log cos® 4 ¢ 9.9964404 log cos? 4 ¢ 9.99564404
log %, sin K, 9.7303810%  log %, cos K, 9.7137508 n
add. log * 00013836 € sub.log 9.9986120
log sin 7. 9.9274382 log sin 7 9.9274382
log cos® § 4 9.9954404 log cos® § 7. 9.9964404
log %, cos K, 9.9242622 » log %, sin K, 9.9214906
log tan IC, 9.8061188 log tan I, 0.2077398
log cos K, 9.9254698 log sin K, 9.9294068

log %, — 9.9987924
K, = 212° 3¢ 56".1

log %, = 9.9920848
K,= 121°47'28".1

It will not be necessary to extend the example to the final expressions for
z,Y,2,as illustrations of similar applications of the Addition and Subtraction
Logarithms are given in the directions accompanying Zecr’s Tables.
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59,

If r, 5, and / denote the radius vector, the heliocentric latitude and longitude
of any planet, the rectangular codrdinates referred to three axes,— of which
that of z is directed towards the vernal equinox, that of 2, parallel to the earth’s
axis, and that of 7, 90° of right ascension in advance of z,—will be as in case II.

z =17 cosb cos/
y=—rcosbsin/cose —rsindsine
z=rcosbsinesin/-4rsinb cose
and by putting
cos % = cos b cos [
sinb__ sinlcosd
sin6~  cosd
tan b

tan 6 —
sin [

sin 4 —

they assume thé following forms convenient for computation : —

z=rcosu
y=rsinucos (6 &)
z=rsinusin (8 4¢).

74.

The following are the solutions and examples from the Monatliche Correspon-
denz referred to in this article, adopting the notation of article 74, and using I’
to denote the longitude of the Sun.

Given, @, L, 1, 5,1, R, to find u, », 4,and the auxiliary angles 4, B, C, etc.

L
1. S ;II;, (z,si_) lt;m - tan 4 i gnt?z (_*L_,z; ) tan u
sin (L' —Il)tans __ cos Bsind tan (L'—Q)
2. cos(L/'—Q) tan B sin (B+4b)coss tang
sin (I/ —Q)tand__ sin Osin (I —Q) __
3. e ¢ sn (O —Q)coss fps
4. cos (L’—&)tanbztanp sinDtan(L’—gg)cos(L’—l)=tanu _

cos (L/ — 1) tan< sin (D4 L' — 1) cos ¢
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The angle u is to be taken between 0° and 180° when & is positive, and be-
tween 180° and 360° when & is negative. When 4 = 0°, the body is in one of the
nodes of its orbit, in the ascending node when sin (Z'—/7) and sin (/—&) have
the same sign; and in the descending node when they have opposite signs.

It is immaterial in which of the two quadrants that give the same tangent,
the auxiliary angles 4, B, C, etc, are taken. In the following examples they
are always taken between  90° and — 90°. .

II1.
tandb sinEsin(L/ — Q)  r
L ey “sin (i — Eysinu — B
o.g _ cos Fsin (L' —Q)sinb__ r
6. tan¢sin(/— Q)=tan F o (F—f)snucosi — R
c _ cos Gsin(L/'—1) _ r
i cos? tan # = tan @ B =0 —0 o =
tan((— Q) sin Hsin(L'—1) _ r
8. coss _tan " sin(H—u)sin ((—Q)~ R
tan b sin feos(L'—Q) r
% Eresa—9) tan I - sm(u—1) R
2. o cos Ksinbeos (L' —Q) _ r
10. sin¢cos (! — Q) tanu — tan & s (E—b)osu  —F
sin C'sin (L —1) _ gin L _r
11. cos (C+4 L' —1) tan (L’—Q,)cosi_tanL sin(u—L)cos (L'—Q)~ R
sinDecos (' —Q) sin M T
12. cos (D+L'—Q )ecost — tan M sin(u— M) cos (I'—Q)™ R
IIL. |
rsinusing
13. — =4 .
14 Rsin Esin(L'—Q)sind__ Rcos Esin (L'—Q)sind __
’ sin (¢ — &) sinb sin(s— &) sin((—Q)cosd ™
15 Rcos Fsin(L'—Q)tani __ Rsin Fsin(L'—Q)sin((—Q) 4
: sin (F—10) = sin (F—b) =
Other expressions for ./ may be obtained by combining 13 with all the
formulas II. -

Examples: —
Given, @ =280°569'12".07, L/=281°1'34".99, /=53°23'2".46, s = 10° 37" 9".55,
h = — 3° 6’ 33".5661, log &= 9.9926158.
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I~
log tan & 8.7349698 n log sin 4 8.8381955
logcos(L'— Q)  9.9728762#x log tan (L' — Q) 9.5620014
C'log sin (L' —b) 0.1313827 7 Clog sin (4 +4-7) 0.9350608
log tan A 8.8392287 log tan u 9.3352577n
A=—38°57"2"136 u=—12°12'37".942
A4i= 6°40'7"414
2°,
log sin (L' —1) 9.8686173 n log cos B 9.9953277
log tan ¢ 9.2729872 log sind 8.7343300 %
C.log cos (I'—Q) 0.0271238 2 log tan (L' — Q) 9.5620014
log tan B 9.1687283 C.logsin (B -+ b) 1.0360961
B —=28°23"21".888 C.log cos? 0.0075025
B4 5=>5°16"48".327 log tan u 9.33625677n
_ 3°.
logsin(L'—Q)  9.5348776n log sin ¢ 9.1243583 n
log tan & 8.7349698 n log sin (L' — Q) 9.5348776 n
alogsin(L'—17) 0.1313827x Clogsin( O+ L'—g)0.6685194 n
C.log tan? 0.7270128 Clogcost 0.0075025
logtan € 9.1282429n log tanu 9.3352578n
. 0=—"1"389 7".058
C+L'— Q= 192°2315".864
4°.
logcos (L' —Q)  9.9728762n log sin D 9.5735295 %
log tan & 8.7349698 n log tan (L' — Q) 9.5620014
Clogcos(L'—1) 0.1714973n log cos (L' —1) 9.8285027 n
C.log tanz 0.7270128 Clog sin(D+ L'—1) 0.3637217 »
log tan D _ 9.6063561n C.log cos? 0.0075025
D=—21°5951".182 log tan u 9.3352678 n

D4 I —I1= 205° 38 41”.348
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6°.
log tan b 8.7349698 n log sin 9.0661081
logsin (I— Q) 9.6658973 n log sin (L'— Q) 9.5348776 n
log tan & 9.0690725 C.log sin (i — ) 1.1637907
E—=16°41"12"412 C.log sin u 0.6746802 n
i— E=3°55 57".138 log 0.4394566

log tan ¢ 9.2729872
log sin ({ —Q) 9.66589'73 »
log tan #' 8.9388845 %

. F=—4°5753"955
F—p=—1°51'20"394

log cos ¢ 9.9924975
log tan u 9.33525677 n
log tan @ 9.3277552 n

G=—12° (0277118
I—Q—G =—15°35 42".492

logtan (I—Q) 9.7183744 n
log cos ¢ 9.9924975
log tan 7 9.7258769 7

H—=——28° 039”879
H—uy—=——15°48" 1”7.937
38

logr=1log R log 7= 0.4320724

pe;
log cos ' 9.9983674
log sin & 8.7343300 =
log sin (L' —Q) 9.5348776 n
C.log sin (F—b) 1.4896990
C.log sinu 0.6746802 n
C.log cos ¢ 0.0075025
log % 0.439456'7
7.
log cos ¢ 9.9903922
log sin (L' —1) 9.8686173
C.log sin (I—Q —@) 0.5705092 n
C.log cosu 0.0099379
log 0.4394566
8.
log sin H 9.6717672n
log sin (L' —1) 9.8686173
C.logsin (H—wu) - 0.56496957
C.logsin (I —8) 0.3341027 »
log = 0.4894567

297
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o8
log tan & 8.7349698 n logsin 7
C.logsin?¢ 0.7345153 logsin (L' —Q)
C.log cos (I—Q) 0.0642771 C.logsin (u—T)
log tan 1 9.5237622n logl%,
I=—18°2355".334
u—I= 6°11'17".392
10°.
log siné 9.2654847 log cos K&
log cos(I—Q) - 9.9475229 log sin &
log tan 9.3352577n log cos (L' —Q)
log tan A 8.6482653 n C.log sin (K —b)
K= —2°1'26".344 C.log cosu
KE—bp= 1°8 77217 log
11°.
C+ L' —1=219°65925"474
log sin ¢ 9.1243583 n log sin L
log sin (L' —1) 9.8686173 n C.log sin (v — L)
C.log cos( O+ L' —1) 0.1156850n C.log cos (L' —Q)
Clogtan (L'—Q)  0.4379986 log
C.log cos? 0.0075025
log tan L 9.6641617 n
L=—19°42"32".533
u— L= T7°29 54".591
120, 13°.
D4 L —Q=178°2"31".738 log r
log sin D 9.6735295 n log sin
logcos(L'—Q)  9.9728762x log sin ¢
Clogcos(D-+L'—g) 0.0002536 » Clogsin b
Clogcos? 0.0075025 log 4
logtan M (=L)  9.5641618%

9.4991749n
9.9728762n

0.9674064

0.4394566

9.9997290
8.7343300 »
9.9728762 »
1.7225836

0.0099379

0.4394667

0.5279439 n

" 0.8843888
0.0271238 »

0.4394565

0.4320724
9.3263198 »
9.2664847
1.2656700 %

0.2885469
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76.
If in the equations of article 60,
#—X=—=2Acosd cos e
y—Y =Acosdsina
z2—Z = Asind

o denoting the right ascension, and & the declination, we suppose X, ¥, Z known,
we have
dz=cosacosddd —Adsinacosdde—A cosesind dd
dy=sinacosdd 4+ Acosacosdde— A-sinesind dd
dz=sinddd+4cosddd.

Multiply the first of these by sin &, and subtract from it the second multiplied by
cos ¢, and we find'
A4 cosddae =—dzsine +dysina.

Multiply the first by cose and add to it the second multiplied by sin &, and
we find

drcose +dysine=cosddd—Adsind dd.
Multiply this equation by —sin ¢ and add it to the third of the differential equa-
tions above multiplied by cosd and we find

—dzcosasind —dysinesind +dzcosd =4 dod
and, therefore,

cosd de :—Sjnzizdx—{-m%xdy

78 cos & sin § i in 8 0
. (;qm da smadsm dy I cods "

From the formulas of article 56 of the Appendix are obtained

dz__z dy y dz__ =z

dr 7’ dr— 7’ dr 7’

dx d d

o= cotan (4 +-u), d—Z:ycotan(B—{—u), ﬁ:zcotan(aﬂ—-u)

dx—xsinucoa dy—rsinucosb dz—rsin
= os @, == y = % COS ¢,

and the partial differentials

dz

Wty dy
aQ

—ycose—zsine
y J dsz

dz o
—Z COsk&, RB=$ S &
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whence

dx=§dr—|—xcotan (A~+u)dv—+2xcotan (A 4 u)dn
— [# cotan (4 4-u) + 7 cose | 2zsine] dQ 4 rsinucosa ds

dy:'gdr—l—ycotan(B—l—u)olv—|—ycotan(B'—{—u)dn
— [y cotan (B +u)—=xcose] dQ +rsinucosbdi

dz=;dr—z cotan (O +u) dv -+ zcotan (C+u)dn
— [z cotan (C+u) — x'sine] d & + rsin w cosedy.

These formulas, as well as those of 56 may be found in a small treatise

Ueber die Differentialformeln fiir Cometen-Balnen, etc., by G. D. E. Wever, (Berlin,
1852). They are from BEsSeL's Abhandlung iiber den Olbers’schen Cometen.

90..
Gauss, in the Berliner Astronomisches Jakrbuch for 1814, p. 266, has given an-
other method of computing &, and also £, of article 100. It is as follows: —
We have

E— 5I 10 2z2X—§X}| 40
6 ' 9 X X .

This fraction, by substituting for X ‘the series of article 90, is readily trans-
formed into
__ 8 2.8 3.8.10 4.8.10.12 5.8.10.12.14 ,
5—1—()3"’2(1""9”‘"*“ o1 2t oanms © o815 2 +et°‘)
Therefore, if we put

2.8 3.8.10
A=1+—9—x+T]T Zz—i—etc.,

we shall have
xX—%X.—f_—-‘{-:T%gAz’

_$a— A4
A=

g_a’%Axﬂ(l—ﬁz)
T 1—pxda

by means of which £ can always be found. easily and accurately.
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For §, article 100, it is' only necessary to write z in place of 2 in the pre-
ceding formulas. ,
A may be computed more conveniently by the following formula : —

- —3 1.5 1.8.5.7 1.8.5.5.7.9 .
A=(1—2) - (-1 +ﬁ”+2.4.9.n”2+2.4.6.9.11.13“3+et°')

142.

Pror. EnckE, on the 13th of January, 1848, read' a' paper before the Royal
Academy of Sciences at Berlin, entitled Ueber den Ausnakmefall einer doppellen
Balnbestimmung aus denselben drei geocentrischen Oertern, in which he entered into a
full discussion of the origin of the ambiguous case here mentioned, -and the
manner in which it is to be explained. The following paragraphs, containing
useful instructions to the practical computer, embody the results of his in-
vestigation : —

By putting

m=—rc@Qsin w
9= (v + o),
Equation-FV., 141, becomes, for " > R’

msin*z = sin (z — ¢)
and for ¥ < R’
msin*z = sin (z + ¢)
m is always positive.
The number and the limits of the roots of this equation may be found by
examining both forms.
Take the first form, and consider the curves, the equations of which are

y=m sin* & !/: sin (z _g)

7 and 7’ being ordinates, and z abscissas.
The first differential coefficients are'
dy

- d
5, =4 msin’z cosz, % = cos(z — ¢),



302 APPENDIX.

There will, therefore, be a contact of the curves when we have

msin*z = sin (z — ¢)
and
4 m sin® z cos 2 = cos (z — ¢)

or when
4 sin (z— ¢) cosz =cos (2 — ¢)sinz

which may be more simply written
sin (22 — ¢) = §sing.
When the value of z deduced from this equation satisfies

msin*z = sin (2 — ¢)

then there is a contact of the curves, or the equation has two equal roots. These
equal roots constitute the limits of possibility of intersection of the curves, or the

limits of the real roots of the equation.

For the delineation of both curves it is only necessary to regard values of
2 —g¢q between 0° and 180° since for values between 180° and 360° the solution

is impossible ; and beyond 360° these periods are repeated.

The curve

Y =sin (2 — q)

is the simple sine-curve, always on the positive side of »’,and concave to the axisof

abscissas, and has a maximum for
z— g = 90°
The curve
y = sin*z

is of the fourth order, and since it gives

% = 4msin’zcosz = msin22 — imsindz
%l;_y = 12msin®z cos’ 2 — 4 msin*z
= 4msin®z(1 4 2cos22) = 2m(cos22z — cos4 2)
4y — — 4m(sin22 — 2sindz)
%Z = — 8m(cos2z.— 4 cos42)

it has a maximum for

2= 90°



APPENDIX. ' 303

and a point of contrary flexure for
z = 60°, and z = 120°.

From 2=0° to 2z=60° it is convex to the axis of abscissas, from 60° to
120° it is concave, and convex from 120° to 180°.
For osculation, the three equations,
m sin* 2 = sin (2 — ¢)
4 m sin® 2z cos z = cos (z— ¢)
4msin®z (1 4 2 cos 22)—=—sin (z2—9)
must coexist, or
m sin*z = sin (2 — ¢)
sin (22 —¢) = §sing
cos2z—=—34.

In this case we should have

sin (22— ¢) =4 cos¢ | & sing,

consequently,

tang =4
and

sing =%,
or

2=—456° 4 3sin7' .
From these considerations we infer that for the equation
m sin*z = sin (2 — ¢)
or even when it is in the form
m? sin® 2z — 2m cos ¢ sin® z 4 sin® 2z — sin? ¢ =0

of the eighth degree, there can only be four real roots; because,in the whole
period from 2 — ¢ = 0°to 2— ¢ = 360°0nly four intersections of the two curves
are possible on the positive side of the axis of ordinates.

Of these, three are between z=—0° and 2= 180° and one between 180°
and 180° 4 ¢ ; or, inversely, one between 0° and 180° and three between 180°
and 180° -+ ¢; consequently, there are three positive and one negative roots, or
three negative and one positive roots for sin z.
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Contact of the curves can exist only when for a given value of ¢,

=139+ 4sin$sing
and T
m = Sms(“—%,q .
If the contact of the curve of the fourth order with the sine-curve is with-
out the latter, then will ' constitute the upper limit,— for m greater than this
values of the roots will be impossible, There would then remain only one positive

and one negative root.

If the contact is within the sine-curve, then will the corresponding 7" con-
stitute the lower limit, and for m less than this, the roots again would be re-
duced to two, one positive and one negative.

If ¢ is taken negative, or if we adopt the form

m sin* 2 = sin (z 4- ¢)
180° — z must be substituted for =.
The equation
m? sin® 2 — 2 m cos ¢ sin® 2 = sin® 2z — sin g =0

shows, moreover, according to the rule of DEescartes, that, of the four real
roots three can be positive only when ¢, without regard to sign is less than
90°, because m is always regarded as positive. For ¢ greater than 90°, there is
always only one real positive rpot. Now since one real root must always cor-
respond to the orbit of the Earth, that is, to ¥ = R’; and since sind’, in the
equation, article 141, — .

R'sin &
7

sin 2 —

is always positive, so that it can be satisfied by none but positive values
of #; an orbit can correspond to the observations only when three real roots are
positive, or when ¢ without regard to its sign is less than 90°. These limits are
still more narrowly confined, because, also, there can be four real roots only
when m lies between m’ and m”, and when we have

$sing<1, orsing<$g, ¢<36°62 11".64

in order that a real value of # may be possible.



APPENDIX. 305

Then the following are the conditions upon which it is possible to find a
planet’s orbit different from that of the earth, which shall satisfy three complete
observations.

First. The equation

m sintz = sin (2 3} ¢)
must have four real roots. The conditions necessary for this are, that we must
have, without regard to sign,
sin ¢ < §
and m must lie between the limits » and m".

Second.  Of these four real roots three must be positive and one negative.

For this it is necessary that cos ¢ should remain positive for all four of those
values for which

sin g < + %' s
the two in the second and third quadrants are excluded, and only values between
— 36° 52" and + 36° 52’ are to be retained.

If both these conditions are satisfied, of the three real positive roots, one must
always correspond to the Earth’s orbit, and consequently will not satisfy the
problem. And generally there will be no doubt which of the other two will
give a solution of the problem. And since by the meaning of the symbols, arti-
cles 139, 140, we have

sinz__ sin (¢’ —=2) _ sind’
R o DX

not only must 2z and ¢’ be always less than 180°, but, also, sin (0’—=2) must be
. positive, or we must have
d' > 2.

If, therefore, we arrange the three real positive roots in the order of their
absolute magnitudes, there may be three distinct cases. Either the smallest root
approaches most nearly the value of 0’, and corresponds, therefore, to the Earth’s
orbit, in which case the problem is impossible; because the condition ¢’ >z can
never be fulfilled. Or the middle root coincides with ¢’, then will the problem
be solved only by the smallest root. Or, finally, the greatest of the three roots

differs least from d’. in which case the choice must lie between the two smaller
39
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roots. Each of these will give a planetary orbit, because each one fulfils all
the conditions, and it will remain to be determined, from observations other than
the three given ones, which is the true solution.

As the value of m must lie between the two limits m’ and 7", so also must
all four of the roots lie between those roots as limits which correspond to m’ and
m”. In Table IVq. are found, therefore, for the argument ¢ from degree to degree,
the roots corresponding to the limits, arranged according to their magnitude, and
distinguished by the symbols 2, 27 2™, 27. For every value of m which gives a
possible solution, these roots will lie within the quantities given both for m” and
a, and we shall be enabled in this manner, if ¢’ is found, to discern at the first
glance, whether or not, for a given m and ¢, the paradoxical case of a double orbit
can occur. It must, to be sure, be considered that, strictly speaking, " would
only agree exactly with one of the 2z’s, when the corrections of 7 and @ belong-
ing to the earth’s orbit had been employed, and, therefore, a certain difference
even beyond the extremest limit might be allowed, if the intervals of time should
be very great.

The root 27, for which sinz is negative, always falls out, and is only intro-
duced here for the sake of completeness. Both parts of this table might have
been blended in one with the proviso of putting in the place of z its supplement ;
for the sake of more rapid inspection, however, the two forms sin (# — ¢) and
sin (z + ¢) have been separated, so that ¢ is always regarded as positive in the
table.

