Løsningsforslag (ST1201/ST6201 2017, kontinuasjonseksamen)
1.
a) The power function (probability to reject H_{0}) is

$$
1-\beta(\mu)=\Phi\left(\frac{\sqrt{n}}{\sigma} \mu-z_{\alpha}\right)
$$

In our case

$$
1-\beta(1)=\Phi\left(2-z_{\alpha}\right)=0.5
$$

i.e. $z_{\alpha}=2, \alpha=0.0228$.
b)

$$
1-\beta(2)=\Phi\left(4-z_{\alpha}\right)=\Phi(2)=0.9772
$$

2.

a) Under H_{0} the test statistic of the test

$$
\frac{\bar{X}-\bar{Y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}
$$

has the standard normal distribution, therefore the P-value is

$$
\begin{gathered}
p(x, y)=P_{\mu_{X}=\mu_{Y}}\left(\left|\frac{\bar{X}-\bar{Y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}\right| \geq \frac{\bar{x}-\bar{y}}{\sqrt{\sigma_{X}^{2} / n+\sigma_{Y}^{2} / m}}\right)= \\
=2 \Phi(-1) \approx 0.32 .
\end{gathered}
$$

3.

a) Let X be the number of observations greater than 0.5 . The large-sample sign test: H_{0} is rejected if

$$
Z=\frac{X-n / 2}{\sqrt{n / 4}} \geq z_{\alpha}
$$

In our case $(X=11, n=16)$

$$
Z=1.5<1.645=z_{\alpha}
$$

therefore H_{0} is not rejected.
b) The large-sample Wilcoxon signed rank test: H_{0} is rejected if

$$
z=\frac{w-n(n+1) / 4}{\sqrt{n(n+1)(2 n+1) / 24}} \geq z_{\alpha}
$$

where $w=\sum_{i=1}^{n} r_{i} z_{i}, r_{i}-\operatorname{rank}$ of $\left|y_{i}-0.5\right|, z_{i}=1$ if $y_{i}>0.5$ and 0 otherwise.
In our case

i	1	2	3	4	5	6	7	8
$\left\|y_{i}-0.5\right\|$	0.07	0.34	0.11	0.11	0.08	0.21	0.22	0.18
r_{i}	5	16	7.5	7.5	6	12	13.5	10
z_{i}	1	1	1	0	0	1	0	0
i	9	10	11	12	13	14	15	16
$\left\|y_{i}-0.5\right\|$	0.13	0.01	0.02	0.22	0.19	0.27	0.03	0.06
r_{i}	9	1	2	13.5	11	15	3	4
z_{i}	1	1	0	1	1	1	1	1

$$
w=97
$$

and

$$
z=1.5<1.645=z_{\alpha}
$$

Thus H_{0} is not rejected.
4.
a) Poisson probabilities $(\lambda=1)$ are

$$
p_{k}=\frac{e^{-1}}{k!}, k=0,1, \ldots
$$

i.e.

$$
\begin{aligned}
& p_{0}=0.37 \\
& p_{1}=0.37 \\
& p_{2}=0.18 \\
& p_{3}=0.06 \\
& p_{4}=0.015 \\
& p_{5+}=0.005
\end{aligned}
$$

To apply the Pearson goodness-of-fit test, we use the partition (of nonnegative integers)

$$
\{0\},\{1\},\{2,3, \ldots\}
$$

with probabilities (under H_{0})

$$
p_{10}=0.37, p_{20}=0.37, p_{30}=0.26
$$

This partition is chosen because the condition $n p_{i 0} \geq 5$ must be satisfied. Then

$$
k_{1}=2, k_{2}=6, k_{3}=23
$$

$$
n p_{10}=11.47, n p_{20}=11.47, n p_{30}=8.06
$$

The observed value of the test statistic is

$$
d=\sum_{i=1}^{3} \frac{\left(k_{i}-n p_{i 0}\right)^{2}}{n p_{i 0}}=38.1>5.991=\chi_{0.95,2}^{2}
$$

