Løsningsforslag (ST1101/ST6101 vår 2014)

1. A coin is tossed two times. Consider the following events $A=$ \{the head in the first toss\}, $B=\{$ the head in the second toss $\}, C=$ \{one head and one tail\}.
a) Are A, B, C pairwise independent? Are A, B, C independent? Explain you answers.

Solution. Possible outcomes: hh, ht, th, tt. Then

$$
\begin{gathered}
A=\{\mathrm{hh}, \mathrm{ht}\}, P(A)=\frac{1}{2} \\
B=\{\mathrm{hh}, \mathrm{th}\}, P(B)=\frac{1}{2} \\
C=\{\mathrm{ht}, \mathrm{th}\}, P(C)=\frac{1}{2} \\
A \cap B=\{\mathrm{hh}\}, P(A \cap B)=\frac{1}{4}=P(A) P(B) \\
A \cap C=\{\mathrm{ht}\}, P(A \cap C)=\frac{1}{4}=P(A) P(C) \\
B \cap C=\{\mathrm{th}\}, P(B \cap C)=\frac{1}{4}=P(B) P(C)
\end{gathered}
$$

Events are pairwise independent.

$$
A \cap B \cap C=\emptyset, P(A \cap B \cap C)=0 \neq P(A) P(B) P(C) .
$$

Evets are not independent.
2. Let X be a continuous random variable with the probability density function

$$
f_{X}(x)= \begin{cases}\frac{1}{3}(4 x+1) & \text { for } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

and let Y be a continuous random variable with the conditional density (given $X=x$)

$$
f_{Y \mid X=x}(y)= \begin{cases}\frac{4 x+2 y}{4 x+1} & \text { for } y \in[0,1] \\ 0 & \text { otherwise } .\end{cases}
$$

a) Find $P(Y \leq X)$.
b) Find $P(X \leq 1 / 2 \mid Y \leq 1 / 2)$.
c) Are variables X and Y independent?

Solution. Let us find the joint density of X and Y :

$$
f_{X, Y}(x, y)=f_{Y \mid X=x}(y) f_{X}(x)=\frac{2}{3}(2 x+y)
$$

for $0 \leq x \leq 1,0 \leq y \leq 1$ (otherwise 0).
a) Denote $A=\{(x, y): y \leq x\}$. Then

$$
\begin{aligned}
P(Y \leq X) & =P((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y= \\
& =\int_{0}^{1}\left(\int_{0}^{x} \frac{2}{3}(2 x+y) d y\right) d x=\frac{5}{9} .
\end{aligned}
$$

b)

$$
\begin{gathered}
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=\int_{0}^{1} \frac{2}{3}(2 x+y) d x=\frac{2}{3}(y+1) . \\
P(Y \leq 1 / 2)=\int_{-\infty}^{1 / 2} f_{y}(y) d y=\int_{0}^{1 / 2} \frac{2}{3}(y+1) d y=\frac{5}{12} \\
P(X \leq 1 / 2, Y \leq 1 / 2)=\int_{0}^{1 / 2}\left(\int_{0}^{1 / 2} \frac{2}{3}(2 x+y) d y\right) d x=\frac{1}{8} .
\end{gathered}
$$

Thus

$$
P(X \leq 1 / 2 \mid Y \leq 1 / 2)=\frac{P(X \leq 1 / 2, Y \leq 1 / 2)}{(Y \leq 1 / 2)}=\frac{3}{10} .
$$

c) No: $f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)$.
3. Y has the normal distribution with the expectation μ and variance σ^{2}.
a) Find the expectation and the variance of the random variable e^{Y}.
b) Find $P(\mu-2 \sigma<Y<\mu+2 \sigma)$.
c) Let $P(Y<0)=0.5$ and $P(Y<1)=0.6915$. What are μ and σ^{2} ?

Solution. a) The moment generating function of Y is

$$
M_{Y}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}
$$

therefore

$$
E e^{Y}=M_{Y}(1)=e^{\mu+\sigma^{2} / 2}
$$

The variance

$$
\begin{gathered}
\operatorname{Var}\left(e^{Y}\right)=E\left(e^{Y}\right)^{2}-\left(E e^{Y}\right)^{2}= \\
=M_{Y}(2)-\left(M_{Y}(1)\right)^{2}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right) .
\end{gathered}
$$

b)

$$
\begin{aligned}
& P(\mu-2 \sigma<Y<\mu+2 \sigma)=P\left(-2<\frac{Y-\mu}{\sigma}<2\right)= \\
= & P(-2<Z<2)=\Phi(2)-\Phi(-2)=2 \Phi(2)-1=0.9544 .
\end{aligned}
$$

c) The first equality implies that $\mu=0$. Then

$$
P(Y<1)=P\left(\frac{Y}{\sigma}<\frac{1}{\sigma}\right)=P\left(Z<\frac{1}{\sigma}\right)=0.6915
$$

that implies that $1 / \sigma=0.5$ i.e. $\sigma^{2}=4$.
4. Two neighbouring sides in a rectangle are independent random variables X and Y with the same exponential distribution with parameter $\theta(E X=E Y=1 / \theta)$.
a) Show that the distribution of the perimeter T of the rectangle has the gamma distribution with parameters 2 and $\theta / 2$.