To explain the use of Table IVq. two cases are added ; one, the example of Ceres
in this Appendix, and the other, the exceptional case that occurred to Dr. Gourp,
in his computation of the orbit of the fifth comet of the year 1847, an account of
which is given in his Astronomical Journal, Vol. 1., No. 19. V

L In our example of Ceres, the final equation in the first hypothesis is

[0.9112987] sin*z = sin (z — 7° 49" 2".0)
and
0’ = 24° 19 53".34
the factor in brackets being the logarithm. By the table, the numerical factor
lies between m’ and m”, and this 0" answers to 27, concerning which there can be
no hesitation, since z” must lie between 10° 27 and 87° 34". Accordingly, we
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have only to choose for the z' which occurs in this case, and which, as we per-
ceive, is to be sought between 7° 50" and 10° 27".

The root is in fact
: &= 7°59 30".3,

and the remaining roots,

= 2624 3
=148 2 35
2" = 18740 9

are all found within the limits of the table.

2. In the case of the fifth comet of 1847, Dr. GouL» derived from his first

hypothesis the equation

[9.7021264] sin*z = sin (2 4 32° 53" 28".5).
He had also
' ¢’ = 133° 0" 31".

Then we have sin¢ < 2, and the inspection of the table shows that the factor
in the parenthesis lies between »’ and m” ; therefore, there will be four real roots,
of which three will be positive. The given d” approximates here most nearly to
2", about which, at any rate, there can be no doubt.

Consequently, the paradoxical case of the determination of a double orbit
occurs here, and the two possible values of z will lie between

88° 29" — 105° 59
and
106 59 — 131 7

In fact, the four roots are,

95° 31" 43”5
=117 31 13 .1
2" =137 38 16 .7
2 = 329 58 35 .5.

By a small decrease of m without changing ¢, or by a small decrease of ¢

2]

)
=]

without changing m, a point of osculation will be obtained corresponding to
nearly a mean between the second and third roots; and on the contrary, by a
small increase of m without changing ¢, or a small increase of ¢ without changing
m, a point of osculation is obtained corresponding to nearly a mean between the

first and second roots.
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We have, therefore, the choice between the two orbits. The root used by Dr.
Gourp was 2% which gave him an ellipse of very short period. The other obser-
vations showed him that this was not the real orbit. M. D’ArrEsT was involved in
a similar difficulty with the same comet, and arrived also at an ellipse. An ellipse
of eighty-one years resulted from the use of the other root.

“ Finally, both forms of the table show that the exceptional case can never
occur when ¢’ < 63° 26

“It will also seldom occur when ¢’ << 90°. For then it can only take place
with the first form sin (2 — ¢), and since here for all values of ¢ either the limits
are very narrow, or one of the limits approximates very nearly to 90°, so it will
be perceived that the case where there are two possible roots for ¢’ < 90° will
very seldom happen. For the smaller planets, therefore, which for the most part
are discovered near opposition, there is rarely occasion to look at the table. For
the comets we shall have more frequently ¢’ > 90°; still, even here, on account
of the proximity to the sun,d” > 150° can, for the most part, he excluded. Con-
sequently, it will be necessary, in order that the exceptional case should occur,
that we should have in general, the combination of the conditions ¢’ > 90° and
¢ between 0° and 32° in the form sin (z — g¢), or between 22° and 36° 52’ in the

form sin (z 4 ¢).”

Professor PeircE has communicated to the American Academy several methods
of exhibiting the geometrical construction of this celebrated equation, and of
' . . . . . )
others which, like this, involve two parameters, some of which are novel and

curious. In order to explain them, let us resume the fundamental equation,
m sin* 2 = sin (2 — ¢).
1. The first method of representation is by logarithmic curves; the logarithm
of the given equation is
log m -+ 4 log sinz = logsin (2 — ¢).
If we construct the curve

y = 4logsinz,
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and also the same curve on another scale, in which g is reduced to one fourth of
its value, so that
y = logsin 2,

it is plain that if the second curve is removed parallel to itself by a distance equal
to ¢ in the direction of the axis of #, and by a distance equal to — log in the
direction of the axis of y, the value of 2z on the first curve where the two curves
intersect each other will be a root of the given equation ; for, since the point of
intersection 1is on the first curve, its cotrdinates satisfy the equation,

y = 4log sing,

and because it is on the second curve its cosrdinates satisfy the equation,

y + logm = logsin (z — ¢);
and by eliminating y from these two equations we return to the original equation,
msin*z = sin (2 — q).

A diagram constructed on this principle is illustrated by figure 5, and it will
be readily seen how, by moving one curve upon the other, according to the
changeable values of ¢ and m, the points of intersection will be exhibited, and also
the limits at which they become points of osculation.

On this and all the succeeding diagrans, we may remark, once for all, that
two cascs are shown, one of which is the preceding example of the planet Ceres,
in which the four roots of the equation will correspond in all the figures to the
four points of intersection D, IV, D”, D", and the other of which is the very
remarkable case that occurred to Dr. Gourp, approaching the two limits of
the osculation of the second order, the details of which are given in No. 19 of his
Astronomical Journal, and the points of which are marked on all our diagrams
G, o, 6", G".

2. The second method of representation is by a fixed curve and straight line,
as follows.

(«.) The fundamental equation, developed in its second member, and divided

by m cos 2, assumes the form

sint z co

97 (tanz — tan g¢)

cosz  m
By putting

Cos
¥ =tanz, b = tang, a = =
m
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the roots of the equation will correspond to the points of intersection of the

curve
sin*z ok

Ccos 2z o (1 +x2)%

with the straight line
y=a(z —10). [Figs. 6 and 6".]

It will be perceived that the curve line, in this as in all the following cases
under this form, is not affected by any change in the values of m and ¢, and that
the position of the straight line is determined by its cutting the axis of « at
the distance tan g from the origin, and the axis of y at the distance — 5352
from the origin. The tangent of its inclination to the axis is obviously equal to
cos ¢

—, which may in some cases answer more conveniently for determining its
position than its intersection with the axis of y.

(6.) The development of the fundamental equation divided by m sinz, is

sinz = %g (cotan ¢ — cotanz) ;
and by putting
Z = cotanz
b = cotang

___sing
. — m
the roots of the equation correspond to the intersection of the curve

y =sinfz = (1 4 2*) —%

y=a(b—=z). [Fig. 7]

The position of the straight line is determined by its cutting the axis of z at a
57

with the straight line

distance equal to cotan ¢ from the origin, and the axis of  at a distance equal to —=
from the origin. This form of construction is identical with that given by M
Binet in the Journal de I Lcole Polytechnigue, 20 Cahier, Tome XIII. p. 285. His
method of fixing the position of the straight line is not strictly accurate. This
mode of representation is not surpassed by either of the others under this form.

(¢.) The fourth root of the fundamental equation developed, and divided by
cos (z — g¢), assumes the form

Y (sin(z—9))

Vmeosg (tan (2 — ¢) + tang) = cos(z—q)
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By putting

2z = tan (2 — ¢)

b= tang

a = \/mcosgq

the roots of the equation correspond to the intersection of the curve
4
yz\/(>111(~ @)___xé(l_i_xz)%

cos (z — ¢q)
with the straight line

y=oa(z—+0b). [Fig 8]

The straight line cuts the axis of z at a distance equal to

tan ¢, and the axis
of y at a distance equal to y/ m sin ¢, from the origin.
(d.) The development of the fourth root of the fundamental equation divided
by sin (z — ¢) is,
\ m sin ¢ (cotan (2 — ¢) -+ cotan ¢) = cosec (z — g).%
By putting
2 = cotan (2 — ¢)
b = cotangq
a =\ msingq
the roots of the equation correspond to the intersection of the curve
y =142}
with the straight line
y=ua(x-+40). [Figs. 9 and 9]
The straight line cuts the axis of # at a distance equal to — cotan ¢, and the
axis of # at a distance equal to y/ m cos ¢, from the origin.
(e.) From the reciprocal of the fundamental equation multiplied by s, its
roots may be seen to correspond to the intersection of the curve
r = cosec' z
with the straight line
r = m cosec (2 —¢). [Figs. 10 and 10'.]

Both these equations are referred to polar codrdinates, of which » is the radius
vector, z the angle which the radius vector makes with the polar axis, m the dis-
tance of the straight line from the origin, and ¢ the inclination of the line to the
polar axis.
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(/). From the reciprocal of the fourth root of the fundamental.equation, its
roots may be seen to correspond to the intersection of the curve

7 = cosect ¢
with the straight line

J
r =1/ % cosec (¢ + g),
in which

¢g=z—q [Fig 11]

Both these equations are referred to polar cobrdinates, of which ¢ is the
angle which the radius vector » makes with the polar axis, \‘/;11 the distance of the
straight line from the origin, and ¢ the inclination of the line to the polar axis.

3. The third method of representation is by a curve and a circle.

(a.) The roots of the fundamental equation correspond to the intersection
of the curve

r = sin*z
with the circle
r— al sin (z—2). [Fig. 12.].

Both these equations are referred to polar codrdinates, of which 7 is the radius
vector, z the angle which the radius vector makes with the polar axis, i the
radius of the circle which passes through the origin, and 90° 4 ¢ is the angle
which the diameter drawn to the origin makes with the polar axis.

() From the fourth root of the fundamental equation it appears that its
roots correspond to the intersection of the equation

r—y/sing
with the circle

r=y/msin (¢ 4¢) [Fig. 13],

in which ¢ =(2—¢) is the inclination of the radius vector to the polar axis,
Vm is the diameter of the circle which passes through the origin, and 90° —g¢
is the inclination of the diameter drawn through the origin of the polar axis.

In these last two delineations the curve I A I” K’ I" incloses a épace, within
which the centre of the circle must be contained, in order that there should be
four real roots, and therefore that there should be a possible orbit. The curve
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itself corresponds to the limiting points of osculation denoted by Professor ENckE's
n¢' and m”, and the points & and K’ correspond to the extreme poiuts of oscula-
tion of the second order, for which Excke has given the values ¢ = = 36° 52’
and m' =4.2976, and m” = 9.9999.

On the delineations, S is the centre of the circle for our example of Ceres,
and S’ the same for Dr. GouLp’s exceptional case. A careful examination of the
singular position of the point S’ will illustrate the peculiar difficulties attending

the solution of this rare example.

159.

We add another example, which was prepared with great care to illustrate the
Method of Computing an Orbit from three observations published in pamphlet
form for the use of the American Ephenieris and Nautical Almanac ia 1852. It
furnishes an 1llustration of the case of the determination of two orbits from the
same three geocentric places, referred to in article 142.

We take the following observations, made at the Greenwich Observatory,
from the volume for the year 1849, p. 36. -

Mean Time, Greenwich.

Apparent Right Ascension.

Apparent Deelination.

m. h. . |
1845. July 30, 14 5 10.8 339 51 1515 S, 23 31 34.60
Sept. 6,11 5 56.8 332 22 39.30 | 27 10 23.13
Oct. 14, 8 19 35.9 26 49 57.23

328 7 51.45 ‘

From the Nuutical Almanac for the same year, we obtain

Date. lf?gﬁ’"]ltxg; .012 (tlll?lanitln Nutation. Distanﬁgr{}x;f')m the Lntitusduen&.)f the Ap(?fatrt?:t}j ?Il;;)lglé]ty
o/ i /” /1 o 4 4
July 30. 127 40 11.32 —+14.99 0.0064168 —0.17 23 27 28.13
Sept. 6. 164 9 40.85 —+14.06 0.0031096 -+-0.21 28.41
Oct. 14. 201 21 12.49 -+12.16 9.9984688 —+0.53 | 23.05
|

The computation is arranged as if the orbit were wholly unknown, on which
account we are not at liberty to free the places of Ceres from parallax, but must
transfer it to the places of the earth.

40
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Reducing the observed places of the planet from the equator to the ecliptic,
we find

Date. App. Longitude of Ceres. App. Latitude of Ceres.
o 4 u l o 1 n
July 30. 332 28 28.02 S. 13 54 52.47
Sept. 6. 324 35 58.87 14 45 30.00
Oct. 14. 321 4 54.55 13 5 35.33
And also,
Date. Longitude of Zenith. Latitude of Zenith,
o o
July 30. 11 6 N. 53 26
Sept. 6. 4 49 56 22
Qct. 14. 1 4 58 4

The method of article 72 gives

Date. Reduction of Longitude. Reduction of Distance. Reduction of Time.
July 30. +16.32 +-0.0001368 —0.070
Sept. 6. — 7.10 1421 —0.065
Oct. 14. —26.95 0907 —0.071

The reduction of time is merely added to show that it is wholly insensible.

All the longitudes, both of the planet and of the earth, are to be reduced to
the mean vernal equinox\for the beginning of the year 1845, which. is taken as
the epoch; the nutation, therefore, being applied, we are still to subtract the
precession, which for the three observations is 287.99, 34”.20, and 39”.41, re-
spectively ; so that for the first observation it is necessary to add —43".98, for
the second, — 48”26, and for the third, — 51”.57.

Finally, the latitudes and longitudes of Ceres are to be freed from the aber-
ration of the fixed stars, by subtracting from the longitudes 18”.76, 19”.69, and
10”.40, respectively, and adding to the latitudes —2.02, + 1.72, and — 4.02,
numbers which are obtained from the following formulas of Prof. PEIRcE : —

0 o=mcos (O —a)secf
0 =msin (@ —a)sine;

where ® — sun’s longitude, and m = aberration of ©.
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The longitudes of the sun were corrected for aberration by adding 207.06,

20”.21, and 20”43,
Almanac.

follows : —

Times of observation.

respectively, to the

numbers given in the Nautical

These reductions having been made, the correct data of the problem are as

For Washington Meridian. July 30. 372908. Sept. 6. 248435. Oct. 14. 132915.
Ceresslong. o, o, «”| 330° 27 25”.28| 3824 34 50.92 321 3 52.58
latitudes B, f, f”|— 138 54 54 49| — 14 45 2828 — 13 5 31.31
Earth’slong. 4, 7, 7’| 307 39 43 66| 344 8 45649 21 19 53.97
logs. of dist. R, R/, R” 0.0064753 0.0031709 9.9985083
By the formulas of Arts. 136 and 137, we find
77" . 329° 25" 34”.81 | 218° 11’ 22”.38 194 59 35 .15
0, 0%, 0" . 28 12 56 .84 24 19 53 .34 61 6 50.78
log 9, ¢7, 0" sines 9.6746717 9.6149131 9.9422976
ADAD, AD" 199° 48" 417.00 | 204° & 25".14 203° 56’ 46".56
A" D, A" D', A D', 233 54 11.72 | 233 31 23 .54 199 30 24 .04
g ¢, &, 27 32 45.72 | 142 37 25 44 115 4 41 .10
log ¢, &, & sines, . 9.6650753 9.7832221 9.956992
log sin 3 & 9.9764767
log cos $ ¢ 9.5057153
And by article 138,
log T'sin ¢ 6.2654993 n
log T'cost 9.2956278 n
wherefore
t=180° 3" 12".63, logT" . 9.2956280

{4y = 38 14’ 35”01, log sin (¢ +7') 9.7916898

log S . 8.6990834
log T'sin ({47y) . . 9.0873178
Whence log tan (0’ —o0) . 9.6117656

0’ —0=22°14'47"47 and 0 =2° 5" 5".87.



316

APPENDIX.

By articles 140-143, we find

A" D —¢" —
AD —¢ =
A" D— 9" —
AD—0d~+0 =
AD"—o =
AD'—d+o=
log a
log b

Formula 13, which

— 0"+ o).

The interval of the time (not corrected) between the second and third obser-
vations 1s 37.884480 days, and between the first and second 37.875632 days.
The logarithms of these numbers are 1.5784613 and 1.5783587; the logarithm

172° 24’ 32".76 log sin 9.1208995 log cos 9.9961773 =

175 55 28 .30 +  8.8516890 9.9989004 =
172 47 20 .94 9.0987168
177 30 53 .53 8.6370904
175 43 49 .72 8.8718546
177 15 36 .57 8.6794373
0.0096516, @ = 1.0222370
0.1389045.

serves as a check, would give log 4= 0.1389059. We
prefer the latter value, because sin (4" D — 0" 4 o) is less than sin (4’ D"

of % is 8.2356814 ; whence log 6§ = 9.8140427, log ¢” — 9.8139401.
We shall put, therefore, for the first hypothesis

and we find

0”
x:logP:E =99998974

y =log Q= 04" = 9.6269828

w = 5° 43 56".13
wto=1T 49 2.00

log @ ¢sin w = 0.9112987

It is found, by a few trials, that the equation
Q ¢ sin  sin*z =sin (z 4 7° 49" 2”.00)
is satisfied by the value

z="T° 59" 30".30,

whence log sin z= 9.1431101, and

P =Fsm8 474930,

Sin 2
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Besides this solution, the equation admits of three others, —
2= 26°24" 8"
z=—148 2 36
z=187 40 9
The third must be rejected, because sinz is negative; the second, because z is

greater than ¢ ; the first answers to the approximation to the orbit of the earth,
of which we have spoken in article 142.*

The manner of making these trials is as follows. On looking at the table of
sines we are led to take for a first approximation for one of the values, 2 — 8°
nearly, or 8° 4-2. Then we have

logsinz . . . . . . . 9143564 892
logsin*z . . . . . . . 0.57424 - 356z
log Qesinw. . . . . . 091130
logsin(z—w—o) . . . 7485544 356z
z—ow—o0=0°10 52" 4 Aff =
w+o=17 49 3
z2=1"T 59 564 {52, nearly = 8°4-=.

For the second approximation, we make

z="T°569 30" 4+ 2’; and have

logsinz . . . . . 914310564 1504
logsintz . . . . . 6.5724224 | 6004/,
Qesmo . . . . . 09112987

logsin (z —w —o) . 74837211 46002
z—w—o0=0°10"28".27 4 {4 2’ nearly.
wo—+o0o="T749 2.00
z2="T 59 30. 274 {52 ="7°59 30". 30.
The process is the same for the other roots.

¥ See article 142 of the Appendix.
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Again, by art. 143 we obtain

— 185° 10" 31”.78
" =189 25 30 .25

log » = 0.4749722

log " = 0.4744748
# (u” 4 u) = 264° 21’ 48".61
3 (v —u)=—288 49 5.19
2f 6 67 T .46
2f" = 6 56 32 .68

The sum 2+ 21", which is a check, only differs by 0”.20 from 2/’, and the

equation

rsin 2”7 "

'P=7”siu of — n

is sufficiently satisfied by distributing this 0”.2 equally between 2/ and 21", so
that 2 f = 6°69'7".36, and 27" — 6°56'32".58.

Now, in order that the times may be corrected for aberration, the distances
0, ¢, 0” must be computed by the formulas of Art. 145, and then multiplied into
the time 493® or 04005706, as follows: —

logr . . . . . . . . 047497
log sin (AD—¢) . . . . 9.51187
comp. logsind . . . . . 0.32533
log ¢ 0.31217
log const 7.76064 *
log of reduction 8.07271
Reduction = 0.011823
log #/, 0.47497
log sin (0 —2) 9.44921
comp log sin ¢, 0.38609
log of reduction 0.30927

Reduction, 0.011744.

* The constant of aberration is that of M. Struve.
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log»” . . . . . . . . 047447

log sin (A”D'—C") . . . 9.84253

logsind” . . . . . . . 0.05770

log of reduction . . . . 0.37470

Reduction = 0.013653
Observations. Corrected Times. Intervals. _ Logarithms.
. July 30. 361080

II. Sept. 6. 236691 37.875611 15783596
I11. Oct. 14. 119260 37.882569 1.5784395

Hence the corrected logarithms of the quantities 8, 6” become 9.8140209,
and 9.8139410.

We are now, according to the precept of Art. 146, to commence the determi-
nation of the elements from the quantities f, /, 7, d, and to continue the calcula-
tion so far as to obtain 7, and again from the quantities f”, r, 7, 8” so as to
obtain 7”.

logg . . . . . 0.0011576
logn”. . . . . 0.0011552
log” . . . . 9.9999225

log@ . . . . 96309476

From the first hypothesis, therefore, there results X = 0.0000251, and
Y= 0.0029648.

In the second hypothesis, we assign to P and @ the values which we find
in the first hypothesis for 7 and @. We put, therefore,

z=1log P = 9.9999225,
y=1log Q= 9.6309476.

Since the computation is to be performed in precisely the same manner as in
the first hypothesis, it is sufficient to set down here its principal results: —

w. . . . . . . . 5°43567.10 Z . . . . . . oo . T°5934"98
w0 . . . .. . T49 1.97 log7# . . . . . . . 04749037

°© 4
log Qesinw . . . . . 09142633 | log™r . . . . . . 07724177

o
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'

log ™. . . . . . . 07724952 | #(udw) . . . . 264°21507.64
C. . . . . .. . 185°10039"64 | (" —u) . . . . 288 40 5 5T
¢ ... . . . .189254236 | 2 . . . .. . .13 53 58 82
logr .. . . . . . 04748696 | 2f. . . . . . . . 65715 58
log#” . . . . . . . 04743915 | 27" . . . . . . . 65643 41

In this case we distribute the difference 0”.17 so as to make 2 f=6° 51" 15".49
and 2 /"= 6° 56’ 43".33.

It would not be worth while to compute anew the reductions of the time on
account of the aberration, for they scarcely differ 1” from those which we de-
rived from the first hypothesis.

