Norges teknisk– naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Contact: Nikolai Ushakov 45128897

ST1201/ST6201 STATISTICAL METHODS Friday 14 December 2012 Time: 09:00-13:00

Permitted material: Statistiske tabeller og formler, Tapir forlag. K.Rottman. Matematisk formelsamling. Yellow A4-sheet of paper with handritten notes. Calculator.

Results: 11 January 2013

Oppgave 1

Let $X_1, ..., X_{100}$ be a random sample from a normal distribution with unknown expectation μ and variance $\sigma^2 = 25$. The hypothesis $H_0: \mu = 0$ is tested against $H_1: \mu > 0$ (H_0 is rejected for large values of \bar{X}). For $\mu = 1$ the power of the test is $1 - \beta(1) = 0.5$.

- **a)** What does the significance level α equal?
- **b)** Find the power $1 \beta(2)$ for $\mu = 2$.

Oppgave 2

Two independent samples of sizes n = 200 and m = 240 are taken from normal distributions with unknown expectations μ_X , μ_Y and known variances $\sigma_X^2 = 1$ and $\sigma_Y^2 = 1.2$, respectively. $H_0: \mu_X = \mu_Y$ is being tested against $H_1: \mu_X \neq \mu_Y$.

a) Find the *P*-value if observed sample means are $\bar{x} = 2.1$ and $\bar{y} = 2.0$.

Oppgave 3

The following result is well-known.

A. If the random vector (X, Y) has a bivariate normal distribution, and X, Y are uncorrelated (the correlation coefficient $\rho(X, Y) = 0$), then X and Y are independent.

Consider the following example. Let X and T be independent random variables, X has the standard normal distribution, T takes on two values -1 and 1, each with probability 1/2. Let Y = TX.

- a) Show that Y has a normal distribution and therefore both components X and Y of the bivariate random vector (X, Y) are normal.
- **b)** Show that $\rho(X, Y) = 0$ but X and Y are dependent.
- c) Explain, why the example of this problem is not in contradiction with proposition A.

Oppgave 4

A researcher would like to find out (using ANOVA technique) whether a woman's name affects hers weight. The data (weights of 12 women) are given in the table.

Anna	Elsa	Julia		
67	53	63		
48	61	69		
50	72	51		
52	75	54		

- a) Show the ANOVA table (without "*P*-value"-column).
- b) Test whether the differences among the average weights are statistically significant. The significance level $\alpha = 0.05$.

Oppgave 5

The data, presented in the Table, are 16 independent observations from a continuous, symmetric (about the unknown expectation μ) distribution. Test the hyposesis $H_0: \mu = 0.5$ versus $H_1: \mu > 0.5$ (significance level $\alpha = 0.05$),

0.57	0.84	0.61	0.39	0.42	0.71	0.28	0.32
0.63	0.51	0.48	0.82	0.69	0.77	0.53	0.56

- **a)** using the large-sample sign test;
- ${\bf b})$ using the large-sample Wilcoxon signed rank test.