Suppose that θ is unknown. It is estimated on the basis of a sample of n independent circumferences T_{1}, \ldots, T_{n}, where the distribution of $T_{i}, i=1, \ldots, n$, is the same as in item a).
b) Find the maximum likelihood estimator and the method of moment estimator.

Solution. a) Denote density functions of X (and Y) and T by $f(x)$ and $f_{T}(t)$, respectively. Then

$$
f(x)=\theta e^{-\theta x}, x \geq 0
$$

and therefore the density of $X+Y$ is

$$
f_{X+Y}(t)=\int_{-\infty}^{\infty} f(t-x) f(x) d x=\int_{\theta}^{t} \theta e^{-\theta(t-x)} \theta e^{-\theta x} d x=\theta^{2} t e^{-\theta t}
$$

The density of T is

$$
f_{T}(t)=\frac{1}{2} f_{X+Y}(t / 2)=\frac{\theta^{2}}{4} t e^{-\theta t / 2}
$$

This is the density of the gamma distribution with parameters $(2, \theta / 2)$.
b) The likelihood function is

$$
L\left(\theta ; X_{1}, \ldots, T_{n}\right)=\prod_{i=1}^{n} \frac{\theta^{2}}{4} T_{i} e^{-\theta T_{i} / 2}=\frac{\theta^{2 n}}{4^{n}}\left(\prod_{i=1}^{n} T_{i}\right) e^{-\frac{\theta}{2} \sum T_{i}} .
$$

Loglikelihood is

$$
\ln L=2 n \ln \theta-n \ln 4+\ln \prod_{i=1}^{n} T_{i}-\frac{\theta}{2} \sum_{i=1}^{n} T_{i} .
$$

The derivative

$$
\frac{\partial \ln L}{\partial \theta}=\frac{2 n}{\theta}-\frac{1}{2} \sum_{i=1}^{n} T_{i}
$$

and the maximum likelihood estimator (solution of the likelihood equation) is

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{4 n}{\sum_{i=1}^{n} T_{i}} .
$$

The moment estimator is the solution of the equation

$$
\frac{m}{\theta}=M_{1}
$$

where M_{1} is the first empirical moment i.e.

$$
M_{1}=\frac{1}{n} \sum_{i=1}^{n} T_{i} .
$$

This solution coincides with the maximum likelihood estimator.
5. A random variable N has the binomial distribution with parameters n and p i.e.

$$
p_{N}(k)=P(N=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n .
$$

Let $Y_{0}, Y_{1}, \ldots, Y_{n}$ be continuous random variables, and let Y_{k} and N be independent for all $k=0,1, \ldots, n$. Denote $X=Y_{N}$.

Suppose that

$$
E Y_{k}=\mu^{k}(\mu \neq 0), k=0,1, \ldots, n .
$$

Prove that

$$
E X=(p \mu+1-p)^{n} .
$$

Solution. Denote the cumulative distribution function and the density function of Y_{k} by $F_{k}(x), f_{k}(x)$, and those of X by $F(x)$, $f(x)$, respectively. Then

$$
\begin{gathered}
F(x)=P(X \leq x)=\sum_{k=0}^{n} P(X \leq x \mid N=k) P(N=k)= \\
=\sum_{k=0}^{n} P\left(Y_{N} \leq x \mid N=k\right) P(N=k)= \\
=\sum_{k=0}^{n} P\left(Y_{k} \leq x \mid N=k\right) P(N=k)= \\
=\sum_{k=0}^{n} P\left(Y_{k} \leq x\right) P(N=k)=\sum_{k=0}^{n} p_{N}(k) F_{k}(x),
\end{gathered}
$$

and therefore

$$
f(x)=\sum_{k=0}^{n} p_{N}(k) f_{k}(x) .
$$

Now

$$
\begin{gathered}
E X=\int_{-\infty}^{\infty} x f(x) d x=\sum_{k=0}^{n} p_{N}(k) \int_{-\infty}^{\infty} x f_{k}(x) d x= \\
=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \mu^{k}=(p \mu+(1-p))^{n} .
\end{gathered}
$$