Further computations furnish

logn =0.0011682, logn” =0.0011658, whence are deduced
log P'=9.9999225, X =0.0000000
log @ =9.6309955, Y =0.0000479.

From which it is apparent how much more exact the second hypothesis is than
the first. - ‘ '

For the sake of completing the example, we will still construct the third
hypothesis, in which we shall adopt the values.of P’ and ¢ derived from the
second hypothesis for the values of P and ..

Putting, therefore,
2z =log P = 9.9999225

y =log Q = 9.6309955

the following are obtained for the most important parts of the computation: —

O ... .. .. . B°43'B6"10 | 7. . . . . . . 189°25'42"45
odo. . . .. . .T49 1.97 | logr . . .. . . . 04748690
log Qesinw . . . . 09143111 | logs” . . . . . . . 04743909
2 . ... .. . . TBY35.02 | d(udw) . . . . 264°21 50764
log# . . . . . . . 04749031 | 3(/'—w) . . . . 28849 5 .57
logZZ . . . . . . 07724188 | 27 . . . ... 135358.94
log";,f, ... .. 07724943 2f 00 6 57 15 .66
. . . . . . . 185°10°39769 | 277 . . . . . .- 65643 .49
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The difference 0”.2 between 2f" and 2/ -+ 2" is divided as in the first

hypothesis, making 2 f = 6° 57" 15”.565, and 2 f”= 6° 56" 43".39.

All these numbers differ so little from those given by the second hypothesis

that it may safely be concluded that the third hypothesis requires no further cor-

rection ; if the computation should be continued as in the preceding hypotheses,
the result would be X = 0.0000000, ¥ =0.0000001, which last value must be
regarded as of no consequence, and not exceeding the unavoidable uncertainty

belonging to the last decimal figure.

We are, therefore, at liberty to proceed to the determination of the elements

from 2 f7, r, »”, & according to the methods contained in articles 88-97.

The elements are found to be as follows: —

Epoch of the mean longitude, 1845,. . . . 278°47 13".79

Mean daily motion, . . . . ¥ E e 7717.5855
Longitude of the perihelion, . . . . . . 148°2749".70
Angle of eccentricity, . . . . . . . . 4 33 28.35
Logarithm of the major semi-axis . . . . 0.4417481
Longitude of the ascending node, . . . . 80°46"36".94
_Inclination of the orbit, . . . . . . . . 1037 7.98

The computation of the middle place fromn these elements gives

o'= 324° 34’ 51".05, p'=—14°45"28".31
which differ but little from the observed values

o= 324° 34 50”.92, f'=— 14° 45’ 28".28.
41
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FORMULAS FOR COMPUTING THE ORBIT OF A COMET.

Given
Mean times of the observations in days, ¢, t, ¢
Observed longitudes of the comet, o, o, o
Observed latitudes of the comet, g, 8", B”
Longitudes of the sun, A, 47, A”
Distances of the sun from the earth, R, R', R
Required
The curtate distances from the earth, o, o', ¢”
Compute
L
tan " ¢ — ¢ msin (/ —A") —tan g
e sin (o'— 4") M= ¢'—¢ tan " —msin ("—A4")
and by means of this, approximately,
¢ = My
II.

R"” cos (A"— A)— R'=gcos (G —4)
R" sin(4”"—A") =g sin (G — 4')
g is the chord of the earth’s orbit between the first and third places of the earth.
@ the longitude of the first place of the earth as seen from the third place.

IIL
M — cos(¢"— ') =hcos { cos (H— o
sin (¢""— &)= h cos { sin (H—a"”
Mtan 8”— tan 8’ — A sin &.
& 1s always positive. If NV is a point, the codrdinates of which, referred to the
third place of the earth, are

¢ cosa’, ¢ sine’, o tan g,
then are

h Q’: H G,
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the polar cordinates of the third place of the comet, (that is, the distance, longi-
tude and latitude,) referred to the point AV as the origin.

IV.

cos{cos (G—IH) =cos¢ gsing =24
cos 3’ cos (&' — A') = cos y’ Rsiny'=D'
g —A")=cosy” R"siny”=B"
By means of ¢, v, v, A, B, B”, Olbers’s formulas, become : —

B = (ho'—gcosg) + A

r? = (¢'sec ' — R cosy’)? -+ B”

7" = (M sec " — R"” cos ¢"")* 4+ B""?

"

cos 3" cos (e

The computation would be somewhat easier by

V.
heosf'=f', geosp—f R cosy'=¢

h cos 6’"’

_f// ((/ cos l}’ _fll/ R/// cos IPI”:— cII/
P =u?+ A?
P2 — (7_!_—}-‘-,6')2 + B2

2 ¢\ 2
P — (_‘if‘m_) + B

in which
w="rho —gcosy
VI

A value of  is to be found by trial which will satisfy the equation

/ " 3 / " 3 v —
(r ") — (" — k)2 =—

m

in which
log m'— 0.9862673

If no approximate value for ¢ or for » or »” is otherwise known, by means
of which an approximate value of » can be found, we may begin with

o= e[ —r]
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. This trial will be facilitated by Table IITa, which gives u corresponding to

% ("—1)
=T
by means of which is found %, which corresponds rigorously to 7, 7", and ¢"'—¢: —
y P g
. ® (tlll_ t,)
=t

in which
log » = 8.5366114.

The process may be as follows: For any value of u compute % #/, 7", by V,
* and with #/, #/ ”/,compute 7, with which p is to be taken from Table IIIg, and a value
of % is to be computed which corresponds to the 7/, 7"/, #”—¢ used. And u is to
be changed until the second value of % shall agree exactly with that computed
by V.

Then we have

Q/___u-l-y cos ¢
h

VIL
¢’ cos (&' — A") — R' =1+ cos &' cos (I — 4)
¢’ sin (&' — A") =/ cos &' sin ({ — 4')
¢’ tan B’ =7'sin ¥’
0" cos (¢ — A") — R"” =+ "cos b cos (I — A™)
¢ sin (e — A") =" cos §"” sin (2" — A™)

Q”’ ta:n ﬂ/// — 7'”, Sin bl/l.

FIRST CONTROL.

The values of #/, 7", obtained from these formulas, must agree exactly with
those before computed. '

7,8 ; 1", 8", are heliocentric longitudes and latitudes of the comet.

The motion is direct when ”—7' is positive, and retrograde when ”—7 is
negative.
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VIIL
=+ tan &’ = tan? sin ((— Q)
tan & — tan & cos (I""—1) 0 ,
=+ —'m—(l,,;—_—l,)——— — tanzcos kl' — SZ )

i the inclination is always positive, and less than 90°. The upper signs are to be
used when the motion is direct; the lower when it is retrograde.

IX.
tan (' — Q)

cos 2

L' and L are the longitudes in orbit.

—tan (I — g), 22 =8 _ 405 (L27— Q).

cos 2

SECOND CONTROL.

The value of £ before computed must be exactly

k= [ 4" — 2/ " cos (L — L)].

X.
1 _ cosi(L/—n)
V' Ve
cos (L' —=L') cosect (L —L') _ sin(I/—n)
v o v T Ve

7, the longitude of the perihelion, is counted from a point in the orbit from which
the distance, in the direction of the order of the signs, to the ascending node, is
equal to the longitude of the ascending node.

XT.
The true anomalies are

v/=LI_7_C, ?)/II=L/I/— TT.
With these the corresponding M’ and M™ are to be taken from BARKER’S

Table, and we have then the time of perihelion passage

T=tFM ¢dn=1"F M" ¢*n,
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in which M’ and M" have the sign of +" and +"”; the constant log z is
log n = 0.0398723.
The upper signs serve for direct, the lower for retrograde motion.
For the use of Table Ilz instead of Barger’s Table, see Article 18 of the
Appendix.
THIRD CONTROL.

The two values of T, from ¢, and #”, must agree exactly.

XTI

With 7, ¢, m, @,1,1", A”, R”, compute ¢” and 8”, and compare them with the

observed values. And also compute with these values the formula
__ tang”
= sin(’—4")"

If this value agrees with that of m of formulas I, the orbit is exactly deter-
mined according to the principles of Olbers’s Method. That is, while it satisfies
exactly the two extreme places of the comet, it agrees with the observations in
the great circle which connects the middle place of the Comet with the middle
place of the Sun.

If a difference is found, M can be changed until the agreement is complete.
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TABLE I. (See articles 42, 45.) 1

ELLIPSE. HYPERBOLA.
A Log B C T Log B C T
0.000 0 0 0.00000 0 0 0.00000
.001 0 0 .00100 0 0 .00100
.002 0 2 .00200 0 2 .00200
.003 1 4 .00301 1 4 .00299
.004 1 7 .00401 1 7 .00399
0.005 2 11 0.00502 2 11 0.00498
.006 3 16 .00603 3 16 00597
.007 4 22 .00704 4 22 .00696
.008 5 29 .00805 b) 29 00795
.009 6 37 .00907 6 37 .00894
0.010 7 46 0.01008 7 46 0.00992
011 9 56 01110 9 55 .01090
.012 11 66 01212 11 66 .01189
013 13 78 01314 13 77 .01287
014 15 90 .01416 15 89 01384
0.015 a bl L 1 103 0.01518 17 102 0.01482
016 19 118 .01621 19 116 .01580
.017 22 133 01723 21 131 01677
.018 24 149 .01826 24 147 01774
.019 27 166 .01929 27 164 .01872
| 0.020 30 184 0.02032 30 182 0.01968
©.021 33 203 .02136 33 200 .02065
022 36 223 .02239 36 220 .02162
.023 40 244 02343 39 240 .02258
024 43 265 02447 43 261 .02355
0.025 47 288 0.02551 46 283 0.02451
.026 51 312 .02655 50" 306 02547
027 55 336 .02760 54 330 02643
.028 59 362 .02864 58 355 02739
.029 63 388 .02969 62 381 02834
0.030 67 416 0.03074 67 407 0.02930
031 72 444 03179 71 435 .03025
032 77 473 03284 76 463 .03120
.033 82 503 .03389 80 492 .03215
034 87 535 03495 85 523 .03310
0.035 92 567 0.03601 91 554 0.03404
.036 97 600 .03707 96 585 .03499 I
.037 103 634 .03813 101 618 03593
.038 108 669 .03919 107 652 .03688
.039 114 704 .04025 112 686 .03782
.040 120 741 04132 118 722 .03876 ‘

1
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2 TABLE 1.
ELLIPSE. HYPERBOLA.
A Log B (o] T Log B (o] T
0.040 120 741 0.041319 118 722 0.038757
.041 126 779 .042387 124 758 .039695
.042 133 818 .043457 180 795 .040632
.043 189 858 044528 1386 833 .041567
.044 146 898 .045601 148 872 .042500
0.045 152 940 0.046676 149 912 0.043432
.046 159 982 047753 156 958 .044363
.047 166 1026 .048831 163 994 .045292
.048 178 1070 049911 170 1087 .046220
.049 181 1116 .050993 177 1080 047147 |
0.050 188 1162 0.052077 184 1124 0.048072 |
.051 196 1210 .053163 191 1169 .048995
.052 204 1258 .054250 199 1215 .049917
.053 212 1807 055389 207 1262 - .050838
.054 . 220 1858 056430 215 1810 051757
0.055 228 1409 0.057523 2928 1858 0.052675
.056 236 1461 .058618 231 1407 |, .053592
© 057 245 1514 .059714 239 1458 054507
.058 254 1568 .060812 247 1509 .055420
.059 263 1628 061912 256 1561 .056332
0.060 272 1679 0.063014 265 1614 0.057248
.061 281 1786 .064118 278 1667 .058152
.062 290 1794 .065223 282 1722 .059060
.063 300 1853 .066331 291 1777 .059967
.064 309 1918 .067440 301 1833 .060872 |
0.065 319 _1974 0.068551 310 1891 0.061776
.066 329 2036 .069664 320 1949 .062678
.067 339 2099 070779 329 2007 063579 |
.068 350 2163 .071896 339 2067 064479 |
.069 360 29228 073014 349 2128 065377
0.070 371 2294 0.074185 359 2189 0.066274 [
.071 381 2360 075257 370 2251 067170
.072 392 2428 .076381 380 2314 .068064
.073 408 2497 077507 390 2378 .068957
.074 415 2567 .078635 401 2443 .069848
0.075 426 2638 0.079765 412 2509 0.070738
.076 437 2709 .080897 428 2575 .071627
077 449 2782 .082080 434 2643 072514
.078 461 2856 .083166 445 2711 073400
.079 478 2930 .084308 457 2780 .074285
.080 485. 3006 .085443 468 2850 l .075168 |
L—:= — e e e———




TABLE T.

ELLIPSE. HYPERBOLA.

A Log B c T Log B c i
0.080 485 3006 0.085443 468 2850 0.075168
.081 498 3083 .086584 480 2921 .076050
082 510 3160 087727 492 2992 076930
083 523 3239 .088872 504 3065 .077810
084 535 3319 .090019 516 3138 .078688
0.085 548 3399 0.091168 528 3212 0.079564
.086 561 3481 .092319 540 3287 .080439
.087 575 3564 .093472 553 3363 .081313
.088 588 3647 .094627 566 3440 .082186
.089 602 3732 .095784 578 3517 .083057
0.090 615 3818 0.096943 591 3595 0.083927
091 629 3904 .098104 604 3674 .084796
.092 643 3992 .099266 618 3754 085663
.093 658 4081 .100431 631 3835 086529
094 672 4170 .101598 645 3917 .087394
0.095 687 4261 0.102766 658 3999 0.088257
.096 701 4353 .103937 672 4083 .089119
.097 716 4446 105110 686 4167 .089980
.098 731 4539 106284 700 4252 .090840
.099 746 4634 107461 714 4338 091698
© 0.100 762 4730 0.108640 728 4424 0.092555
.101 777 4826 .109820 743 4512 .093410
.102 793 4924 .111003 758 4600 .094265
.103 809 5023 112188 772 4689 .095118
.104 825 51238 113375 787 4779 095969
0.105 841 522 0.114563 802 4870 0.096820
.106 857 5325 115754 817 4962 .097669
107 873 5428 116947 833 5054 .098517
.108 890 5532 118142 848 5148 .099364
.109 907 5637 .119339 864 5242 .100209
0.110 924 5743 0.120538 880 5337 0.101053
111 941 5850 121739 895 5432 .101896
112 958 5958 122942 911 5529 .102738
113 975 6067 124148 928 5626 .103578
114 993 6177 125355 944 5724 104417
0.115 1011 6288 0.126564 960 5823 0.105255
116 1029 6400 127776 977 5923 .106092
117 1047 6513 .128989 994 6024 106927
118 1065 6627 130205 1010 6125 107761
119 1083 6742 131423 1027 6228 .108594
.120 1102 6858 132643 1045 6331 .109426




4 TABLE I.
ELLIPSE. HYPERBOLA! l
A Log B c, T Log B c ¥ T,
0.120 1102 6858 0.132643 1045 6331 0.109426
121 1121 6976 .133865 1062 6435 110256
122 1139 7094 .135089 1079 6539, .111085
123 1158 7213 .136315 1097 6645 111913
124 1178 7334 1375438 1114 6751, 1112740
0.125 1197 7455 0.138774 1132 6858 0.113566
126 1217 7577 .140007 1150 6966 114390
2 1236 7701 141241 1168 7075 115213
.128 1256 7825 .142478 1186 7185 .116085
129 1276 7951 143717 1205 7295 116855
0.130 1296 8077 0.144959 1223 +7406 . 0.117675
131 1317 - 8205 146202 1242 7518 .118493
132 13387 8334 147448 1261 7631 119310
133 1358 8463 .148695 1280 7745 120126
134 1378 8594 149945 1299 7859 120940
0.185 1399 8726 0.151197 1318 7974 0.121754
186 1421 8859 152452 1337 8090 122566
1387 1442 8993 .153708 1357 8207 123377
.138 1463 9128 .154967 1376 8325 124186
139 1485 9264 156228 1396 8443 .124995
0.140 1507 9401 0.157491 1416 8562 0.125802
141 1529 9539 .158756 1436 8682 .126609
142 1551 9678 .160024 1456 8803 127414
143 1578 9819 .161294 1476 8925 128217
144 1596 9960 .162566 1497 9047 .129020
0.145 1618 10102 0.163840 1517 9170 0.129822
146 1641 10246 165116 1538 9294 <.180622
147 1664 10390 .166395 1559 9419 131421
.148 1687 10536 .167676 1580 9545 .132219
149 1710 10683 .168959 1601 9671 - .133016
0.150 1734 10830 0.170245 1622 9798 0.133812
151 1757 10979 171533 1643 9926 .134606
152 1781 11129 172823 1665 10055 .135399
.153 1805 11280 174115 1686 10185 136191
I 154 1829 11432 175410 1708 10315 .136982
0.155 1854 ° 11585 0.176707 1730 10446 0.137772
156 1878 11739 .178006 1752 10578 .138561
157 1903 11894 .179308 1774 10711 .139349
.158 1927 12051 .180612 1797 10844 .140135
. 1359 1952 12208 .181918 1819 10978 .140920
.160 1977 12366 183226 1842 11118 141704
. = — e ————_———




TABLE I. )

ELLIPSE. HYPERBOLA.
A Log B C T Log B [¢] T
0.160 1977 12366 0.183226 1842 11113 0.141704
161 2003 12526 .184587 1864 11249 .142487
.162 2028 12686 185850 1887 11386 143269
163 2054 12848 187166 1910 11523 .144050
.164 2080 13011 .188484 1933 11661 .144829
1
0.165 2106 13175 0.189804 1956 11800 0.145608
.166 2132 13340 191127 1980 11940 .146385
167 2158 13506 192452 2003 12081 147161
.168 2184 13673 193779 2027 12222 147937
| .169 2211 13841 195109 2051 12364 .148710
0.170 2238 14010 0.196441 2075 12507 0.149483
171 2265 14181 197775 2099 12651 150255
172 2292 14352 199112 2123 12795 151026
173 2319 14525 200451 2147 12940 151795
174 2347 14699 201793 2172 13086 152564
0.175 2374 14873 0.203137 2196 13233 0.153331
176 2402 15049 204484 2221 13380 154097
177 2430 15226 205832 2246 13529 154862
| 178 2458 15404 207184 2271 13678 155626
179 2486 15583 208538 2296 13827 156389
0.180 2515 15764 0.209894 2321 13978 0.157151
181 2543 15945 211253 2346 14129 157911
182 2572 16128 212614 2372 14281 158671
.183 2601 16311 218977 2398 14434 159429
.184 2630 16496 215343 2423 14588 .160187
0.185 2660 16682 0.216712 2449 14742 0.160943
.186 2689 16868 218083 2475 14898 .161698
.187 2719 17057 219456 2502 15054 162453
.188 2749 17246 220832 2528 15210 .163206
.189 2779 17436 222211 2554 15368 163958
0.190 2809 17627 0.223592 2581 15526 0.164709
191 2839 17820 224975 2608 15685 165458
192 2870 18013 226361 2634 15845 166207
193 2900 18208 227750 2661 16005 166955
194 2931 18404 229141 2688 16167 167702
0.195 2962 18601 0.230535 2716 16329 0.168447
.196 2993 18799 231931 2743 16491 169192
197 3025 18998 233329 2771 16655 169935
198 3056 19198 234731 2798 16819 170678
I 3088 19400 236185 2826 16984 171419 |}
| 200 3120 19602 2387541 2854 17150 172159
= R —_——




TABLE 1.
ELLIPSE. HYPERBOLA.
A Log B c T Log B c T
0.200 3120 19602 0.237541 2854 17150 0.172159
.201 3152 19806 238950 2882 17317 .172899
202 3184 20011 .240361 2910 | 17484 173637
.203 3216 20217 241776 2938 17652 174374
204 3249 20424 243192 2967 17821 175110
0.205 3282 20632 0.244612 2995 17991 0.175845
206 3315 20842 246034 3024 18161 176579
207 3348 21052 247458 3053 18332 177312
.208 3381 21264 .248885 3082 18504 178044
.209 3414 21477 250315 3111 18677 178775
0.210 3448 21690 0.251748 3140 18850 0.179505
211 3482 2190 253183 3169 19024 .180234
22 3516 22122 254620 3199 19199 .180962
213 3550 22339 256061 3228 19375 .181688
214 3584 22557 257504 3258 19551 .182414
0.215 3618 22777 0.258950 3288 19728 0.183139
216 3653 22998 .260898 3318 19906 .183863
217 & 3688 23220 .261849 3348 20084 .184585
218 3723 23443 .263303 3378 20264 .185307
219 3758 23667 .264759 3409 20444 .186028
0.220 3793 23892 0.266218 3439 20625 0.186747
221 3829 24119 .267680 3470 20806 .187466
222 3865 24347 269145 3500 20988 | .188184
223 3900 24576 270612 3531 21172 .188900
224 3936 24806 272082 3562 21355 .189616
0.225 3973 250387 0.273555 3594 21540 0.190331
226 4009 25269 275031 3625 21725 .191044
227 4046 25502 276509 3656 21911 191757
228 4082 25737 277990 . 3688 22098 .192468
229 4119 25973 279474 3719 22285 193179
0.230 4156 26210 0.280960 3751 22473 0.193889
231 4194 26448 282450 3783 22662 .194597
232 4231 26687 .283942 3815 22852 195305
233 4269 26928 285437 3847 23042 .196012
234 4306 27169 .286935 3880 23234 196717
0.235 4344 27412 0.288435 3912 23425 0.197422
.236 4382 27656 .289949 3945 23618 .198126
237 4421 27901 291445 3977 23811 .198829
238 4459 23148 292954 4010 24005 199530
239 4498 28395 .294466 4043 24200 .200231
240 4537 28644 295980 4076 24396 200931




TABLE I.

