

Department of Mathematical Sciences

Examination paper for ST1201/ST6201 Statistical methods

Academic contact during examination: Nikolai Ushakov

Phone: 45128897

Examination date: 20 December 2019

Examination time (from-to): 09:00 - 13:00

Permitted examination support material: C:

- Tabeller og formler i statistikk, Tapir forlag,
- K.Rottman. Matematisk formelsamling,
- Stamped yellow A4 sheet with your own handwritten notes,
- Calculator: HP30S, Citizen SR-270X, Citizen SR-270X College or Casio fx-82ES PLUS.

Other information:

Sensur:

Language: English

Number of pages: 4

Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave									
Originale	en er:								
1-sidig		2-sidig	\boxtimes						
sort/hvit	\boxtimes	farger							
skal ha fl	lervalg	skjema							

Checked by:

Date

Signature

Problem 1

Let $X \sim N(\mu, 2\sigma^2)$ and $Y \sim N(2\mu, \sigma^2)$ and assume X and Y to be independent. We want to estimate μ from observed values for X and Y.

a) The following two estimators have been proposed,

$$\hat{\mu}_1 = \frac{1}{3}X + \frac{1}{3}Y, \quad \hat{\mu}_2 = \frac{1}{2}X + \frac{1}{4}Y.$$

Which of the two estimators would you prefer? Give reason for the answer!

Problem 2

Let $X_1, X_2, ..., X_n$ be independent and identically distributed, $X_i \sim N(0, \sigma^2)$, where σ^2 is unknown. We test the hypotheses

$$H_0: \sigma^2 = 1$$
 versus $H_1: \sigma^2 \neq 1$.

a) Use

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

as the test statistic, work out a decision rule for when to reject H_0 . Use significance level α .

Find the power function of the test.

b) Find the generalised likelihood ratio (GLR) λ , for the hypotheses H_0 and H_1 given above.

Explain why the test you worked out in \mathbf{a}) is not a generalised likelihood ratio test (GLRT).

Problem 3

In this exercise we will consider a regression model that is somewhat modified relative to what is discussed in the textbook. Assume that we have pairs of variables

$$(x_1, Y_1), (x_2, Y_2), \dots (x_n, Y_n)$$

where $x_1, x_2, ..., x_n$ are positive and nonstochastic while $Y_1, Y_2, ..., Y_n$ are assumed to be independent random variables with

$$Y_i \sim \mathcal{N}(\beta x_i, \sigma_0^2 x_i^2).$$

Thus, the variance of Y_i is assumed to be proportional to x_i^2 . In this exercise we will assume the value of σ_0^2 to be known while the parameter β is estimated from the available data.

- **a)** Work out the maximum likelihood estimator (MLE) $\hat{\beta}$ for β . Show that $\hat{\beta}$ is unbiased and find the variance of $\hat{\beta}$.
- **b)** What is the probability distribution of $\hat{\beta}$? Give reason for the answer. Work out a $100(1 - \alpha)$ %-confidence interval for β .

Problem 4

Let X_1 and X_2 be independent and identically distributed, $X_i \sim \chi_n^2$ (n > 2).

a) Show that

$$E\left(\frac{1}{X_1+X_2}\right) = \frac{1}{2(n-1)}$$
 and $E\left[\frac{1}{(X_1+X_2)^2}\right] = \frac{1}{4(n-1)(n-2)}.$

Problem 5

The following table is an ANOVA table in which some entries are lost (stars).

Source	df	SS	MS	F
Treatment	*	18.1	3.62	*
Error	80	*	*	
Total	*	247.7		

a) Find lost values and fill in the ANOVA table. Show how you calculate values where there are \star in the table. Do all the samples have the same size?

b) Test the hypothesis that

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$$

versus

 H_1 : not all are equal.

The significance level $\alpha = 0.05$.

Problem 6

One studies the difference between the effect of an old fertilizer (denoted as X_1) and a newly developed fertilizer (denoted as X_2) on the growth of plants. An experiment was conducted where plants were grown under identical conditions, and one randomly assigned fertilizer X_1 to $n_1 = 7$ plants and fertilizer X_2 to $n_2 = 8$ plants. After 3 weeks the height of the plants were measured in cm. Data from the experiment is presented below.

i	1	2	3	4	5	6	7	8
x_{1i}	31	33	29	35	39	42	38	
x_{2i}	34	36	30	32	37	43	39	40

Descriptive measures for this dataset are

$$\bar{x}_1 = \frac{1}{7} \sum_{i=1}^7 x_{1i} = 35.29, \ s_{x1} = \sqrt{\frac{1}{6} \sum_{i=1}^7 (x_{1i} - \bar{x}_1)^2} = 4.64,$$
$$\bar{x}_2 = \frac{1}{8} \sum_{i=1}^8 x_{2i} = 36.38, \ s_{x2} = \sqrt{\frac{1}{7} \sum_{i=1}^8 (x_{2i} - \bar{x}_2)^2} = 4.31.$$

a) We assume that X_{1i} and X_{2i} are normally distributed, $X_{1i} \sim N(\mu_1, \sigma^2)$, i = 1, ..., 7, and $X_{2i} \sim N(\mu_2, \sigma^2)$, i = 1, ..., 8.

Based on this experiment, can one conclude that the mean height of the plants given the two different types $(X_1 \text{ and } X_2)$ of fertilizers are different? Write down the null hypothesis and the alternative hypothesis. Choose a test statistic and perform a hypothesis test. Use significance level $\alpha = 0.05$. Specify the assumptions you make.

Page 4 of 4

b) What is the difference between a non-parametric hypothesis test and the test used in a)?

Perform a Wilcoxon rank-sum test based on the data given above. You can assume a normal approximation to the test statistic.