The hypothesis is rejected.
b) Maximum likelihood estimate of λ is $\hat{\lambda}=2.48 \ldots \approx 2.5$ and estimates of Poisson probabilities are

$$
\hat{p}_{k}=\frac{e^{-2.5} 2.5^{k}}{k!}, k=0,1, \ldots
$$

i.e.
$\hat{p}_{0}=0.08$
$\hat{p}_{1}=0.21$
$\hat{p}_{2}=0.26$
$\hat{p}_{3}=0.21$
$\hat{p}_{4}=0.13$
$\hat{p}_{5}=0.07$
$\hat{p}_{6+}=0.04$
To apply the Pearson goodness-of-fit test, we use the partition (of nonnegative integers)

$$
\{0,1\},\{2\},\{3\},\{4,5, \ldots\}
$$

with probabilities (under H_{0})

$$
\hat{p}_{10}=0.29, \hat{p}_{20}=0.26, \hat{p}_{30}=0.21, \hat{p}_{40}=0.24
$$

This partition is chosen because the condition $n \hat{p}_{i 0} \geq 5$ must be satisfied. Then

$$
\begin{gathered}
k_{1}=8, k_{2}=10, k_{3}=6, k_{4}=7 \\
n \hat{p}_{10}=8.99, n \hat{p}_{20}=8.06, n \hat{p}_{30}=6.51, n \hat{p}_{40}=7.44
\end{gathered}
$$

The observed value of the test statistic is

$$
d_{1}=\sum_{i=1}^{4} \frac{\left(k_{i}-n \hat{p}_{i 0}\right)^{2}}{n \hat{p}_{i 0}}=0.65<5.991=\chi_{0.95,2}^{2}
$$

The hypothesis is accepted.
5.
a)

$$
\begin{gathered}
M S T R=F \cdot M S E=1.6 \cdot 5.1=8.16 \\
S S T R=M S T R \cdot d f=8.16 \cdot 3=24.48 \\
S S E=M S E \cdot d f=5.1 \cdot 40=204 \\
S S T O T=S S T R+S S E=204+24.48=228.48
\end{gathered}
$$

Thus the filled ANOVA table is

Source	df	$S S$	$M S$	F
Treatment	3	24.48	8.16	1.6
Error	40	204	5.1	
Total	43	228.48		

b) $F_{0.95,3,40}=2.84>1.6($ observed $F)$. Therefore H_{0} is not rejected.
6.
a) Denote probabilities

$$
\begin{gathered}
p_{11}=P(\text { good husband }, \text { good wife }) \\
p_{12}=P(\text { good husband }, \text { bad wife }) \\
p_{21}=P(\text { bad husband }, \text { good wife }) \\
p_{22}=P(\text { bad husband }, \text { bad wife }) \\
p_{1}=P(\text { good husband }) \\
p_{2}=P(\text { bad husband }) \\
q_{1}=P(\operatorname{good} \text { wife }) \\
q_{2}=P(\text { bad wife })
\end{gathered}
$$

(It is clear that $p_{1}+p_{2}=1, q_{1}+q_{2}=1, p_{11}+p_{11}+p_{21}+p_{22}=1$.) It is tested the null hypothesis $H_{0}: p_{i j}=p_{i} q_{j}, i=1,2, j=1,2$. We are given the contingency table

X_{11}	X_{12}
X_{21}	X_{22}

The test statistic (we use notations of the textbook) is

$$
D_{2}=\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(X_{i j}-n \hat{p}_{i} \hat{q}_{j}\right)^{2}}{n \hat{p}_{i} \hat{q}_{j}}
$$

where \hat{p}_{i}, \hat{q}_{j} are estimators (MLE) of $p_{i}, q_{j} . H_{0}$ is rejected if

$$
D_{2} \geq \chi_{1-\alpha, 1}^{2}
$$

In our case $D_{2}=1.02, \chi_{1-\alpha, 1}^{2}=3.841$. The null hypothesis is not rejected (that means that there is no reason to believe that the temperament of husband and wife are dependent of each other).