ELLIPSE. HYPERBOLA.

A Log B C T Log B C T
0.240 4537 28644 0.295980 4076 24396 0.200931
241 4576 28894 297498 4110 24592 201630
242 4615 29145 299018 4143 24789 .202328
.243 4654 29397 300542 4176 24987 203025
244 4694 29651 .302068 4210 25185 203721
0.245 4734 29905 0.303597 4244 25384 0.204416
246 4774 30161 305129 4277 25584 205110
247 4814 30418 .306664 4311 25785 .205803
.248 4854 30676 .308202 4346 25986 206495
249 4894 30935 309743 4380 26188 207186
0.250 4935 31196 0.311286 4414 26391 0.207876
251 4976 31458 312833 4449 26594 208565
252 5017 31721 314382 4483 26799 209254
253 5058 31985 3156935 4518 27004 209941
254 5099 32250 317490 4553 27209 210627
0.255 5141 32517 0.319048 4588 27416 0.211313
256 5182 " 32784 320610 4623 27623 211997
257 5224 33063 322174 4658 27830 212681
258 5266 33323 323741 4694 28039 213364
259 5309 33595 325312 4729 28248 214045
0.260 5351 33867 0.326885 4765 28458 0.214726
261 5394 34141 328461 4801 28669 215406
262 5436 34416 .330041 4838 28880 216085
263 5479 34692 .331623 4873 29092 216763
264 5522 34970 .333208 4909 29305 217440
0.265 5566 35248 0.334797 4945 29519 0.218116
.266 5609 35528 .336388 4981 29733 .218791
.267 5653 35809 337983 5018 29948 219465
268 5697 36091 .339580 50565 30164 220138
269 5741 36375 341181 5091 30380 220811
0.270 5785 36659 0.342785 5128 30597 0.221482
271 5829 36945 .344392 5165 30815 222153
272 5874 37232 .346002 5202 31033 222822
37521 347615 5240 31253 223491
37810 349231 5277 31473 224159
38101 0.350850 5315 31693 0.224826
38393 .352473 5352 31915 225492
38686 .354098 5390 32137 226157
33981 355727 5428 32359 226821
39277 .857359 5466 32583 227484
39573 .358994 5504 32807 228147




8 TABLE I.
ELLIPSE. HYPERBOLA.
A Log B C T Log B (o} T
0.280 6237 39573 0.358994 5504 32807 0.228147 m
281 6283 39872 360632 5542 33032 .228808
.282 6330 40171 362274 5581 33257 .229469
.283 6376 40472 363918 5619 33484 230128
284 6423 40774 365566 5658 33711 .230787 |
0.285 6470 41077 0.367217 5697 33938 0.231445
.286 6517 41381 .368871 5736 34167 232102
.287 6564 41687 370529 5775 34396 232758
.288 6612 41994 372189 5814 34626 233413
.289 6660 42302 373853 5853 34856 .234068
0.290 6708 42611 0.3756521 5893 35087 0.234721
291 6756 42922 377191 5932 356319 235374
292 6804 43233 .378865 5972 35552 236025
,-293 6852 43547 380542 6012 35785 236676
294 6901 43861 382222 6052 36019 237326
0.295 6950 44177 0.383906 6092 36253 0.287975
.296 6999 44493 .385593 6132 36489 238623
297 7048 44812 387283 6172 36725 239271
.298 7097 45131 388977 6213 36961 239917
.299 7147 45452 390673 6253 37199 240563
.300 7196 45774 392374 6294 37437 241207
I| L J




TABLE II. (See Article 93.) 9
h logyy h logyy h logyy
0.0000 0.0000000 0.0040 0.0038332 0.0080 0.0076133
.0001 .0000965 .0041 .0039284 .0081 .0077071
.0002 .0001930 .0042 .0040235 .0082 .0078009
.0003 .0002894 .0043 .0041186 .0083 .0078947
0004 .0003858 .0044 .0042136 .0084 0079884
0.0005 0.0004821 0.0045 0.0043086 0.0085 0.0080821
.0006 .0005784 .0046 .0044036 0086 .0081758
.0007 0006747 .0047 .0044985 0087 .0082694
.0008 .0007710 .0048 .0045934 0088 .0083630
.0009 .0008672 .0049 .0046883 0089 0084566
0.0010 0.0009634 0.0050 0.0047832 0.0090 0.0085502
.0011 .0010595 .0051 .0048780 .0091 .0086437
.0012 0011556 L0052 0049728 .0092 0087372
0013 0012517 .0053 .0050675 .0093 .0088306
.0014 .0013478 .0054 .0051622 .0094 0089240
0.0015 0.0014438 0.0055 0.0052569 0.0095 0.0090174
.0016 .0015398 .0056 0053515 .0096 .0091108
.0017 0016357 .0057 0054462 .0097 .0092041
.0018 0017316 .0058 0055407 .0098 0092974
019 0018275 0059 0056353 .0099 0093906
0.0020 0.0019234 0.0060 0.0057298 0.0100 0.0094838
.0021 0020192 .0061 .0058243 .0101 0095770
.0022 .0021150 0062 .0059187 0102 0096702
.0023 .0022107 .0063 .0060131 .0103 .0097633
.0024 0023064 .0064 .0061075 .0104 .0098564
0.0025 0.0024021 0.0065 0.0062019 0.0105 0.0099495
.0026 .0024977 .0066 .0062962 .0106 .0100425
.0027 0025933 .0067 0063905 .0107 .0101355
.0028 0026889 .0068 .0064847 .0108 0102285
.0029 0027845 .0069 .0065790 .0109 .0103215 .
0.0030 0.0028800 0.0070 0.0066732 0.0110 0.0104144 |
.0031 0029755 .0071 0067673 0111 .0105073 j
.0032 .0030709 0072 .0068614 0112 .0106001
.0033 .0031663 0073 0069555 0113 .0106929
.0034 .0032617 .0074 .0070496 0114 .0107857 |
|
0.0035 0.0033570 0.0075 0.0071436 0.0115 0.0108785
0036 0034523 .0076 .0072376 .0116 .0109712
0037 0035476 0077 0073316 0117 0110639
.0038 .0036428 .0078 0074255 .0118 0111565
.0039 .0037380 .0079 .0075194 .0119 0112491
.0040 .0038332 .0080 .0076133 .0120 0113417




10

TABLE II.
h logyy h logyy h log'yy
0.0120 0.0113417 0.0160 0.0150202 0.0200 0.0186501
0121 .0114343 0161 0151115 ..0201 .0187403
0122 0115268 0162 .0152028 0202 .0188304
0123 0116193 0163 0152941 .0203 .0189205
0124 .0117118 0164 0153854 .0204 0190105
0.0125 0.0118043 0.0165 0.0154766 0.0205 0.0191005
0126 0118967 0166 0155678 .0206 0191905
0127 .0119890 .0167 0156589 .0207 0192805
.0128 .0120814 .0168 0157500 .0208 0198704
0129 0121737 .0169 0158411 .0209 .0194603
0.0130 0.0122660 0.0170 0.0159322 0.0210 0.0195502
0131 0123582 0171 .0160232 0211 .0196401
0132 .0124505 0172 0161142 0212 0197299
.0133 0125427 0173 0162052 .0213 .0198197
.0134 0126348 0174 .0162961 0214 .0199094
0.0135 0.0127269 0.0175 0.0163870 0.0215 0.0199992
.0136 .0128190 0176 0164779 0216 .0200889
0137 0129111 0177 .0165688 0217 .0201785
.0138 .0130032 0178 .0166596 .0218 02026382
.0139 0130952 0179 0167504 0219 0208574
0.0140 0.0131871 0.0180 0.0168412 0.0220 0.0204474
0141 .0132791 .0181 0169319 0221 .0205369
0142 0133710 .0182 0170226 0222 .0206264
.0143 .0134629 .0183 0171133 .0223 0207159
0144 0135547 .0184 0172039 0224 .0208054
0.0145 0.0186465 0.0185 0.0172945 0.0225 0.0208948
0146 0137383 .0186 0173851 .0226 .0209842
0147 .0138301 0187 0174757 0227 - 0210736
0148 0139218 .0188 0175662 .0228 0211630
.0149 0140135 .0189 0176567 .0229 0212523
0.0150 0.0141052 0.0190 0.0177471 0.0230 0.0218416
0151 0141968 0191 .0178376 0231 .0214309
0152 .0142884 0192 .0179280 .0232 0215201
0153 .0143800 0193 .0180183 .0233 0216093
0154 .0144716 0194 .0181087 .0234 0216985
0.0155 0.0145631 0.0195 0.0181990 0.0235 0.0217876
0156 0146546 0196 .0182893 .0236 0218768
0157 0147460 0197 0183796 0237 0219659
0158 0148374 .0198 .0184698 0238 0220549
0159 .0149288 0199 .0185600 .0239 .0221440
0160 .0150202 .0200 0186501 .0240 0222330 |
: |




TABLE II.

11

h logyy h ‘ logyy h log yy
0.0240 0.0222330 0.0280 ‘ 0.0257700 0.0320 0.0292626
.0241 .0223220 .0281 0258579 0321 0293494
0242 .0224109 0282 | 0259457 .0322 .0294361
.0243 .0224998 0283 | .0260335 .0323 .0295228
0244 .0225887 0284 | .0261213 0324 0296095
0.0245 0.0226776 0.0285 0.0262090 0.03825 0.0296961
.0246 0227664 .0286 0262967 .0326 .0297827
.0247 .0228552 .0287 .0263844 .0327 .0298693
.0248 .0229440 .0288 0264721 .0328 .0299559
.0249 .0230328 .0289 0265597 .0329 .0300424
0.0250 0.0231215 0.0290 0.0266473 0.0330 0.0801290
.0251 .0232102 .0291 0267349 .0331 0302154
0252 .0232988 .0292 ! .0268224 .0332 0303019
.0253 .0233875 0293 .0269099 .0333 0303883
0254 .0234761 0294 .0269974 0334 0304747
0.0255 0.0235647 0.0295 0.0270849 0.0335 0.0305611
.0256 0236532 0296 0271723 0336 .0306475
.0257 0237417 0297 0272597 .0337 .0307338
.0258 .0238302 .0298 0273471 0338 0308201
.0259 .0259187 .0299 0274345 .0339 0309064
0.0260 0.0240071 0.0300 0.0275218 0.0340 0.0309926
.0261 0240956 .0301 0276091 .0341 .0310788
.0262 .0241839 .0302 0276964 .0342 .0311650
0263 .0242723 .0303 0277836 .0343 0312512
.0264 .0243606 .0304 0278708 0344 0313373
0.0265 0.0244489 0.0305 0.0279580 0.0345 0.0314234
.0266 0245372 .0306 0280452 .0346 0315095
.0267 0246254 .0307 .0281323 0347 0315956
.0268 0247136 .0308 0282194 .0348 0316816
.0269 .0248018 .0309 .0283065 .034Y .0317676
0.0270 0.0248900 0.03810 0.0283936 0.0350 0.0318536
0271 .0249781 0311 .0284806 .0351 .0319396
.0272 .0250662 0312 .0285676 .0852 .0320255
0273 0251543 .0313 .0286546 .0353 0321114
0274 0252423 0314 .0287415 0354 0321973
0.0275 0.0253303 0.0315 0.0288284 0.0355 0.0322831
.0276 .0254183 .0316 0289153 .0356 0323689
0277 0255063 0317 .0290022 0357 0324547
L0278 0255942 .0318 .0290890 .0358 0325405
L0279 .0256821 0319 .0291758 .0359 .0326262
.0280 .0257700 .0320 .0292626 .0360 .0327120




TABLE II.

—— —
h logyy h logyy h logyy '
0.0360 0.0327120 0.040 0.0361192 0.080 0.0681057
.0361 .0327976 .041 .0369646 .081 .0688612
0362 .0328833 .042 .0378075 .082 0696146
0363 .0329689 .043 0386478 .083 .0703661
0364 .0330546 044 .0394856 .084 0711157
0.0365 0.0331401 0.045 0.0403209 0.085 0.0718633
.0366 .0332257 .046 0411537 .086 .0726090
.0367 0333112 .047 .0419841 .087 0733527
.0368 .0333967 .048 .0428121 .088 .0740945
.0369 .0334822 .049 .0436376 .089 0748345 |
0.0370 0.0335677 0.050 0.0444607 0.090 0.0755725
0371 .0336531 051 0452814 091 0763087
.0372 .0337385 052 .0460997 092 .0770430
.0373 .0338239 053 .0469157 .093 0777754
*.0374 .0339092 .054 0477294 094 .0785060 "
0.0875 0.0339946 0.055 0.0485407 0.095 0.0792348
0376 .0340799 056 .0493496 .096 .0799617
0377 .0341651 057 .05601563 097 .0806868
.0378 .0342504 .058 .0509607 .098 .0814101
.0379 .0343356 .059 0517628 .099 .0821316
0.0380 0.0344208 0.060 0.0525626 0.100 0.0828513
.0381 .0345059 .061 .0533602 101 .0835693
.0382 .0345911 .062 0541556 .102 .0842854
.0383 0346762 .063 .0549488 .103 .0849999
.0384 .0347613 064 .05657397 104 0857125
0.0385 0.0348464 0.065 0.0565285 0.105 0.0864235
.0386 .0349314 .066 .05673150 .106 .0871327
.0387 .0350164 .067 .0580994 .107 .0878401
.0388 .0351014 .068 .0588817 .108 .0885459
.0389 .0351864 .069 .0596618 .109 . .0892500
0.0390 0.0352713 0.070 0.0604398 0.110 *0.0899523
.0391 .0353562 071 0612157 11 .0906530
.0392 0354411 072 .0619895 112 .0913520
.0393 .0355259 .073 .0627612 113 .0920494
0394 .0356108 074 0635308 114 0927451
0.0395 0.0356956 0.075 0.0642984 0.115 0.0934391
.0396 .0357804 .076 .0650639 116 0941315
.0397 .0358651 077 .0658274 A17 .0948223
.0398 .0359499 .078 .0665888 .118 .09565114 !
0399 .0360346 079 .0673483 119 .0961990
.0400 .0361192 .080 0681057 120 .0968849




TABLE II. 15
h logyy h logyy h logyy
0.120 0.0968849 0.160 0.1230927 0.200 0.1471869
121 0975692 161 1237192 .201 1477653
122 .0982520 .162 1243444 202 1483427
.123 .0989331 .163 1249682 .203 .1489189
124 .0996127 .164 1255908 204 .1494940
0.125 0.1002907 0.165 0.1262121 0.205 0.1500681
.126 1009672 .166 .1268321 .206 .1506411
127 1016421 .167 1274508 207 .1512130
128 1023154 .168 .1280683 .208 .1517838
129 1029873 .169 .1286845 .209 1523535
0.130 0.1036576 0.170 0.1292994 0.210 0.1529222
.131 .1043264 171 1299131 211 .1534899
132 .1049936 172 1305255 212 .1540565
.133 1056594 173 1311367 213 1546220
134 1063237 174 .1317466 214 1551865
0.135 0.1069865 0.175 0.1323553 0.215 0.1557499
.136 1076478 176 .1329628 216 .1563123
137 .1083076 177 .1335690 217 1568737
.138 .1089660 178 1341740 218 1574340
139 .1096229 179 1347778 219 1579933
0.140 0.1102783 0.180 0.1353804 0.220 0.1585516
141 1109323 181 .1359818 221 .1591089
142 1115849 182 .1365821 222 1596652
143 .1122360 .183 .1371811 223 .1602204
144 1128857 .184 1377789 224 1607747
0.145 0.1135340 0.185 0.1383755 0.225 0.1613279
.146 .1141809 .186 .1389710 226 .1618802
147 1148264 .187 1395653 227 .1624315
.148 1154704 .188 .1401585 228 1629817
.149 1161131 .189 1407504 229 .1635310
0.150 0.1167544 0.190 0.1413412 0.230 0.1640793
151 1173943 191 .1419309 231 1646267
152 .1180329 192 1425194 .232 1651730
.153 .1186701 .193 .1431068 .233 1657184
154 .1193059 194 1436931 234 1662628 I
0.155 0.1199404 0.195 0.1442782 0.235 0.1668063
156 1205735 196 .1448622 236 .1673488
157 1212053 197 1454450 237 .1678903
.158 1218357 .198 .1460268 .238 .1684309
159 1224649 S99 1466074 .239 .1689705
.160 .1230927 .200 .1471869 240 1695092




14 TABLE II.
h logyy h logyy h logyy

0.240 0.1695092 0.280 0.1903220 0.320 0.2098315

241 .1700470 .281 .1908249 321 .2103040

242 .1705838 .282 1913269 322 2107759

.243 1711197 .283 .1918281 323 .2112470

244 1716547 284 1923286 324 2117174

0.245 0.1721887 0.285 0.1928282 0.325 0.2121871

.246 1727218 .286 1933271 326 2126562

'.247 1782540 .287 .1938251 L3277 2131245

.248 .1737853 .288 1943224 328 .2135921

.249 1743156 .289 .1948188 .329 .2140591

0.250 0.1748451 0.290 0.1953145 0.330 0.2145253

! 251 1753736 291 1958094 331 2149909

252 1759013 292 .1963035 332 2154558

253 .1764280 .293 1967968 333 .2159200

l 254 .1769538 294 1972894 334 2163835

0.255 0.1774788 0.295 0.1977811 0.335 0.2168464

.256 .1780029 296 1982721 336 .2173085

| 257 1785261 297 .1987624 337 2177700

.258 1790484 .298 1992518 338 .2182308

259 1795698 *.299 1997406 339 .2186910

0.260 0.1800903 0.300 0.2002285 0.340 0.2191505

261 .1806100 .301 .2007157 .841 .2196093

262 .1811288 302 .2012021 342 2200675

.263 1816467 .303 .2016878 .343 2205250

.264 .1821638 .304 2021727 344 2209818

0.265 0.1826800 0.305 0.2026569 0.345 0.2214380

.266 .1831953 .306 .2031403 .346 .2218935

267 .1837098 307 2036230 347 2223483

.268 1842235 .308 2041050 .348 2228025

.269 .1847363 309 2045862 .349 2232561

0.270 0.1852483 0.310 0.2050667 0.350 0.2237090

271 1857594 3811 2055464 351 2241613

272 .1862696 312 .2060254 352 .2246130

273 1867791 313 2065037 353 2250640

274 1872877 314 2069813 354 2255143

0.275 0.1877955 0.315 0.2074581 0.355 0.2259640

.276 .1883024 316 2079342 856 .2264131

| 277 .1888085 317 .2084096 357 2268615

278 .1893138 318 .2088843 358 2273093

279 .1898183 319 2093582 .359 2277565

.280 .1903220 .320 .2098315 .360 .2282031

—




TABLE II 15

h logyy h ‘ logyy h logyy |
|

0.360 0.2282031 0.400 0.2455716 0.440 0.2620486 |
361 2286490 401 | 2459940 441 2624499
362 2290943 402 2464158 442 2628507
363 2295390 403 2468371 443 2632511
364 2299831 404 2472578 444 2636509
0.365 0.2304265 0.405 0.2476779 0.445 0.2640503
366 2308694 406 2430975 446 2644492
367 2313116 407 2485166 447 2648475 |
368 2317532 408 2489351 448 2652434 |
369 2321942 409 2493531 449 2656428
0.370 0.2326346 0.410 0.2497705 0.450 0.2660397 ’
371 2330743 411 2501874 451 2664362 |
372 2335135 412 2506038 452 2668321 |
378 2339521 413 2510196 453 2672276
374 2343900 A14 2514349 454 2676226
0.375 0.2348274 0.415 0.2518496 0.455 0.2680171
376 2352642 416 2522638 456 2684111
377 2357003 417 2526775 457 -2688046
378 2361359 418 2530906 458 2691977
379 2365709 419 2535082 459 2695903
0.380 0.2370053 0.420 0.2539153 0.460 0.2699824
381 2374391 421 2543269 461 2703741 |
382 2378723 422 2547379 462 2707652
383 2383050 423 2551485 463 2711559
384 2387870 424 2555584 464 2715462
0.385 0.2391685 0.425 0.2559679 0.465 0.2719360
.386 2395993 426 2563769 466 2723253
387 .2400296 427 2567853 467 2727141 |
.388 2404594 428 2571932 468 2731025 |
389 2408885 429 2576006 469 2734904
0.390 0.2413171 0.430 0.2580075 0.470 0.2738778
391 2417451 431 2584139 471 2742648
392 2421725 4382 2588198 472 ZidEsTSa
393 2425994 433 2592252 473 2750374
394 2430257 434 2596300 AT4 2754230
0.395 0.2434514 0.435 0.2600344 0.475 0.2758082
396 2438766 436 2604382 A76 2761929
397 2443012 437 2608415 AT7 2765771
398 2447252 438 2612444 478 2769609
.399 2451487 439 2616467 479 2773443
400 2455716 440 2620486 .480 2777272

————




16

TABLE II.

h logyy h logyy h logyy
0.480 0.2777272 0.520 0.2926864 0.560 0.3069938

481 2781096 521 2930518 561 3073437

482 2784916 522 .2934168 562 .3076931

.483 2788732 523 2937813 563 .3080422

484 2792543 524 2941455 564 3083910
0.485 0.2796349 0.525 0.2945092 0.565 0.3087394

.486 2800151 526 2948726 566 .3090874

487 .2803949 527 2952355 567 .3094350

.488 2807743 528 .2955981 .H68 .3097823

.489 2811532 529 .2959602 569 .3101292
0.490 0.2815316 0.530 0.2963220 0.570 0.3104758

491 .2819096 531 2966833 H71 .3108220

.492 2822872 532 .2970443 H72 3111678

493 2826644 533 2974049 573 3115133

494 .2830411 534 2977650 574 3118584
0.495 0.2834173 0.585 0.2981248 0.575 0.3122031

.496 2837932 536 2984842 576 3125475

497 .2841686 537 2988432 BHT7 .3128915

.498 2845436 .538 2992018 578 3132352

499 .2849181 539 .2995600 579 3135785
0.500 0.2852923 0.540 0.2999178 0.580 0.3139215

501 .2856660 541 83002752 581 3142641

502 2860392 542 3006323 582 .3146064

503 .2864121 543 .3009890 583 .3149483

504 2867845 544 3013452 584 3152898
0.505 0.2871565 0.545 0.3017011 0.585 0.3156310

506 2875281 .546 .3020566 .586 3159719

507 2878992 547 3024117 587 3163124

.508 .2882700 548 3027664 588 .3166525

.509 .2886403 .549 .3031208 589 3169923
0.510 0.2890102 0.550 0.3034748 0.590 0.3173318

Hl11 2893797 551 .3038284 591 3176709

9112 2897487 552 .3041816 592 .3180096 [

513 2901174 553 3045344 593 .3183481 [

514 .2904856 554 .3048869 594 .3186861 |
0.515 0.2908535 0.555 0.3052390 0.595 0.3190239

516 .2912209 556 3055907 596 3193612

H17 2915879 HHT .3059420 H97 3196983

518 2919545 558 .3062930 598 .3200350 |

519 .2923207 559 .3066436 D99 3203714 |

520 2926864 560 .3069938 .600 3207074 !




