Løsningsforslag (ST1201/ST6201 2017, kontinuasjonseksamen)

1.

a) The power function (probability to reject H_0) is

$$1 - \beta(\mu) = \Phi\left(\frac{\sqrt{n}}{\sigma}\mu - z_{\alpha}\right).$$

In our case

$$1 - \beta(1) = \Phi(2 - z_{\alpha}) = 0.5$$

i.e. $z_{\alpha} = 2, \ \alpha = 0.0228.$

b)

$$1 - \beta(2) = \Phi(4 - z_{\alpha}) = \Phi(2) = 0.9772.$$

2.

a) Under H_0 the test statistic of the test

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}}$$

has the standard normal distribution, therefore the P-value is

$$p(x,y) = P_{\mu_X = \mu_Y} \left(\left| \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_X^2 / n + \sigma_Y^2 / m}} \right| \ge \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_X^2 / n + \sigma_Y^2 / m}} \right) = 2\Phi(-1) \approx 0.32.$$

3.

a) Let X be the number of observations greater than 0.5. The large-sample sign test: H_0 is rejected if

$$Z = \frac{X - n/2}{\sqrt{n/4}} \ge z_{\alpha}.$$

In our case (X = 11, n = 16)

$$Z = 1.5 < 1.645 = z_{\alpha}$$

therefore H_0 is not rejected.

b) The large-sample Wilcoxon signed rank test: H_0 is rejected if

$$z = \frac{w - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \ge z_{\alpha},$$

where $w = \sum_{i=1}^{n} r_i z_i$, r_i – rank of $|y_i - 0.5|$, $z_i = 1$ if $y_i > 0.5$ and 0 otherwise. In our case

i	1	2	3	4	5	6	7	8
$ y_i - 0.5 $	0.07	0.34	0.11	0.11	0.08	0.21	0.22	0.18
r_i	5	16	7.5	7.5	6	12	13.5	10
z_i	1	1	1	0	0	1	0	0
i	9	10	11	12	13	14	15	16
$ y_i - 0.5 $	0.13	0.01	0.02	0.22	0.19	0.27	0.03	0.06
r_i	9	1	2	13.5	11	15	3	4

$$w = 97$$

and

$$z = 1.5 < 1.645 = z_{\alpha}$$

Thus H_0 is not rejected.

4.

a) Poisson probabilities $(\lambda = 1)$ are

$$p_k = \frac{e^{-1}}{k!}, \ k = 0, 1, ...,$$

i.e.

 $p_0 = 0.37$ $p_1 = 0.37$ $p_2 = 0.18$ $p_3 = 0.06$ $p_4 = 0.015$ $p_{5+} = 0.005$

To apply the Pearson goodness-of-fit test, we use the partition (of nonnegative integers)

$$\{0\}, \{1\}, \{2, 3, ...\}$$

with probabilities (under H_0)

$$p_{10} = 0.37, \ p_{20} = 0.37, \ p_{30} = 0.26$$

This partition is chosen because the condition $np_{i0} \ge 5$ must be satisfied. Then

$$k_1 = 2, \ k_2 = 6, \ k_3 = 23;$$

 $np_{10} = 11.47, \ np_{20} = 11.47, \ np_{30} = 8.06.$

The observed value of the test statistic is

$$d = \sum_{i=1}^{3} \frac{(k_i - np_{i0})^2}{np_{i0}} = 38.1 > 5.991 = \chi^2_{0.95,2}.$$

The hypothesis is rejected.

b) Maximum likelihood estimate of λ is $\hat{\lambda} = 2.48... \approx 2.5$ and estimates of Poisson probabilities are

$$\hat{p}_k = \frac{e^{-2.5}2.5^k}{k!}, \ k = 0, 1, \dots,$$

i.e.

 $\hat{p}_0 = 0.08$ $\hat{p}_1 = 0.21$ $\hat{p}_2 = 0.26$ $\hat{p}_3 = 0.21$ $\hat{p}_4 = 0.13$ $\hat{p}_5 = 0.07$ $\hat{p}_{6+} = 0.04$

To apply the Pearson goodness-of-fit test, we use the partition (of nonnegative integers) ലിലില്

$$\{0,1\},\ \{2\},\ \{3\},\ \{4,5,\ldots\}$$

with probabilities (under H_0)

$$\hat{p}_{10} = 0.29, \ \hat{p}_{20} = 0.26, \ \hat{p}_{30} = 0.21, \ \hat{p}_{40} = 0.24.$$

This partition is chosen because the condition $n\hat{p}_{i0} \ge 5$ must be satisfied. Then

$$k_1 = 8, \ k_2 = 10, \ k_3 = 6, \ k_4 = 7;$$

$$n\hat{p}_{10} = 8.99, \ n\hat{p}_{20} = 8.06, \ n\hat{p}_{30} = 6.51, \ n\hat{p}_{40} = 7.44.$$

The observed value of the test statistic is

$$d_1 = \sum_{i=1}^{4} \frac{(k_i - n\hat{p}_{i0})^2}{n\hat{p}_{i0}} = 0.65 < 5.991 = \chi^2_{0.95,2}.$$

The hypothesis is accepted.

a)

5.

$$MSTR = F \cdot MSE = 1.6 \cdot 5.1 = 8.16$$
$$SSTR = MSTR \cdot df = 8.16 \cdot 3 = 24.48$$
$$SSE = MSE \cdot df = 5.1 \cdot 40 = 204$$

$$SSTOT = SSTR + SSE = 204 + 24.48 = 228.48$$

Thus the filled ANOVA table is

Source	df	SS	MS	F
Treatment	3	24.48	8.16	1.6
Error	40	204	5.1	
Total	43	228.48		

b)
$$F_{0.95,3,40} = 2.84 > 1.6$$
 (observed F). Therefore H_0 is not rejected.

6.

a) Denote probabilities

 $p_{11} = P(\text{good husband, good wife}),$ $p_{12} = P(\text{good husband, bad wife}),$ $p_{21} = P(\text{bad husband, good wife}),$ $p_{22} = P(\text{bad husband, bad wife}),$ $p_1 = P(\text{good husband}),$ $p_2 = P(\text{bad husband}),$ $q_1 = P(\text{good wife}),$ $q_2 = P(\text{bad wife}).$

(It is clear that $p_1 + p_2 = 1$, $q_1 + q_2 = 1$, $p_{11} + p_{11} + p_{21} + p_{22} = 1$.) It is tested the null hypothesis $H_0: p_{ij} = p_i q_j, i = 1, 2, j = 1, 2$. We are given the contingency table

^ 12
X_{22}

The test statistic (we use notations of the textbook) is

$$D_2 = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(X_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i, \hat{q}_j are estimators (MLE) of p_i, q_j . H_0 is rejected if

$$D_2 \ge \chi_{1-\alpha,1}^2.$$

In our case $D_2 = 1.02$, $\chi^2_{1-\alpha,1} = 3.841$. The null hypothesis is not rejected (that means that there is no reason to believe that the temperament of husband and wife are dependent of each other).