TABLE III. (See Articles 90,100.) 17
P — ———— =
X orz 3 ¢ Xorz 3 (5
0.000 0.0000000 0.0000000 0.040 0.0000936 0.0000894
.001 .0000001 .0000001 .041 .0000984 .0000938
.002 .0000002 .0000002 .042 .0001033 .0000984
.003 .0000005 .0000005 .043 .0001084 .0001031
004 .0000009 .0000009 044 .0001135 .0001079
0.005 0.0000014 0.0000014 0.045 0.0001188 0.0001128
.006 .0000021 .0000020 .046 .0001242 0001178
.007 .0000028 .0000028 .047 .0001298 .0001229
.008 .0000037 .0000036 .048 .0001354 .0001281
.009 .0000047 .0000046 .049 .0001412 .0001334
0.010 0.0000058 0.0000057 0.050 0.0001471 0.0001389
.011 .0000070 .0000069 .051 .0001532 .0001444
012 .0000083 .0000082 052 .0001593 .0001500
.013 .0000097 .0000096 .053 0001656 .0001558
.014 .0000113 .0000111 054 .0001720 .0001616
0.015 0.0000130 0.0000127 0.055 0.0001785 0.0001675
.016 0000143 .0000145 .056 .0001852 .0001736
.017 .0000167 .0000164 .057 .0001920 .0001798
018 .0000187 .0000183 .058 .0001989 .0001860
.019 .0000209 .0000204 .059 .0002060 .0001924
0.020 0.0000231 0.0000226 0.060 0.0002131 0.0001988
.021 .0000255 .0000249 .061 .0002204 .0002054
.022 .0000280 .0000273 .062 .0002278 0002121
.023 .0000306 .0000298 .063 .0002354 .0002189
.024 .0000334 .0000325 .064 .0002431 0002257
0.025 0.0000362 0.0000352 0.065 0.0002509 0.0002327
.026 .0000392 .0000381 .066 .0002588 .0002398
.027 .0000423 .0000410 .067 .0002669 .0002470
.028 .0000455 .0000441 .068 .0002751 0002543
.029 .0000489 .0000473 .069 .0002834 .0002617
0.030 0.0000523 0.0000506 0.070 0.0002918 0.0002691
.031 .0000559 .0000539 .071 .0003004 0002767
.032 .0000596 .0000575 .072 .0003091 .0002844
.033 .0000634 .0000611 .078 .0003180 .0002922
| .034 .0000674 .0000648 074 .0003269 .0003001
|
[ 0.085 0.0000714 0.0000686 0.075 0.0003360 0.0003081
| .036 .0000756 0000726 .076 .0003453 .0003162
| .087 .0000799 .0000766 .077 .0003546 .0003244
.038 .0000844 .0000807 :078 .0003641 .0003327
.039 .0000889 .0000850 .079 .0003738 .0003411
i .040 .0000936 .0000894 .080 .0003835 .0003496
|




18 TABLE III.

xorz § ¢ X orz 3 ¢
0.080 0.0003835 0.0003496 0.120 0.0008845 0.0007698
.081 .0003934 .0003582 121 .0008999 .0007822
.082 .0004034 .0003669 122 .0009154 .0007948
.083 .0004136 0003757 123 .0009311 .0008074
| .084 .0004239 .0003846 124 .0009469 .0008202
0.085 0.0004343 0.0003936 0.125 0.0009628 0.0008330
*.086 .0004448 .0004027 .126 .0009789 .0008459
087 .0004555 .0004119 127 .0009951 .0008590
.088 .0004663 .0004212 128 .0010115 .0008721
.089 .0004773 0004306 129 .0010280 .0008853
0.090 0.0004884 0.0004401 0.130 0.0010447 0.0008986
.091 .0004996 .0004496 131 .0010615 .0009120
.092 .0005109 .0004593 132 .0010784 .0009255
093 0005224 .0004691 .133 .0010955 .0009390
.094 .0005341 .0004790 134 .0011128 .0009527
0.095 0.0005458 0.0004890 0.135 0.0011301 0.0009665
.096 0005577 .0004991 .136 .0011477 .0009803
097 .0005697 .0005092 137 0011654 .0009943
.098 .0005819 0005195 138 .0011832 .0010083
.099 .0005942 .0005299 139 .0012012 .0010224
0.100 0.0006066 0.0005403 0.140 0.0012193 0.0010366
.101 .0006192 0005509 141 .0012376 .0010509
.102 0006319 .0005616 142 .0012560 .0010653
.103 .0006448 0005723 .143 0012745 .0010798
.104 .0006578 .0005832 144 .0012933 .0010944
0.105 0.0006709 0.0005941 0.145 0.0013121 0.0011091
.106 .0006842 .0006052 .146 .0013311 .0011238
.107 0006976 0006163 147 .0013503 .0011387
.108 .0007111 .0006275 .148 .0013696 .0011536
.109 .0007248 .0006389 .149 .0013891 .0011686
0.110 0.0007386 0.0006503 0.150 0.0014087 0.0011838
111 0007526 .0006618 151 .0014285 .0011990
112 0007667 .0006734 152 .0014484 .0012143
113 .0007809 .0006851 153 0014684 .0012296
114 .0007953 .0006969 154 .0014886 .0012451
0.115 0.0008098 0.0007088 0.155 0.0015090 0.0012607
116 .0008245 .0007208 156 0015295 0012763
117 .0008393 .0007329 1567 .0015502 .0012921
I 118 0008542 , .0007451 .158 0015710 .0013079
119 .0008693 0007574 S0 .0015920 .0013238
.120 .0008845 0007698 .160 .0016131 .0013398

———




TABLE III.
—_— e
|l xorz . £ ¢ X Or z & ¢ ]
0.160 0.0016131 0.0013398 0.200 0.0025877 0.0020507
161 .0016344 .0013559 201 0026154 .0020702
162 .0016559 .0013721 202 0026433 0020897
163 0016775 .0013883 203 .0026713 .0021094
.164 .0016992 .0014047 204 0026995 .0021292
0.165 0.0017211 0.0014211 0.205 0.0027278 0.0021490
166 0017432 0014377 206 0027564 0021689
167 .0017654 0014543 207 0027851 0021889
.168 .0017878 .0014710 208 .0028139 .0022090
.169 .0018103 .0014878 209 .0028429 0022291
0.170 0.0018330 0.0015047 0.210 0.0028722 0.0022494
171 .0018558 .0015216 211 .0029015 .0022697
172 .0018788 .0015387 212 .0029311 .0022901
173 .0019020 .0015558 213 .0029608 0023106
174 0019253 0015730 214 0029907 0023311
0.175 0.0019487 0.0015903 0.215 0.0030207 0.0023518
176 .0019724 .0016077 216 .0030509 0023725
A77 .0019961 0016252 217 0030814 0023932
178 .0020201 .0016428 218 .0031119 0024142
179 .0020442 0016604 219 .0031427 0024352
0.180 0.0020685 0.0016782 0.220 0.0031736 0.0024562
181 .0020929 .0016960 221 .0032047 0024774
.182 0021175 .0017139 222 .0032359 .0024986
.183 0021422 .0017319 223 0032674 .0025199
.184 .0021671 .0017500 224 .0032990 0025412
0.185 0.0021922 0.0017681 0.225 0.0033308 0.0025627
.186 0022174 .0017864 226 0033627 .0025842
187 .0022428 .0018047 22k .0033949 0026058
.188 .0022683 .0018231 228 0034272 0026275
.189 0022941 .0018416 2290 0034597 .0026493
0.190 0.0023199 0.0018602 0.230 0.0034924 0.0026711
191 0023460 .0018789 231 00385252 0026931
192 0023722 .0018976 232 .0035582 .0027151
193 .0023985 .0019165 233 0035914 0027371
194 0024251 .0019354 234 .0036248 .0027593
0.195 0.0024518 0.0019544 0.235 0.0036584 0.0027816
196 .0024786 .0019735 236 .0036921 .0028039
197 .0025056 0019926 237 0037260 0028263
.198 0025328 .0020119 238 0037601 .0028487
199 .0025602 0020312 239 0037944 .0028713
.200 .0025877 0020507 240 .0038289 .0028939




20 TABLE III.
xorz 3 4 X orz € (<
0.240 0.0038289 0.0028939 0.270 0.0049485 0.0036087 m
241 0038635 0029166 271 -+ .0049888 0036337
242 0038983 .0029394 S22 .0050292 0036587
243 0039333 .0029623 273 .0050699 . .0036839
244 0039685 0029852 274 0051107 .0037091 :
0.245 0.0040039 0.0030083 0.275 0.0051517 0.0037344
246 .0040394 0030314 276 0051930 .0037598
247 0040752 .0030545 e 7 0052344 0037852
248 0041111 .0030778 .278 .0052760 .0038107
249 0041472 .0031011 209 .0053118 0038363
0.250 0.0041835 0.0031245 0.280 0.0053598 0.0038620
251 .0042199 - .0031480 281 .0054020 .0038877
252 0042566 .0031716 282 0054444 .0039135
253 0042934 0031952 .283 .0054870 .0039394
254 .0043305- .0032189 284 0055298 .0039654
0.255 0.0043677 0.0032427 0.285 0.0055728 0.0039914
256 0044051 0032666 .286 .0056160 . 0040175
257 0044427 .0032905 287 .0056594 .0040437
.258 .0044804 0033146 .288 .0057030 .0040700
259 0045184 .0033387 .289 0057468 .0040963
0.260 0.0045566 0.0033628 0.290 0.0057908 0.0041227
.261 0045949 .0033871 291 .0058350 0041491
262 0046334 0034114 292 .0058795 0041757
.263 .0046721 0034358 .293 .0059241 0042023
264 0047111 0034603 . 294 .0059689 .0042290
0.265 0.0047502 0.0034848 0.295 0.0060139 0.0042557
.266 .0047894 .0035094 296 .0060591 .0042826
267 .0048289 0035341 290 .0061045 0043095
.268 0048686 0035589 .298 0061502 0043364
269 0049085 0035838 5299
270 0049485 0036087 300

0061960 0043635
0062421 0043906 \



TABLE Ia.

HYPERBOLA.

ELLIPSE.
A Log E, Log diff. Log E, Log diff. Log E, Log diff. LogE,. Log diff.
0.000 | 0.0000000 | 9.2401 | 0.0000000 | 9.6378 0.0000000 | 9.2398 | 0.0000000 | 9.6378
.001 .0001738 | .2403 | 9.9995656 | .6381 9.9998263 | .2395 | .000-4341 6375
.002 .0003477 .2406 29991309 .6384 9996528 2392 | .0008680 .6372
.003 .0005217 .2408 19986959 .6386 9994794 2389 .0013017 .6370
.004 .0006958 2413 9982607 .6389 .9993061 .2386 | .0017350 6367
0.005 | 0.0008701 | 9.2416 | 9.9978252 | 9.6391 9.9991329 | 9.2383 | 0.0021682| 9.6365
.006 .0010445 2418 .9973895 .6394 .9989598 2381 .0026010 .6362
.007 0012190 .2420 .9969535 .6396 9987869 2378 .0030337 .6360
.008 .0013936 2423 29965173 .6399 9986141 2375 .0034660 6357
.009 .0015683 .2428 .9960807 .6402 9984414 2372 .0038981 6354
0.010 | 0.0017432 | 9.2430 | 9.9956439 | 9.6405 9.9982688 | 9.2369 | 0.0043299 | 9.6352
011 0019182 2433 9952068 .6407 9980963 2366 | .0047615 .6349
012 0020933 2435 9947695 .6:410 29979240 2363 .0051928 6347
.013 .0022685 .2438 9943319 6412 9977517 2560 0056239 6344
014 0024438 2443 9938941 .6414 99757906 2357 0060547 6342
0.015 | 0.0026193 | 9.2445 | 9.9934560 | 9.6417 9.9974076 | 9.2354 | 0.0064853 | 9.6339
.016 .0027949 2448 9930176 6420 9972357 2351 0069156 .6336
017 0029706 2453 19925789 .6423 9970639 2348 0073456 .6334
.018 0031465 2455 .0921400 .6425 19968923 2345 0077754 .6331
.019 .0033225 2458 19917008 .6428 9967207 2342 .0082049 .6329
0.020 | 0.0034986 | 9.2460 | 9.9912614 | 9.6430 9.9965493 | 9.2339 | 0.0086342 ! 9.6326
.021 0036748 .2460 9908217 .6433 9963780 23306 0090632 .6323
022 0038510 2465 .9903817 .6436 .9962068 2533 0094920 .6321
.023 0040274 2470 9899415 .6438 9960357 2330 .0099205 .6318
.024 .0042040 2472 19895010 .6441 9958648 2328 .0103487 .6316
0.025 | 0.0043807 | 9.2475 | 9.9890602 | 9.6444 9.9956939 | 9.2325 | 0.0107767 9.6313
.026 0045575 2477 .9886192 .6446 9955232 2322 0112045 .6311
027 0047344 | .2480 9881779 .6449 29958526 2319 0116320 6308
.028 0049114 | .2485 9877363 6452 29951821 2316 .0120592 6306
.029 0050886 .2487 9872945 6454 29950117 25138 0124862 6303
0.030 | 0.0052659 | 9.2490 | 9.9868524 | 9.6457 9.9948414 | 9.2310 | 0.0129130 9.6301
.031 0054433 2494 .9864100 .6459 9946712 2307 0133395 .6298
.032 .0056209 2497 9859674 | .6462 9945012 2504 0137657 .6295
.033 0057986 | 2499 19855245 | .6465 9943313 2301 0141917 .6293
.034 0059764 2502 9850813 .6468 9941615 2298 0146175 .6290
0.035 | 0.0061543 | 9.2504 | 9.9846378 | 9.6471 9.9939918 | 9.2295 [ 0.0150430 | 9.6288
.036 0063323 2509 9841940 .6474 19938222 20202 0154633 .6285
037 0065105 2512 9837499 .6476 .9936528 2290 0153933 .6283
.038 0066888 2514 .9833056 .6478 19934834 2287 0163180 .6280
.039 0068672 2516 9828610 .6481 9933142 2284 | 0167426 .6278
.040 0070457 2519 .9824161 .6484 9931450 2281 0171668 6275




22 TABLE Ia.

ELLIPSE. HYPERBOLA.

A Log E, Log diff. Log E, Log diff. Log E, Log diff. LogE,. Log Diff.

0.040 | 0.0070457 | 9.2519 | 9.9824161 | 9.6484 9.9931450:| 9.2281 | 0.0171668 | 9.6275

' .041 | .0072243| .2524| .9819709 | .6487 20929760 | .2278 | .0175908 | .6273
042 | .0074081| .2526| .9815255| .6489 0928071 | .2275| .0180146| .6270
043 | .0075820 | .2581| .9810798 | .6492 9926383 | .2272| .0184331| .6267
044 | .0077611| .2533| .9806339 | .6494 9924696 | .2269| .0188614| .6265
0.045 | 0.0079403 | 9.2536| 9.9801877 | 9.6497 9.9923010 | 9.2266 | 0.0192844| 9.6262
.046 | .0081196| .2538| .9797412| .6500 9921825 | .2263| .0197072| .6260
.047 | .0082990 | .2543| .9792944 | .6502 9919642 | .2260| .0201297| .6257
.048 | .0084786| .2546| .9788474| .6505 ..9917960 | .2258| .0205520| .6255
.049 | .0086583 | .2548| .9784001 | .6508 9916279 | .2255| .0209740| .6252
0.050 | 0.0088381 | 9.2550 | 9.9779525 | 9.6511 9.9914599 | 9.2252 | 0.0213958 | 9.6250
051 | .0090180 | .2555| .0775046 | .6514 9912920 | .2249 | .0218174| .6247
052 ] .0091981 | .2558| .9770564 | .6516 9911242 | .2246| .0222387| .6245
0531 .0093783| .2560| .9766079| .6519 9909565 | .2243| .0226597| .6242
054 | .0095586 | .2565| .9761592| .6521 9907890 | .2240 -0230805l .6240 .
0.055 | 0.0097391 | 9.2567 | 9.9757102 | 9.6524 9.9906215 | 9.2237 | 0.0285011| 9.6237
.056 | .0099197 | .2570| .9752609 | .6527 9904542 | .2285| .0239214| .6235
.057 | .0101004 | .2572| .9748113| .6529 29902869 | .2232| .0243415| .6232 |
.058 | .0102812| .2577| .9743615| .6532 29901198 | .2229| .0247614| .6230
I 059 | .0104622 | .2579| .9739114| .6535 20899528 | .2226| .0251810| .6227
0.060 | 0.0106433 | 9.2582 | 9.9734611 | 9.6538 9.9897859 | 9.2223 | 0.0256003| 9.6225
061 | .0108245| .2584| .97301038| .6541 9896191 | .2220| .0260194| .6222
| .062| .0110058 | .2580| .9725593| .6543 0894525 | .2217| .0264383| .6220
063 | .0111873| .2591| .9721080 | .6546 0892859 | .2214| .0268570| .6217
064 | .0113689| .2594| .9716565| .6548 0891195 | .2211| .0272753| .6215
0.065 | 0.0115506 | 9.2598 | 9.9712047 | 9.6551 9.9889531 | 9.2208 | 0.0276935 | 9.6212
.066 | - .0117325| .2601| .9707526| .6554 9887869 | .2206| .0281114| .6210
067 | 0119145 | .2603| .9703002 | .6557 9886208 | .2203| .0285291| .6207
.068 | .0120966| .2606| .9698475| .6560 9884548 | .2200| .0289465| .6205
069 ] .0122788 | .2610| .9693945 | .6562 9882889 | .2197| .0293637| .6202
0.070 | 0.0124612 | 9.2613 | 9.9689413 | 9.6565 9.9881231 | 9.2194 | 0.0297807 | 9.6200 |f
071 ] .0126437 | .2617 | .9684878 | .6567 9879574| .2191| .0301974| .6197
072 | .0128264 | .2620| .9680340| .6570 .9877918| .2189| .0306139| .6195
073 | .0130092 | .2622| .9675799 | .6573 9876263 | .2186| .0310301 | .6192
074 | .0181921 | .2625| .9671255| .6576 .9874610| .2183| .0314461| .6190
0.075 | 0.0133751 | 9.2629 | 9.0666708 | 9.6578 9.9872957' 9.2180 | 0.0318618| 9.6187
076 | .0135583| .2632| .9662159| .6581 9871306 | .2177| .0822773| .6185
077 | .0187416! .2684| .9657606| .6584 9869655 | .2174! .0326926( .6182
078 | .0139250 | .2638| .9653051| .6587 .9868006 .2172| .0331076| .6180
079 | .0141086 | .2641| .9648492| .6590 9866358 | .2169 ! .0335224| .6177

.08v .0142923’ .2643\ 96439311 .6592 9864711 | .2166| .0339370| .6175

e e e




TABLE Ia.

[}
(UML)

if

ELLIPSE.

HYPERBOLA.

|l

"A Log E, Log diff. Log E,
0.080 | 0.0142923 | 9.2643 | 9.9643931
.081 0144761 2646 | 9639367
.082 .0146601 2649 | .9634800
.083 0148442 | .2652 | .9630230
.084 0150284 | 2655 | .9625657
0.085 | 0.0152128 | 9.2659 | 9.9621081
.086 0153973 | .2662 | .9616503
.087 0155819 | .2665 | .9611922
.088 0157667 | 2663 | .9607337
.089 0159516 | .2671 9602749
0.090 | 0.0161367 | 9.2674 | 9.9598159
.091 0163218 | .2677 | .9593566
.092 .0165071 2680 | .9588970
.093 0166925 | .2684| .9584371
094 .0168781 | .2687 9579769
0.095 | 0.0170638 | 9.2690 | 9.9575164
.096 0172497 | 2693 | 9570556
.097 0174557 2696 9565945
.098 0176218 | .2700 | .9561331
.099 .0178081 2703 | 9556714
0.100 | 0.0179945 | 9.2706 | 9.9552095
.101 0181810 | .2708 | .9547472
.102 0183677 | .2712 | .9542847
.103 0185545 | 2715 | .9538218
104 0187414 | .2718 9533586
0.105 | 0.0189285 | 9.2722 | 9.9528951
.106 0191157 | 2725 | 9524314
107 .0193030 | .2728 | .9519673
.108 .0194905 | .2731 9515030
.109 0196781 | .2734| .9510383
0.110 | 0.0198659 | 9.2738 | 9.9505734
11 .0200538 | .2741 .9501081
112 .0202418 | .2744 9496425
113 .0204300 | .2747 | .9491766
114 .0206183 | .2750 9487105
0.115 | 0.0208067 | 9.2754 | 9.9482440
116 0209953 | 2757 | 9477772
117 .0211840 2760 0473101
118 .0213729 2763 9468428
119 0215619 | 2767 | .9463751
.120 0217511 27701 9459071

Log diff. Log E, Log diff. LogE,. Log Diff.
9.6592 9.9864711 | 9.2166 | 0.0339370 | 9.6175
L6595 9863065 | .2163 | .0343513 6172
L6598 9861420 2160 0347654 .6170
.6600 9859776 | 2157 | 0351793 | .6167
.6603 9858133 | 2155 | .0355930 | .6165
9.6606 9.9856491 | 9.2152 | 0.0360064 | 9.6163
6609 9854850 | 2149 | .0364196| .6160
6611 9853210 | .2146| .0368325| .6158
6614 9851572 | 2143 | .0372452| .6155
6617 9849934 | .2140 | .0376577 | .6153
9.6620 9.9848298 | 9.2138 | 0.0380699 | 9.6150
6623 9846663 | 2135 | .0384819 | .6148
6625 9845028 | .2132 | .0388937| .6145
.6628 9843395 2129 .0393052 6143
.6631 9841763 | 2126 | .0397165 6141
9.6634 9.9840132 | 9.2123 | 0.0401276| 9.6138
6636 9838502 | .2121 | .0405385| .6136
.6639 9836873 | .2118 | .0409491 .6133
6642 9835245 | 2115 | .0413595 6131
6645 9833618 | .2112 | .0417696| .6128
9.6648 9.9831992 | 9.2109 | 0.0421796 | 9.6126
.6650 9830367 | .2107 | .0425893 6123
6653 0828743 2104 .0429988 6121
.6656 9827121 2101 .0434080 .6118
6659 9825499 2098 .0438170 .6116
9.6662 9.9823879 | 9.2095 | 0.0442258 | 9.6114
6664 29822259 | .2093 | .0446343 6111
.6666 9820641 | .2090| .0450426| .6109
.6670 9819023 | .2087 | .0454507| .6106
6673 9817407 | 2084 | .0453585 .6104
9.6676 9.9815791 | 9.2081 | 0.0462661 | 9.6101
.6678 9814177 | 2079 | .0466735 .6099
.6681 9812563 | .2076 | .0470307 .6096
.6684 19810951 2073 0474876 .6094
.6687 9809340 | .2070 | .04789143 .6092
9.6690 9.9807730  9.2067 | 0.0 33008 9.6089
6692 9806121 2065 | .0437071 .6087
.6695 9804513 2062 | 0491131 .6084
.6698 29802905 2059 | 0495189 .6082
6701 9801299  .2056 | .0499245 .6080
6704 9799694 2054 [ 0503298 .6077 _]

_




-TABLE Ia.

ELLIPSE. HYPERBOLA.
A Log E, Log diff. Log E, Log diff. Log E,, Log diff. Log E,. Log Diff.
0.120 | 0.0217511 | 9.2770 | 9.9459071 | 9.6704 9.9799694| 9.2054 | 0.0503298 | 9.6077
8121 0219404 | .2773| .9454388 .6707 9798090 | .2051 0507349 .6075
122 0221298 2776 .9449702| .6709 9796487 | .2048 | ..0511399 | .6072
123 ) .0223193 2779 | 9445013 | .6712 9794885 | .2045 | .0515446| .6070
2.124 | 0225091 2783 | .9440321 | .6715 9793284 | .2043 | .0519490( .6068
0.125 |- 0.0226990 [ 9.2786 | 9.9435626 | 9.6718 9.9791684 | 9.2040 | 0.0523533 | 9.6065
126 | .0228889 | .2789 | .9430927| .6721 9790085 | .2037 | .0527573| .6063
127 0230791 2792 19426226 | .6724 .9788487 [ .2034 | .0531611 .6061
.128 0232693 2795 .9421521 6727 9786890 | .2032 | .0535647 .6058
. -129 0234597 2799 | .9416813 | .6729 9785294 | .2029 | .0539681 .6056
0.130 | 0.0236503 | 9.2802 | 9.9412103 | 9.6732 9.9783699 | 9.2026 | 0.0543712 | 9.6053
«d31 .0238410 | .2805| .9407389 | .6735 9782105 | .2023 | .0547741 .6051
132 | .0240318 |  .2808 | .9402672 | .6738 9780512 | .2021| .0551768 | .6049
|l ..133 0242228 | | .2812 ( .9397952 | .6741 9778920 | .2018| .0555793 | .6046
..134 | .0244139 | .2815| .9393229 | .6744 9777329 | .2015| .0559816| .6044
0.135 | 0.0246052 | 9.2818 | 9.9388503 | 9.6747 9.9775739 | 9.2012 | 0.0563836 | 9.6041
136 0247966 | .2822 9383773 | .6749 9774150 | .2010 | .0567854 .6039
187 0249882 | .2825 | .9379041| .6752 9772562 | .2007 | .0571870 | .6037 '
1388 | 0251799 | .2828 | .9374305| .6755 9770975 | .2004| .0575884 | .6034
139 | .0253717 | .2831| .9369567| .6758 9769390 | .2001 | .0579895 | .6032 |
0.140 | 0.0255637 | 9.2834 | 9.9364824 | 9.6761 9.9767805 | 9.1998 | 0.0583904 [ 9.6029 |
141 0257558 |, .2838 | .9360079 | .6764 9766221 | .1996| .0587911 .6027 l
142 0259481 2841 9355331 6767 19764638 | .1993 0591916 .6025
=143 0261405 2844 | .9350580 | .6770 9763057 | .1990 | .0595919 .6022
144 | .0263331 2848 | .9345825 | .6773 9761476 | .1988 | .0599919| .6020
0.145 | 0.0265258 | 9.2851 | 9.9341067 | 9.6775 9.9759896 | 9.1985 | 0.0603917 | 9.6018
1146 | .0267187 | .2854| .9336307 | .6778 9758317 | .1982| -.0607913 | .6015
147 0269117 | 2857 | .9331543 | .6781 9756739 | .1979| .0611907 | .6013
148 0271048 | .2861 | .9326775| .6784 9755162 | .1977 | .0615899 | .6010
149 | .0272981 | .2864 | .9322005| .6787 9753586 | .1974| .0619888 | .6008
0.150 | 0.0274915 | 9.2867 | 9.9317231 | 9.6790 9.9752011 | 9.1971 | 0.0623876.| 9.6006
1581 0276851 | .2871 | .9312455( .6793 9750437 | 1969 | .0627861 | .6003
152 0278789 2874 | .9307675 .6796 .9748864 | .1966 .0631844 .6001
153 | .0280728 | .2877 | .9302892 | .6798 9747292 | .1963| .0635825| .5999
154 0282668 | .2880 .9298106 .6801 9745721 1960 | .0639804 5996 ‘
0.155 | 0.0284610 [ 9.2884 | 9.9293317 | 9.6804 9.9744151 | 9.1958 | 0.0643780 | 9.5994
156 | .0286553 | .2887 | .9288524 | .6807 9742582 | 1955 | .0647755 | .5992
157 .0288498 .2890 .9283728 | .6810 9741014 | .1952 | .0651727 2989 )
158 | .0290444 | .2893 | .9278929| .6813 9789447 | .1949 | .0655697 | .5987
159 | .0292392 | 2897 | .9274127 | .6816 9737881 | .1946 | .0659665| .5985
160 | .0294341 | .2900 | .9269321 | .6819 9786316 | .1944| .0663631 | .5982
e — e e




TABLE Iea. 25

ELLIPSE. HYPERBOLA.

A Log E, Log diff. Log E, Log diff. iog E, Log diff. LogE.. Log diff.

0.160 | 0.0294341 | 9.2900 | 9.9269321 | 9.6819 9.9736316 | 9.1944 | 0.0663631 | 9.5982

161 | .0296292 | .2903 | .9264512| .6822 9734752 | .1941 | .0667595| .5980
162 | .0298243 | .2906 | .9259700 | .6825 9783189 | .1938| .0671556| .5978
163 | .0300197 | .2910 | .9254885| .6828 9781627 | .1936| .0675516| .5975
164 | .0802152 | .2918| .9250067 | .6831 9730066 | .1933 | .0679473| .5973
0.165 | 0.0804109 | 9.2916 | 9.9245245 | 9.6833 9.9728506 | 9.1930 | 0.0683428| 9.5971
166 | .0306067 | .2920 | .9240421 | .6836 9726947 | .1928 | .0687381| .5968
167 | .0308026 | .2923| .9235592| .6839 9725389 | .1925| .0691332| .5966
168 | .0309987 | .2926| .9230761 | .6842 9723831 | .1922| .0695281| .5963
169 | 0811949 | .2930| .9225926 | .6845 9722275 | .1920| .0699228| .5961
0.170 | 0.0313913 | 9.2933 | 9.9221089 | 9.6848 9.9720719 | 9.1917 | 0.0703172| 9.5959
171 | .0815879 | .2936 | .9216247 | .6851 9719165 | .1914| .0707114| .5956
172 | .0817846 | .2940 | .9211408| .6854 9717611 | .1912| .0711055| .5954
173 | .0819815| .2943| .9206555 | .6857 9716059 | .1909 | .0714993| .5952
174 | .0821784| .2946| .9201704 | .6860 9714507 | .1906 | .0718929| .5949
0.175 | 0.0323756 | 9.2950 | 9.9196850 | 9.6863 9.9712957 | 9.1904 | 0.0722863| 9.5947
176 | .0825729 | .2953 | .9191992 | .6866 9711407 | .1901| .0726795| .5945
177 | .0827704| .2956| .9187131| .6869 .9709859 | .1898| .0730724| .5942
178 | .0829680 | .2960| .9182266| .6872 9708311 | .1895| .0734652| .5940
179 | .0881657 | .2963 | .9177399 | .6875 9706764 | .1893| .0738578| .5938
0.180 | 0.0333636 | 9.2966 | 9.9172528 | 9.6878 9.9705218 | 9.1890| 0.0742501| 9.5935
181 | .0835617 | .2970| .9167654 | .6881 9703673 | .1887| .0746422| -5933
182 | .0887599 | .2973| .9162776| .6884 9702129 | .1885| .0750841| .5931
183 | .0839582| .2977 | .9157895 | .6886 9700587 | .1882 | .0754259| .5928
184 | .0841568 | .2980| .9153011| .6889 .9699045 | .1879| .0758173| .5926
0.185 | 0.0343555 | 9.2983 | 9.9148123 | 9.6892 9.9697504 | 9.1877 | 0.0762086 | 9.5924
186 | .0845543 | .2987 | .9143232 | .6895 9695964 | .1874| .0765997 | -5922
187 | .0847533 | .2990 | .9138338 | .6898 9694425 | .1871| .0769906| -5919
188 | .0849524 | .2993 | .9138441 | .6901 0692887 | .1869 | .0773812| .5917
89 | .0851517 | .2997 | .9128540 | .6904 9691350 | .1866 | .0777717| 5915
0.190 | 0.0853511 | 9.3000 | 9.9123635 | 9.6907 9.9689813 | 9.1863 | 0.0781619| 9.5912
191 | .0855507 | .8003 | .9118727 | .6910 9688278 | .1861| .0785520| .5910
192 | .0857505| .3007 | .9118816 | .6913 9686743 | .1858 | .0789418| .5908
193 | .0859504 | .3010 | .9108901 | .6916 9685210 | .1855| .0793315| .5906
194 | .0861505 | .3014 | .9108983 | .6919 .9683678 | .1853 | .0797209| .5903
0.195 | 0.0363507 | 9.3017 | 9.9099062 | 9.6922 9.9682146 | 9.1850 | 0.0801102| 9.5901
196 | .0365511 | .3020 | .9094138 | .6925 9680615 | .1847 | .0804992( .5899
197 | .0867516 | .3024| .9089210 | .6928 9679086 | .1845| .0808881| .5896
198 | .0369523 | .83027 | .9084278 | .6931 9677557 | .1842| .0812767  .5894
199 | .0871532| .3031| .9079343| .6934 9676029 | .1839| .0816651 | .5892
200 | .0878542| .3034| .9074405| .6937 9674502 | .1837 | .0820533| .5889




26 TABLE Ia.
ELLIPSE. HYPERBOLA.
A Log E,, Log diff. Log E, Log diff. Log E,, Log diff. Log E,.. Log Diff.
0.200 | 0.0878542 | 9.3084 | 9.9074405 | 9.6937 9.9674502 | 9.1837 | 0.0820533 | 9.5889
201 | .0875554| .3037 | .9069463 | .6940 9672976 | .1834| .0824413| .5887
202 | 0877567 | .3041| .9064518| .6943 9671451 | .1831| - .08282911 .5885
203 | .0879582 | .3044| .9059569 | .6946 9669927 | .1829 | .0832166| .5882
204 | .0381598 | .3047 | .9054617 | .6949 9668404 | .1826| .0836040| .5880
0.205 | 0.0383616 | 9.3051 | 9.9049662 | 9.6952 9.9666882 | 9.1823 | 0.0839911 | 9.5878
206 | .0385635 | .3054| .9044703 | .6955 9665361 | .1821| .0843781| .5876
2207 | .0887656 | .3058 | .9039741| .6958 9663841 | .1818| .0847649| .5873
208 | .0389679 | .3061 | .9034775| .6961 9662321 | .1815| .0851514| .5871
209 | .0891703 | .3065 | .9029806 | .6964 9660803 | .1818 | .0855377| .5869
0.210 | 0.0898729 | 9.3068 | 9.9024833 | 9.6967 9.9659285 | 9.1810 | 0.0859239 | 9.5867
211 | 0395757 | .8071| .9019857 | .6970 9657768 | .1808 | .0863099 | .5864
212 | .0897786 | .3075| .9014877 | .6974 9656253 | .1805 | .0866956| .5862
213 | .0899817 | .3078| .9009894 | .6977 9654738 | .1802 | .0870812| .5860
214 | .0401849 | .3081| .9004907 [ .6980 9653224 | .1800 | .0874665| .5858
0.215 | 0.0403883 | 9.3085 | 9.8999917 | 9.6983 9.9651711 | 9.1797 | 0.0878517 | 9.5855 |
216 | .0405918 | .3088 | .8994924 | .6986 9650199 [ .1795 | .0882867 | .5853
217 | .0407955| .3092| .8989927 | .6989 9648687 | .1792 | .0886214| .5851 |
218 | .0409994 | .8095| .8984927 | .6992 9647177 | .1789 | .0890060| .5849 |
219 | .0412034| .3099 | .8979923| .6995 9645667 | .1787 | .0893903| .5846 |
0.220 | 0.0414076 | 9.3102 | 9.8974915 | 9.6998 9.9644159 | 9.1784 | 0.0897745| 9.5844
221 | .0416120| .3106| .8969904| .7001 9642651 | .1782| .0901585| .5842
222 | .0418165| .3109| .8964889| .7004 9641145 | .1779| .0905422| .5839 |
2231 .0420211| .3112| .8959881| .7007 9639639 | .1776| .0909258| .5837 |
224 | .0422260| .3116| .8954849 | .7010 0638134 | .1774| .0913091| .5835
0.225 | 0.0424310 | 9.3119 | 9.8949824 | 9.7013 9.9636630 | 9.1771 | 0.0916923| 9.5833
226 | .0426362 | .3123 | .8944795| .7016 9635127 | .1768| .0920753| .5830
227 | .0428415 | .3127 | .8939762| .7019 9633625 | .1766 | .0924580| .5828
228 | .0480470 | .3130 | .8934726| .7022 9632123 | .1763| .0928405| .5826
229 | .0482527 | .3133| .8929687| .7025 9630628 | 1760 | .0932229| .5823
0.230 | 0.0484585 | 9.3137 | 9.8924644 | 9.7028 9.9629124 | 9.1758 | 0.0936050 | 9.5821
231 | .0436645| .3140 | .8919597 | .7031 9627625 | .1755| .0939870| .5819
232 | .0438707 | .3144| .8914547 | .7035 9626128 | .1752 | .0943687 | .5817
233 | .0440770 | .3147 | .8909493 | .7038 9624631 | .1750 | .0947503| .5814
234 | .0442835| .3151| .8904436| .7041 9623136 | .1747 | .0951317| .5812
0.235 | 0.0444902 | 9.8154 | 9.8899375 | 9.7044 9.9621641 | 9.1745| 0.0955128 | 9.5810
236 | .0446970| .3158| .8894310| .7047 9620147 | 1742 | .0958938 | .5808
237 | .0449040 | .3161| .8889242| .7050 9618654 | .1740| .0962745| .5806
238 | .0451111| .3165| .8884170| .7053 9617162 | .1737| .0966551| .5803
239 | .0453184| .3168| .8879094| .7056 9615670 | .1784| .0970855| .5801
240 | .0455259 | .3171| .8874015| .7059 9614180 | .1782| .0974157 | .5799




TABLE Ia.

27

0.240
241
242
243
244

0.245
240
247
.248
.249

0.250
251
252
203
254

0.255
256
257
258
259

0.260
261
262
263
264

0.265

277
278

27
.280) ‘

ELLIPSE.

—=

HYPERBOLA.

Log E, Log diff. Log E, Log diff. Log E, Log diff. LogE,. Log Diff.
0.0453259 | 9.3171 | 9.8874015 | 9.7059 9.9614180 | 9.1732 | 0.0974157 [ 9.5799
0457350 S175 8368932 7063 .9612690 1729 0977957 D797
0459413 S179 88638406 7066 0611202 1727 0981755 5794
0461493 .3182 88587506 7069 L6097 14 1724 0985551 5792
0465575 3186 8853663 7072 90608227 1722 .0989345 5790
0.0465653 | 9.3189 | 9.8848566 | 9.7075 9.9606741  9.1719 | 0.0993137 | 9.5788
0467743 3193 8843465 7078 9605256 A716 0996927 0786
0469830 3196 8833360 7031 9603771 1714 .1000716 5783
O471918 .3200 3833252 7084 .9602288 1711 .1004502 5781
0474008 .3203 .8828140 7087 .9600805 1709 .1008287 D779
0.0476099 | 9.3207 | 9.8823025 | 9.7090 9.9599321 | 9.1706 | 0.1012069 | 9.5777
0478193 5210 .88179006 7094 9597843 1704 1015850 D775
04380288 5214 83127383 7097 9596363 .1701 .1019628 D772
04825335 3217 8307657 7100 .959488-1 .1698 .1023405 H770
0484483 3221 8802526 7103 19593406 1696 .1027180 5768
0.0486583 | 9.3224 | 9.8797392 | 9.7106 9.9591929 | 9.1693 | 0.1030953 | 9.5766
0483685 5226 8792254 L7109 .9590453 .1691 .1034724 5763
0490783 3231 8787113 7112 .9H88977 .1688 .1038493 5761
0492593 5235 8781968 7116 9587502 .1635 .1042259 D759
0495000 32383 8776819 7119 9586029 .1683 .1046024 5756
0.0497109 | 9.3242 | 9.87716G6 | 9.7122 9.9584556 | 9.1680 | 0.1049787 | 9.5754
.0499219 5245 876610 125 .9583084 L1678 1053548 D752
050133 3249 | 8761350 | 71238 9581613 | .1675| .1057308 ' .5750
0503445 3252 8756186 7131 9580143 1673 1061065 D748
.0505560 3256 8751019 T134 .9578673 1670 1064821 1 .5746
0.0507677 | 9.3260 | 9.8745848 | 9.7137 9.9577205 | 9.1668 | 0.1068574 | 9.5743
0509796 .3263 B740673 L7141 .9575737 1665 1072326 5741
0511917 3267 8735495 7144 .9574270 1662 1076076 5739
0514040 .3270 3730312 147 9572804 .1660 .1079824 5737
0516164 3274 8725126 7150 .9571339 1657 .1083570 5735
0.0518290 | 9.3277 | 9.8719936 | 9.7153 9.9569875 | 9.1655 [ 0.1087314 | 9.5733
0520418 .3281 8714742 7157 .0568412 1652 1091056 5730
.0522547 .3284 8709544 7160 19566949 .1650 1094797 5728
0524678 .3288 8704343 7163 0565487 .1647 1098536 5726
0526811 3292 8699137 7166 .9564027 10644 1102272 5724
0.0528946 | 9.3295 | 9.8693928 | 9.7169 9.9562567 | 9.1642 | 0.1106007 | 9.5722
0531082 3299 8688715 7173 29561108 .1639 1109740 5719
0533220 .3303 .8683498 7176 09559650 1637 1113471 B5717
.0535360 .3306 8678278 7179 9558193 .1634 1117200 5715
0537502 .3310 8673053 L7182 .0556736 1632 1120927 H713
0539646 3313 8667825 ‘ 7185 9555281 1629 1124652 H710




28 TABLE. Ia.
lt ELLIPSE. HYPERBOLA.
A LogE, | Log diff ; Log E, Log diff. Log Eq Log diff. Log Er. | Log Diff.
f |
0.280 | 0.0539646 | 9.33138 | 9.8667825 | 9.7185 9.9555281 | 9.1629 | 0.1124652 | 9.5710
281 0541791 | 3317 | .8662593 | .7188 9553826 | .1627 1128375 5708
282 0543939 | .3320 | .8657357 | .7192 9552872 | .1624| .1182097 | .5707
283 .0546087 | .3324 | .8652117 | .7195 9550919 [ .1622 | .1135817 5704
284 0548238 | .3327 | .8646873| .7198 9549467 | .1619| .1139534 | .5701
0.285 | 0.0550390 | 9.3331 9.8641‘625 9.7201 9.9548015 | 9.1617 | 0.1143250 [ 9.5699
.286 0552546 | .3335| .8636374| .7204 9546564 | .1614 | .1146964 | .5698
287 0554700 .3338| .8631118 | .7208 19545115 .1612| .1150677 5695
.288 0556858 | .3842| .8625859 | .7211 9548666 | .1609 | .1154387 | .5693
.289 0559018 | .38345| .8620596 .72}4 9542218 | .1606| .1158096 | .5691
0.290 | 0.0561179 | 9.838349 | 9.8615329 | 9.7217 9.9540771 | 9.1604 | 0.1161803 | 9.5689
291 0563342 | .3353| .8610058 | .7221 9589825 | .1601 | .1165508 | .5687
292 0565507 | .8356 | .8604783 | .7224 9537879 | .1599 | .1169211 5685
293 0567674 | .3360| .8599504 | .7227 9536485 | .1596 | .1172913 | .5683
294 0569842  .3364 | .8594221| .7230 9534991 1594 | 1176612 .H680
0.295 | 0.0572013 | 9.3367 | 9.8588935 | 9.7233 9.9533548 | 9.1591 | 0.1180310 | 9.5678
.296 0574185 | .3371 | .8583644  .7236 9582106 .1589 | .1184006! .5675
297 0576359 | .8375| .8578349 7240 9580665 [ .1586| .1187699 | .5673
.298 0578535 .3379 | .8573051 7243 9529224 .1584! .1191391 5671
299 0580713 | .3383 8567748 7246 9527785 1581 1195081 i 5668
300 0582893 | .3387 | .8562442 | .7249 9526346 | .1578 | 0.1198768 | 9.5666
! ki

e

—




TABLE IIa. 29
%o. Yy Log A;g. Log As. Log As.
0 6 ¢ 0.00 +38.7005216 —0.00000 —9.695
2 2 47 11.83 3.7000079 0.47160 9.691
1 584 0.00 3.6984710 0.76930 9.681
6 8 20 1.19 5.6959236 0.93987 9.664
8 11 4 52.82 3.6923863 1.05702 9.641
10 13 48 13.81 +3.6878872 —1.14480 —9.610
12 16 29 42.39 3.6824613 1.21171 9.571
14 19 9 1.36 3.6761493 1.26497 9.525
16 21 45 53.28 3.6689972 1.30744 9.470
18 24 20 2.89 3.6610547 1.34185 9.405
20 26 51 17.15 +3.6523748 —1.36825 —9.329
22 29 19 24.78 3.6430121 1.38929 9.239
24 31 44 16.52 3.6330224 1.40535 9.130
26 84 5 44.97 3.6224621 1.41714 8.994
28 36 23 44.51 3.6113863 1.42520 8.814
30 38 88 11.23 +-8.5998496 —1.43008 —8.538
32 40 49 2.74 3.5879044 1.43201 —7.847
34 42 56 18.02 3.5756011 1.43149 +48.237
36 44 59 57.33 3.5620877 1.42877 8.585
38 47 0 2.00 3.5501091 1.42410 8.753
40 48 56 34.33 13.5370077 —1.41772 +8.857
42 50 49 37.39 3.5237227 1.40983 8.928
44 52 39 14.95 3.5102905 1.40060 8.978
46 54 25 81.32 3.4967444 1.39020 9.013
48 56 8 31.24 3.4831149 1.37878 9.038
50 57 48 19.82 +8.4694297 —1.36645 +9.056
52 59 25 2.41 3.4557140 1.35333 9.067
54 60 58 44.53 3.4419903 1.33952 9.073
56 62 29 31.82 3.4282790 1.32512 9.076
58 63 57 29.99 3.4145981 1.1021 9.075 |
60 65 22 44.74 —+-3.4009637 —1.29486 +49.071
64 68 5 26.60 3.3738900 1.26308 9.056
68 70 38 21.86 3.3471520 1.23025 9.035
72 73 2 1317 3.3208214 1.19672 9.008
76 75 17 40.91 3.2949510 1.16277 8.978
80 77 25 22.94 +38.2695785 —1.12863 +48.945
84 79 25 54.44 8.2447291 1.09447 8.910
88 81 19 47.97 3.2201185 1.06044 8.874
92 83 7 83.52 3.1966546 1.02665 8.837
96 84 49 38.62 3.1734393 0.99319 8.798
100 86 26 28.52 +-8.1507694 —0.96012 +8.760
104 87 58 26.32 3.1286388 0.92749 8.721
108 89 25 53.18 31070382 0.89534 8.682
112 90 49 8.43 3.0859565 0.86370 8.643
116 92 8 29.76 3.0653511 0.83257 8.605




TABLE Ila.

. (7 . Log A; - Log Az- Log Ag-
116 %2 § 2076 +38.0653811 —0.83257 +8.605
120 93 24 13.33 3.0452984 0.80199 8.567
124 94 36 33.98 3.0256943 0.77194 8.529
128 95 45 45.25 8.0065544 0.74244 8.491
182 96 51 59.60 2.9878638 0.71347 8.454
136 97 55 28.43 +2.9696079 —0.68505 +8.418
140 98 56 22.24 2.9517723 0.63716 8.382
144 99 54 50.68 2.9343427 0.62979 8.346
148 100 51  2.62 2.9173052 0.60293 8.311
152 101 45 6.25 2.9006462 0.57658 8.276
156 102 37 9.12 +2.8843526 —0.55071 +8.242
160 103 27 18.23 2.8684116 0.52534 8.209
164 104 15 40.03 2.8528110 0.50043 8.176
168 105 2 20.49 2.8375388 0.47598 8.143
172 105 47 25.18 2.8225838 0.45198 8.111
176 106 30 59.28 +2.8079349 —0.42841 —8.080
180 107 13 745 2.7935817 0.40526 8.049
184 107 53 54.28 2.7795141 0.38253 8.018
188 108 33 23.87 2.7657223 0.36020 7.988
192 109 11 40.10 2.7521971 0.33826 7.959
196 109 48 46.58 +2.7389297 —0.31670 +7.930
200 110 24 46.69 2.7259114 0.29551 7.901
210 111 50 16.87 2.6944032 0.24407 7.831
290 113 9 55.67 2.6642838 0.19472 7.764
230 114 24 20.89 2.6354467 0.14732 7.700
240 115 34 4.97 +2.6077961 —0.10174 +7.687
250 116 39 85.94 2.5812455 0.05786 7.577
260 117 41 1816 2.5557170 0.01556 7.519
270 118 39 32.86 2.5311401 9.97476 7.463
280 119 34 38.67 2.5074507 9.93535 7.409
290 120 26 51.98 +2.4845910 —9.89725 +47.356
300 121 16 27.30 2.4625078 9.86038 7.305
310 122 3 87.49 2.4411532 9.82467 7.256
320 122 48 3401 2.4204831 9.79006 7.208
330 123 31 27.11 2.4004569 9.75648 7.161
340 124 12 25.97 +2.3810879 —9.72387 +7.116
350 124 51 38.87 2.3621918 9.69219 7.072
360 125 29 13.25 2.3438873 9.66139 7.029
370 126 5 15.87 2.3260956 9.63142 6.987
380 126 39 52.85 2.3087898 9.60224 6.947
390 127 13 9.75 +2.2919450 —9.57881 +6.907
400 127 45 11.66 2.2755384 9.54610 6.868
420 128 45 48.63 2.2439555 9.49269 6.794
440 129 42 16.43 2.2138871 9.44176 6.723
460 180 35 2.66 2.1851991 9.39310 6.655




TABLE IIa.
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= ——— ——— ——~
Ty V. Log A;- Log Az. Log As.
460 130 35 2.66 +2.1851991 —9.39310 +96.655
480 131 24 30.82 2.1577741 9.34654 6.589
500 132 11 1.09 2.1315086 9.30188 6.527
520 132 54 50.84 2.1063114 9.25901 6.467
540 133 36 15.19 2.0821011 9.21777 6.409
560 134 15 27.33 +2.0588051 —9.17805 +496.353
580 134 52 38.80 2.0363588 9.13976 6.299
600 135 27 59.81 2.0147037 9.10278 6.247
640 136 33 43.52 1.9735615 9.03246 6.148
680 137 33 45.39 1.9350140 8.96649 6.055
720 138 28 48.27 +1.8987593 —8.90438 495968
760 139 19 33.8 1.8645446 8.84571 5.885
800 140 6 3457 1.8321564 8.79012 5.807
850 141 0 45.22 1.7939648 8.72451 5.714
900 141 50 30.05 1.7580440 8.66275 5.627
950 142 36 2437 +1.7241428 —8.60441 +95.544
1000 143 18 57.20 1.6920492 8.54915 5.466
1050 143 58 32.66 1.6615826 8.49665 5.392
1100 144 35 30.95 1.6325881 8.44666 5.321
1150 145 10 9.20 1.6049315 8.39896 5.254
1200 145 42 41.98 +1.5784963 —8.35333 ~+-95.189
1250 146 13 21.82 1.5531804 8.30962 5127
1300 146 42 19.55 1.5288937 8.26767 5.068
1350 147 9 44.57 1.5055568 8.22735 5.011
1400 147 35 45.11 1.4830989 8.18853 4.956
1450 148 0 28.40 +1.4614567 —8.15110 +94.903
1500 148 24 0.83 1.4405738 8.11498 1.851
1600 149 7 55.10 1.4008865 8.04631 4.754
1700 149 48 6.25 1.3636849 7.98190 4.663
1800 150 25 5.10 1.3286785 7.92126 4.576
1900 150 59 16.75 +1.2056243 —7.86398 +94.495
2000 151 31 189 1.2643177 7.80971 4.418
2100 152 0 37.76 1.2345845 7.75814 1345
2200 152 28 18.85 1.2062750 7.70903 4.275
2300 152 54 17.45 1.1792601 7.66216 4.208
2400 153 18 44.05 +1.1534272 —7.61732 +94.145
2500 153 41 47.70 1.1286779 7.57435 4.084
2600 154 3 36.21 1.1049254 7.53310 4.025
2700 154 24 16.39 1.0820930 7.49344 3.969 |
2800 154 43 54.21 1.0601125 7.45526 3.914 !
2900 155 2 34.93 +1.0389230 —7.41844 +93.862
3000 155 20 23.19 1.0184698 7.38289 3.811
3200 155 53 38.39 0.9795803 7.31529 3.715
3400 156 24 7.80 0.9431040 7.25186 3.625
3600 156 52 14.00 0.9087603 7.19213 3.540




32 TABLE Ilg.

| %o V9. Log A;- Log Ag. Log As.
3600 156 52 14.00 +4-0.9087603 —97.19213 +4-93.540
3800 157 18 15.42 0.8763145 713568 3.459
4000 157 42 27.29 0.8455688 7.08218 3.383
4200 158 5 233 0.8163545 7.03133 3.311
4400 158 26 11.25 0.7885269 6.98289 3.242
4600 158 46 3.15 +-0.7619607 —96.93664 +-93.176
4800 159 4 4583 0.7365469 6.89238 3.113
5000 159 22 25.99 0.7121902 6.84996 3.053
5200 159 39 9.45 0.6888063 6.80923 2.995
5600 160 10  6.00 0.6446674 6.73234 2.885
6000 160 38 9.17 +4-0.6036264 —96.66082 492.783
6400 161 3 4536 0.5652780 6.59398 2.688
6800 161 27 15.57 0.5292915 6.53125 2.599
7200 161 48 56.78 0.4953934 6.47215 2.514
7600 162 9 289 0.4633554 6.41629 2.435

| eooo 162 27 45.39 +40.4329843 —96.36332 +92.359
8400 162 45 13.90 0.4041157 6.31297 2,987
8800 163 1 36.52 0.3766081 6.26499 2.219
9200 163 17 0.16 0.3503393 6.21916 2.154
9600 163 31 30.72 0.3252029 6.17531 2,091
10000 163 45 13.32 +4-0.3011054 —96.13326 +92.031
10500 164 1 20.80 0.2723199 6.08303 1.959
11000 164 16 27.66 0.2448894 6.03516 1.891
11500 164 30 40.23 0.2186921 5.98944 1.826
12000 164 44 3.94 0.1936223 594568 1.764
13000 165 8 42.90 +-0.1465042 —95.86343 +491.646
14000 165 30 55.26 0.1029147 5.78733 1.538
15000 165 51 4.63 0.0623627 5.71652 1.437
16000 166 9 20.58 0.0244528 5.65032 1.342
17000 166 26 24.88 9.9888624 5.58817 1.254
18000 166 42 2.53 499553241 —95.52959 491170
19200 166 59 18.90 9.9174751 5.46348 1.076
20400 167 15 11.32 9.8819393 5.40141 90.987
21600 167 29 51.00 9.8484507 5.34290 90.904
22800 167 43 27.11 9.8167866 5.28758 90.825
24000 167 56 17.28 -+9.7867585 —95.23512 +490.750
26000 168 15 26.77 9.7399215 515328 90.633
28000 168 32 51.95 9.6965794 5.07755 90.525
30000 168 48 41.17 9.6562474 5.00706 90.424
32000 169 3 884 9.6185347 4.94116 90.330
34000 169 16 26.46 +9.5831221 —94.87926 +490.242
36000 169 28 43.36 9.5497452 4.82093 90.159
38000 169 40 7.19 9.5181828 4.76576 90.080
40000 169 50 44.28 9.4882481 471343 90.005

|




TABLE IIla.
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7 Log . Log Diff. 7 Log u. Log Diff. 7 Log u.
0.00 | 0.00000 00 0.30 0.00167 33 3.0594 0.60 0.00735 26
.01 .00000 18 1.556 81 00179 01 0754 .61 00763 61
.02 .00000 72 1.857 32 .00191 12 .0910 .62 00792 74
0.03 | 0.00001 62 2.0854 0.33 0.00203 67 3.1062 0.63 0.00822 68
.04 .00002 89 1614 .34 00216 66 211 .64 00853 45
.05 .00004 52 .2589 35 .00230 10 1356 .65 .00885 08
0.06 .00006 52 2.3385 0.36 0.00243 99 3.1498 0.66 0.00917 59
.07 .00008 88 4057 37 .00258 34 1638 .67 00951 03
.08 .00011 61 4639 .38 .00273 15 1774 .68 .00985 42
0.09 0.00014 70 2.5152 0.39 0.00288 43 3.1911 0.69 0.01020 81
.10 .00018 16 5617 .40 .00304 20 2044 .70 01057 23
A1 .00021 99 .6031 41 .00320 45 2175 71 .01094 73
0.12 | 0.00026 18 2.6410 0.42 0.00337 20 3.2304 0.72 0.01133 35
13 .00030 74 6767 43 00354 45 .2433 73 01173 15
14 .00035 68 7097 44 00372 22 2557 74 01214 19
0.15 | 0.00040 99 2.7404 0.45 0.00390 50 3.2681 0.75 0.01256 52
.16 .00046 68 7694 .46 .00409 31 .2807 76 .01300 22
17 00052 75 L7966 47 .00428 67 .2930 N .01345 36
0.18 | 0.00059 20 2.8222 0.48 0.00448 58 3.3053 0.78 0.01392 02
.19 .00066 03 .8466 .49 00469 06 3173 .79 .01440 31
.20 00073 25 8701 .50 .00490 11 .3293 .80 .01490 32
0.21 0.00080 86 2.8924 0.51 0.00511 75 3.3411 0.81 0.01542 18
22 .00088 86 9135 D2 00533 98 3529 .32 .01596 03
.23 .00097 25 .9340 53 00556 83 3647 .83 01652 02
0.00106 04 2.9538 0.54 0.00580 30 3.3764 0.84 0.01710 33
00115 23 9729 DD .00604 41 3882 .85 01771 19
.00124 83 9914 56 .00629 19 .4000 .86 .01834 86
.00134 84 3.0090 0.57 0.00654 65 3.4117 0.87 0.01901 65
00145 25 .0261 .08 .00680 80 4233 .88 01971 95
00156 08 .0430 59 .00707 GG 4350 .89 .02046 29
0.00167 33 3.0594 0.60 0.00735 26 3.4468 0.90 0.02125 29
.00179 01 0754 .61 .00763 61 4585 91 .02209 92
.00191 12 .0910 .62 00792 74 4703 92 .02301 60

Log Diff.

3.4468
4585
4703

3.4822
4941
5061

8.5182
5304
5427

3.5551
H677
2805

3.5934
.6066
.6200

3.6336
6176
.6618

3.6765
6915
7070

3.7231
7397
7570

3.7751
7942
8144

3.8360
.8593
.8816

3.9128
9452

(&7



34 TABLE [Va.
- — S ~ e
msinz* —sin (z — ¢). m and ¢ positive.
s | ¥ = & 2 &
q 2 g m’ m’ m m’ m’ m’ m m”
o o P} o ‘ o / 0. 1/ o 7 o U o / o .
1| 4297699999 1 0| 120 120 | 89 40 | 89 40 | 177 37| 180 55| 181 O
2| 3.3950 | 9.9996| 2 0| 2 40 2 40 | 89 20 | 89 20 | 175 14| 181 51| 182 0
3] 28675] 9.9992] 3 O 4 0 4 0|8 0|8 0 [172 52| 182 46| 183 0 }f
41 2.4938| 999861 4 0| 5 20 520 | 88 40 | 88 40 | 170 28| 183 42| 184 0
5| 22044 99978 5 0| 6 41 641 | 8819 | 8819 [ 168 5] 184 37({185 0
6 1.9686 | 9.9968| 6 O 8 1 8 1 |87 59 | 8759 [165 41| 185 32| 186 0 W
71 1.7698 | 9.9957| 7 1 9 22 9 22 | 87 38 | 87 38 | 163 18| 186 28| 186 59
8] 1.5981]9.9943| 8 1| 10 42 | 10 42 | 87 18 | 87 18 | 160 52| 187 23| 187 59
9] 1.4473 (999281 9 2|12 3 | 12 3 | 86 57 | 86 57 | 158 28| 188 18| 188 58
10| 1.3180| 9.9911 | 10 8 | 13 25 | 13 25 | 86 35 | 86 35 | 156 3| 189 13| 189 57
11| 1.1922| 9.9892 | 11 5 | 14 46 | 14 46 | 86 14 | 86 14 | 153 37] 190 9| 190 56
12| 1.0824 | 9.9871| 12 7|16 8 ] 16 8 [ 85 52 | 85 52 | 151 10| 191 4| 191 54
| 13| 0.9821|9.9848| 138 9| 17 31 | 17 31 | 85 20 | 85 29 | 148 43| 191 59| 192 52
| 14| 0.8898 | 9.9823 | 14 12 | 18 53 | 18 53 | 85 7 | 85 7 | 146 14§ 192 54 193 49
15 0.8045 | 9.9796 | 15 16 | 20 17 | 20 17 | 84 43 | 84 43 | 143 45| 193 49| 194 46°|
16| 0.7254 | 9.9767 { 16 20 | 21 40 | 21 40 | 84 20 | 84 20 | 141 14| 194 44| 195 42 |
171 0.6518 | 9.9736| 17 26 | 23 5 | 23 5 | 83 55 | 83 55 | 138 42| 195 39| 196 38
18] 0.5830 | 9.9702 | 18 33 | 24 30 | 24 30 | 83 30 | 83 30 | 136 9| 196 33| 197 33
19 0.5185 | 9.9667 | 19 41| 25 56 [ 25 56 | 83 4 | 83 4 |133 34| 197 28| 198 28 |
20| 0.4581 | 9.9629 | 20 51 | 27 23 | 27 23 | 82 37 | 82 37 | 130 58| 198 23| 199 22
21| 0.4018 | 9.9588 | 22 2 | 28 50 | 28 50 | 82 10 | 82 10 | 128 19| 199 17| 200 15
221 0.3479 | 9.9545| 23 15 | 830 19 | 30 19 | 81 41 | 81 41 | 125 38| 200 11| 201 8
23| 0.2976 | 9.9499 ] 24 31 | 31 49 | 31 49 | 81 11 | 81 11 | 122 55| 201 6] 202 0
24| 0.2501 | 9.9451 | 25 49 | 33 20 | 33 20 | 80 40 | 80 40 | 120 9| 202 0| 202 51
25 0.2058 | 9.9400 | 27 10 | 84 53 | 84 53 | 80 7 | 80 7 | 117 20| 202 54| 203 42
26| 0.1631 | 9.9345 | 28 35 | 36 28 | 36 28 | 79 32 | 79 32 | 114 27| 203 47| 204 32
271 0.1232(9.9287[ 30 4|38 5 |38 5 |78 55 | 78 55 | 111 30} 204 41| 205 22
281 0.0857 | 9.9226 | 81 38 | 89 45 | 39 45 | 78 15 | 78 15 | 108 27| 205 35| 206 11
29 0.0503 | 9.9161 | 33 18 | 41 27 | 41 27 | 77 83 | 77 33 | 105 19| 206 28| 207 0
30| 0.0170 | 9.9092| 85 5 | 43 18 | 43 13 | 76 47 | 76 47 | 102 3| 207 21| 207 48
81199857 | 9.9019 | 87 1|45 4 | 45 4 | 7556 | 75 56 | 98 37| 208 14| 208 36
32199565 9.8940| 39 9 | 47 1 | 47 1 | 7459 | 7459 | 95 0] 209 6| 209 24
331 9.9292 | 9.8856| 41 33 | 49 6 | 49 6 | 73 54 | 73 54 91 6] 209 58| 210 11
341 9.9040 | 9.8765 ) 44 21 | 51 22 | 51 22 | 72 38 | 72 38 86 49| 210 50| 210 58
351 9.8808 | 9.8665 | 47 47 | 53 58 | 53 58 | 71" 2 | 71 2 81 53| 211 41| 211 46
36 | 9.8600 | 9.8555 | 52 81 | 57 18 | 57 13 | 6847 | 68 47 75 40| 212 32/ 212 33 ||
l ¢ | 9.8443 | 9.8443| 63 26 ! 63 26 | 63 26 | 63 26 | 63 26 63 261 213 151 213 15
¢ = 36° 52’ 11.64" sin ¢/ = 0.6




TABLE
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m sin 2* = sin (z 4 ¢).

m and ¢ positive,

‘.é §é 2 P 21 27

q éo .i°° m' | m" m m m mll mll m

o o o o o 4 o o 4 o s o
1] 4.2976 | 9.9999 2 23 90 20 90 20| 178 40| 178 40 179 0] 359 0 359 5
21 3.3950 | 9.9996 4 46 90 40 90 40| 177 201 177 20 178 0] 358 0 358 9
31 2.8675 | 9.9992 7 8 91 0 91 0| 175 0| 175 0 177 0] 357 0 357 14
41 2.4938 | 9.9986 9 32 91 20 91 20| 174 40| 174 40 176 0] 356 0 356 18
51 2.2044 | 99978 | 11 55 91 41 91 41| 173 19] 173 19 175 0] 355 0 355 23
6] 1.9686 | 9.9968 | 14 19 92 1 92 1| 171 59| 171 59 174 0] 854 0 354 28
71 1.7698 | 9.9957 16 42 92 22 02 22| 170 38| 170 38 ' 172 59| 353 1| 353 32
8] 1.5981 | 9.9943 | 19 7 92 42 92 42 169 18] 169 18 171 59| 852 1 352 37
9 1.4473 | 9.9923 | 21 32 98 3 98 3| 167 57| 167 57 170 58| 351 2 351 42
10| 1.8130 | 9.9911 23 57 93 25 093 25| 166 35] 166 35 169 57| 350 3 350 47
11] 1.1922 ] 9.9892 | 26 23| 93 46 93 46| 165 14| 165 14 163 55| 349 4 349 51
12| 1.0824 | 9.9871 28 501 94 8 94 8| 163 52| 163 52| 167 54| 34 6' 348 56
131 0.9821 | 9.9848 | 31 17 94 31 94 31| 162 29] 162 29| 166 51 | 847 8 348 1
14| 0.8898 | 9.9323 | 33 46 94 53 04 531 161 7] 161 7] 165 48| 346 11 347 6
15| 0.8045 | 9.9796 | 36 15 95 17 95 17 | 159 43| 159 43| 164 44| 345 14 346 11
16| 0.7254 | 9.9767 | 33 46| 95 40 95 40| 158 20| 158 20| 163 40| 344 18 3845 16
17 ] 0.6518 | 9.9736 | 41 18 96 5 96 5| 156 55| 156 55| 162 34 | 343 22 344 21 |
18| 0.5830 | 9.9702| 43 51 96 30 96 30| 155 30| 155 30| 161 27| 842 27, 843 27 |
191 0.5185 | 9.9667 | 46 26 96 56 96 56| 154 4] 154 4| 160 19| 341 32| 342 32
20] 0.4581 | 9.9629 | 49 2 97 23 97 231 152 87| 152 37| 159 9| 840 38| 341 37
21| 0.4013 | 9.9583 | 51 41 97 50 97 50| 151 10| 151 10| 157 58 | 339 45| 340 43
22| 0.3479 ] 9.9545 | 54 22 98 19 98 19| 149 41} 149 41| 156 45| 338 52| 339 49
23] 0.2976  9.9499 | o7 5 98 49 98 49| 148 11] 148 11| 155 29] 338 0| 338 54
24| 0.2501 | 9.9451 99 5l| 99 20 09 20| 146 40| 146 40| 154 11| 887 9| 333 0
251 0.2053 | 9.9400 | 62 40 99 53 99 53| 145 7| 145 7| 152 50| 336 18 337 6
26| 0.1631  9.9345] 65 33 100 23| 100 28| 143 32| 143 32| 151 25| 335 28 336 13
27| 0.1232 | 9.9237 68 30 101 5| 101 5| 141 55| 141 55| 149 56| 334 38 335 19
28| 0.0857 | 9.9226 | 71 33 101 45| 101 45| 140 15| 140 15| 148 22| 333 49 334 25
291 0.0503 | 9.9161 74 41 102 27 102 27 | 138 33| 138 33| 146 42| 333 0| 333 32
301 0.0170 | 9.9092 | 77 57 103 13] 103 13| 186 46| 136 46| 144 55| 332 12 332 39
311 9.9857  9.90191 81 23 104 4] 104 4 134 56| 134 56 142 59| 331 24 331 46
321 9.9565 9.8040| 85 0 105 1| 105 1 1382 59| 182 59 140 51} 330 36 330 54
331 9.9292 9.8856 ] 83 54 106 6] 106 6 130 54| 130 54 138 27| 329 49 330 2
34 9.9040 9.8765] 93 11 107 22| 107 22 128 38| 128 38| 135 88| 329 2| 329 10
351 9.8808 9.8665| 98 7 108 58| 108 58 126 2| 126 2 132 13] 328 14 ' 328 19
36| 9.8600 9.8555 § 104 20 111 13| 111 13| 122 47| 122 47 | 127 29| 327 27 327 28
(]' 9.8443  9.8443 1116 34 | 116 341 116 34‘ 116 34' 116 34| 116 34| 326 45 326 45

¢ = 386° 52" 11.64" sin g’ = 0.6




36 TABLE Va.

X. A. Diff. B. Diff. B’.
0 — .00 —9.60 —&000 —11 —6.000 —84
1 9.00 9.00 0.011 11 0.034
2 17.99 8.98 0.023 12° 0.067
3 26.95 8.95 0.034 11 0.101
4 35.88 8.91 0.045 11 0.134
5 — 4477 —8.87 —0.057 —12 —0.167 —33
6 53.61 8.80 0.068 11 0.200
7 62.37 8.73 0.080 12 0.232
8 71.07 8.65 0.092 12 0.263
9 79.67 8.56 0.104 12 0.294
10 — 88.18 —8.46 —0.117 —18 —0.324 —30
11 96.58 8.34 0.129 12 0.353
12 104.86 8.22 0.142 13 0.382
13 113.01 8.08 0.156 14 0.409
14 121.02 7.94 0.169 13 0.436
15 —198.88 —7.79 —0.183 am —0.461 —925
16 136.59 7.62 0.197 14 0.486
17 144.12 7.43 0.211 14 0.509
18 151.47 7.27 0.226 15 0.531
19 158.63 7.08 0.241 15 0.552
20 —165.60 —6.36 —0.256 —15 —0.571 —19
21 172.35 6.65 0.271 15 0.590
99 178.89 6.43 0.287 16 . 0.606
923 185.20 6.20 0.303 T 0.622
24 191.28 5.96 0.319 16 0.636
25 —197.11 511 —0.336 —17 —0.648 —12
26 202.69 5.45 0.352 16 0.659
927 208.00 5.18 0.369 17 0.668 9
28 213.05 491 0.386 17 0.676 7
29 217.81 4.63 0.403 17 0.682 6
30 —992.30 —434 —0.419 —16 —0.687 o=
31 926.48 404 0.436 17 0.690 3
32 930.37 3.74 0.453 17 0.692 1
33 933.95 3.42 0.470 17 0.692 0
34 23721 3.10 0.486 16 0.691 4-2

- 85 —240.15 —2.78 —0.502 —16 —0.688 44
36 242.76 2.45 0.518 16 0.683 5
37 245.04 2.11 0.534 16 0.677 6
38 £46.98 1.77 0.549 15 0.670 8
39 9248.57 1.41 0.564 15 0.661 9
40 —249.80 —1.06 —0.578
41 250.68 - 0.70 0.591
42 251.20 0.33 0.604




TABLE Va 37
X. A. Diff, B. Diff. B’. Diff.
° YZa '/ yZa
49 —251.20 — 0.33 —0.604 — 19 —0.627 +13
43 251.84 + 0.04 0.615 11 0.613 15
44 251.11 0.42 0.626 11 0.597 16
45 250.50 0.80 0.636 10 0.580 17
46 249.51 1.18 0.645 8 0.563 18
47 —248.13 + 1.57 —0.652 S —0.544 +19
48 246.36 1.96 0.659 6 0.524 20
49 244.20 2.36 0.664 4 0.503 21
50 241.64 2.76 0.667 3 0.482 22
51 238.68 3.16 0.669 1 0.459 23
592 —285.31 + 8.57 —0.669 + 1 —0.436 +23
53 231.54 3.98 0.667 2 0.412 24
54 227.35 4.39 0.664 4 0.387 25
55 2922.76 4.80 0.659 6 0.361 26
56 217.75 5.92 0.651 9 0.335 26 |
57 —212.32 + 5.64 —0.641 + 11 —0.309 —+26
58 206.47 6.06 0.629 13 0.282 27
59 200.20 6.47 0.615 15 0.255 27
60 198.52° 6.90 0.598 18 0.227 28
61 186.40 7.32 0.579 20 0.200 27 l
62 —178.87 + 7.74 —0.557 -+ 23 —0.172 428
63 170.91 8.17 0.532 26 0.144 28
64 162.52 8.60 0.504 29 0.116 28
65 153.70 9.03 0.474 32 0.088 28
66 144.46 9.45 0.440 35 0.061 27
67 —134.79 + 9.88 —0.403 -+ 38 —0.033 +28
68 124.69 10.31 0.363 41 —0.006 27
69 114.16 10.74 0.320 45 —+4-0.021 27
70 103.20 11.17 0.273 49 0.048 27
71 91.81 11.60 0.222 52 0.074 26
72 — 80.00 +12.03 —0.168 4+ 56 .099 425
73 67.75 12.16 0.110 59 0.124 25
74 55.07 12.89 0.049 63 0.148 24
75 41.97 18.32 0.016 67 0.172 24
76 28.43 18.72 0.086 71 0.195 22
77 — 14.47 +14.18 .159 + 75 4-0.216 +-21
78 0.07 14.61 0.237 80 0.237 21
79 + 14.76 15.04 0.319 84 0.257 20
80 30.02 15.47 0.405 88 0.276 19
81 45.70 15.89 0.496 93 0.294 18 ‘
82 -+ 61.80 +16.32 0.591 97 0.311 +16 |
83 78.34 16.76 0.691 102 0.326 15
84 95.32 17.19 0.795 106 0.340 13




38 TABLE Va.
X. A. Diff. B. -Diff. B, Diff.
o Y74 1/ Yl i
84 + 95.32 +17.19 + 0.795 4106 -+-0.340 + 13
85 112.72 17.62 0.904 111 0.352 12
86 130.56 18.06 1.018 116 0.363 10
87 148.84 18.49 1.137 121 0.373 9
88 167.54 18.92 1.261 126 0.381 7
89 -+ 186.69 +19.36 + 1.390 +132 -4-0.386 4+ 3
90 206.27 19.80 1.525 137 0.390 3
91 226.29 20.24 1.665 142 0.392 1
92 246.75 20.68 1.810 148 0.392 — 1
93 267.65 21.13 1.961 154 0.390 3
94 -+ 289.01 +4-21.58 + 2.118 +159 -+-0.385 — 6
95 310.82 22.03 2.280 165 0.378 8
96 333.08 22.49 2.449 171 0.368 11
97 355.80 22.95 2.623 178 0.355 14
98 378.99 23.42 . 2.805 184 0.339 17
99 -+ 402.65 +-23.89 -+ 2.992 +191 —+-0.320 —21
100 426.78 24.37 3.187 198 0.297 25
101 451.40 24.86 3.388 204 0.270 28
102 476.51 25.36 3.596 212 0.240 0 630
103 502.12 25.86 3.812 220 0.205 37
104 + 528.24 +-26.38 -+ 4.036 4227 4-0.165 —e
105 554.88 26.90 4.267 235 0.121 47
106 582.04 27.43 4.506 240 0.071 53
107 609.75 27.99 4.755 - 250 -+0.015 59
108 638.02 28.55 5.012 261 —0.048 66
109 -+ 666.85 —+29.11 + 5.278 4271 —0.117 — 72
110 696.27 29.72 5.554 ¢ 281 0.193 80
111 726.29 30.33 5.841 292 0.278 89
N2 756.93 30.96 6.138 302 0.371 98
113 788.21 31.61 6.446 314 0.474 108
114 820.15 32.28 6.766 326 —0.587 —119
115 + 852.77 +32.98 + 7.099 +339 0.712 131
116 886.11 33.70 7.445 353 0.849 144
117 920.18 34.45 8.806 368 1.000 158
118 955.02 35.22 8.181 383 1.166 174
119 -+ 990.65 -+36.05 -+ 8.572 +399 —1.348 —191 .
120 1027.13 36.91 8.980 417 1.548 209
121 1064.47 37.79 9.407 436 1.767 230
122 1102.71 38.73 9.853 456 2.009 253
123 1141.93 39.71 10.320 478 2.274 278
124 1182.14 40.74 10.809 501 —2.566 —306
125 +1223.41 +41.82 +11.323 +527 2.886 336
126 1265.78 42.96 11.863 554 3.239 l 370
. |




TABLE V. 39

X. A. Diff. B. Diff. B’. Diff. |
) /4 e 1/

126 —+1265.78 + 42.96 -+ 11.863 -+ 0.554 — 3.239 — 0370
127 1309.33 44.16 12.431 0.534 3.627 0.408
128 1354.11 45.43 13.031 0.616 4.055 0.449
129 1400.20 46.78 13.663 0.651 4.526 0.496
130 1447.67 48.20 14.333 0.690 5.047 0.547
131 +1496.61 4+ 49.72 4+ 15043 | 40781 | — 5621 | — 0605
132 1547.11 51.33 15.796 0.777 6.257 0.669
133 1599.23 53.04 16.597 0.827 6.960 0.741
134 1653.20 54.87 17.451 0.883 7.739 0.821
135 1709.02 56.82 18.363 0.945 8.603 0.912
136 —+1766.84 -+ 58.91 -+ 19.341 -+ 1.013 — 9.563 — 1.014
137 1826.84 61.15 20.389 1.088 10.631 1.128
138 1889.15 63.55 21.517 L171 11.820 1.258
139 1953.95 66.14 22.732 1.265 13.148 1.406
140 2021.43 68.92 24.047 1.371 14.633 1.573
141 —+2091.79 -+ 71.90 -+ 25.475 -+ 1.490 — 16.295 — 1.765
142 2165.28 75.15 27.027 1.623 18.163 1.984
143 2242.15 78.65 28.722 1.774 20.263 2.234
144 2322.68 82.47 30.576 1.946 22.631 2.523
145 2407.20 86.58 32.615 2.143 25.309 2.856
146 —+2496.06 -+ 91.16 —+ 34.862 + 2.368 — 28.344 — 3.242
147 258Y.66 96.11 37.551 2.626 31.794 3.713
148 2688.45 101.56 40.115 2.924 35.730 4.224
149 2792.96 107.54 43.199 3.272 40.233 4.836
150 2903.74 114.13 46.659 3.677 45.403 5.566
151 —+3021.46 —+121.43 -+ 50.553 -+ 4.153 — 51.366 —  6.437
152 3146.88 129.53 54.966 4.717 58.267 7.469
153 3280.84 138.56 59.937 5.385 66.295 8.705
154 3424.37 148.67 65.737 6.185 75.677 10.202
155 3)78.59 160.01 72.357 7.155 86.700 12.024
156 —+-3741.88 —+172.81 -+ 80.042 -+ 8.328 — 99.726 — 14.260
157 392:L.79 187.33 89.014 9.767 | - 115.221 17.023
158 4120.22 203.89 99.577 11.548 133.773 20.471
159 4333.38 222.87 112.111 13.777 156.17 ¢ 24.815
160 4566.94 244.78 127.132 16.603 183.404 30.348
161 —+4821.14 —+-24.4.78 —+145.317 —+-20.209 —216.860 — 37.483
162 5108.93 270.26 167.550 24.869 253.371 46.802
163 5426.19 300.11 195.056 31.062 310.464 59.156
164 5732.01 835.39 229.674 39.353 376.683 75.318
165 6184.14 377.50 273.762 50.636 462.100 98.618
166 +-6642.19 +428.33 +330.946 | 4-66.405 | —574.089 | —130.816
167 7170.07 490.43 406.573 88.993 723.733 177.025
163 778118 567.43 508.933 122.256 928.140 246.403 |
169 8508..45 | 651.086 | 1214.530




CONSTANTS.

: Log.
Attractive force of the Sun, % in terms of radius, 0 .0172021 8.23556814

% in seconds, 3548”.18761 3.5600066
Length of the Sidereal Year (Hansex and Ovurser), 3652563582 2.6625978
Length of the Tropical Year, 1850, 36642422008 2.6625809
Horizontal equatorial parallax of the Sun (Excke)* 8".56776 0.9333668
Constant of Aberration (STRUVE), . 20”.4451 1.3105892
Time required for light to pass from the S«n to

the Earth, 497°.827 2.6970785
Radius of Circle in Seconds of arc, 206264".806 5.3144251
in Seconds of time, 18750°987  4.1383339
Sin 1” ' 0.000004848137 4.6865749
Circumference of Circle in Seconds of arc, 1296000 6.1126050
in Seconds of time, 86400° 4.9365137
in terms of diameter, x*  3.14159265 0.4971499

General Precession (STRUVE) 50”2411 4 07.0002268¢ :

Obliquity of the ecliptic (Struve and Prrers), 23°27' 54”.22 — 0.4645£—.0000014 7
in which 7 is the number of years after 1800

Daily precession, 1850, 07.13756837 9.1385669

Modulus of Common Logarithms, M 0.4342945 9.6377843

* The Constants of Parallax, Aberration, etc., are those used in the American Ephemeris, and
the authority for them may be found by reference to the volume for 1855.

(40)
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